

Deitel® Ser ies Page
How to Program Series
Android™ How to Program, 2/E
C++ How to Program, 9/E
C How to Program, 7/E
Java™ How to Program, Early Objects Version, 10/E
Java™ How to Program, Late Objects Version, 10/E
Internet & World Wide Web How to Program, 5/E
Visual Basic® 2012 How to Program, 6/E
Visual C#® 2012 How to Program, 5/E

Deitel® Developer Series
Android™ for Programmers: An App-Driven

Approach, 2/E, Volume 1
C for Programmers with an Introduction to C11
C++11 for Programmers
C# 2012 for Programmers
iOS® 8 for Programmers: An App-Driven

Approach with Swift™, Volume 1
Java™ for Programmers, 3/E
JavaScript for Programmers
Swift™ for Programmers

Simply Series
Simply C++: An App-Driven Tutorial Approach
Simply Java™ Programming: An App-Driven

Tutorial Approach
(continued in next column)

(continued from previous column)
Simply C#: An App-Driven Tutorial Approach
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E

CourseSmart Web Books
www.deitel.com/books/CourseSmart/

C++ How to Program, 8/E and 9/E
Simply C++: An App-Driven Tutorial Approach
Java™ How to Program, 9/E and 10/E
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E
Visual Basic® 2012 How to Program, 6/E
Visual Basic® 2010 How to Program, 5/E
Visual C#® 2012 How to Program, 5/E
Visual C#® 2010 How to Program, 4/E

LiveLessons Video Learning Products
www.deitel.com/books/LiveLessons/

Android™ App Development Fundamentals, 2/e
C++ Fundamentals
Java™ Fundamentals, 2/e
C# 2012 Fundamentals
C# 2010 Fundamentals
iOS® 8 App Development Fundamentals, 3/e
JavaScript Fundamentals
Swift™ Fundamentals

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and more,
please join the Deitel communities on

• Facebook®—facebook.com/DeitelFan

• Twitter®—@deitel

• Google+™—google.com/+DeitelFan

• YouTube™—youtube.com/DeitelTV

• LinkedIn®—linkedin.com/company/deitel-&-associates

and register for the free Deitel® Buzz Online e-mail newsletter at:
 www.deitel.com/newsletter/subscribe.html

To communicate with the authors, send e-mail to:
 deitel@deitel.com

For information on Dive-Into® Series on-site seminars offered by Deitel & Associates, Inc. worldwide,
write to us at deitel@deitel.com or visit:
 www.deitel.com/training/

For continuing updates on Pearson/Deitel publications visit:
www.deitel.com

www.pearsonhighered.com/deitel/

Visit the Deitel Resource Centers that will help you master programming languages, software develop-
ment, Android™ and iOS® app development, and Internet- and web-related topics:
 www.deitel.com/ResourceCenters.html

Paul Deitel
Deitel & Associates, Inc.

Harvey Deitel
Deitel & Associates, Inc.

Vice President and Editorial Director, ECS: Marcia J. Horton
Executive Editor: Tracy Johnson (Dunkelberger)
Editorial Assistant: Kelsey Loanes
Program Manager: Carole Snyder
Project Manager: Robert Engelhardt
Media Team Lead: Steve Wright
R&P Manager: Rachel Youdelman
R&P Senior Project Manager: William Opaluch
Senior Operations Specialist: Maura Zaldivar-Garcia
Inventory Manager: Bruce Boundy
Marketing Manager: Demetrius Hall
Product Marketing Manager: Bram Van Kempen
Marketing Assistant: Jon Bryant
Cover Designer: Chuti Prasertsith / Michael Rutkowski / Marta Samsel
Cover Art: © Willyam Bradberry / Shutterstock

© 2016, 2013, 2010 Pearson Education, Inc., Hoboken, NJ 07030. All rights reserved. Manufactured in the United
States of America. This publication is protected by Copyright and permissions should be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use materials from this work,
please submit a written request to Pearson Higher Education, Permissions Department, 221 River Street, Hoboken,
NJ 07030.

Any of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps. Credits and acknowledgments borrowed from other sources and reproduced, with
permission, in this textbook appears on page.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries.
Screen shots and icons reprinted with permission from the Microsoft Corporation.

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of theories and programs to determine their effectiveness. The author and publisher
make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained
in this book. The author and publisher shall not be liable in any event for incidental or consequential damages with,
or arising out of, the furnishing, performance, or use of these programs.

Pearson Education Ltd., London
Pearson Education Australia Ply. Ltd., Sydney
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Inc., Toronto
Pearson Education de Mexico, S.A. de C.V.
Pearson Education-Japan, Tokyo
Pearson Education Malaysia, Pte. Ltd.
Pearson Education, Inc., Hoboken, New Jersey

Library of Congress Cataloging-in-Publication Data
On file

10 9 8 7 6 5 4 3 2 1

www.pearsonhighered.com

ISBN-10: 0-13-397689-0
ISBN-13: 978-0-13-397689-2

In memory of Dennis Ritchie,
creator of the C programming language
and co-creator of the UNIX operating system.

Paul and Harvey Deitel

Trademarks
DEITEL, the double-thumbs-up bug and DIVE INTO are registered trademarks of Deitel and Associates,
Inc.

Apple, Xcode, Swift, Objective-C, iOS and OS X are trademarks or registered trademarks of Apple, Inc.

Java is a registered trademark of Oracle and/or its affiliates.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All
such documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/
or its respective suppliers hereby disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether express, implied or statutory, fitness
for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective sup-
pliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting
from loss of use, data or profits, whether in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typograph-
ical errors. Changes are periodically added to the information herein. Microsoft and/or its respective sup-
pliers may make improvements and/or changes in the product(s) and/or the program(s) described herein
at any time. Partial screen shots may be viewed in full within the software version specified.

Other names may be trademarks of their respective owners.

Appendices F, G and H are PDF documents posted online at the book’s Companion
Website (located at www.pearsonhighered.com/deitel).

Preface xxiii

1 Introduction to Computers, the Internet and
the Web 1

1.1 Introduction 2
1.2 Hardware and Software 3

1.2.1 Moore’s Law 3
1.2.2 Computer Organization 4

1.3 Data Hierarchy 5
1.4 Machine Languages, Assembly Languages and High-Level Languages 8
1.5 The C Programming Language 9
1.6 C Standard Library 10
1.7 C++ and Other C-Based Languages 11
1.8 Object Technology 12

1.8.1 The Automobile as an Object 13
1.8.2 Methods and Classes 13
1.8.3 Instantiation 13
1.8.4 Reuse 13
1.8.5 Messages and Method Calls 14
1.8.6 Attributes and Instance Variables 14
1.8.7 Encapsulation and Information Hiding 14
1.8.8 Inheritance 14

1.9 Typical C Program-Development Environment 15
1.9.1 Phase 1: Creating a Program 16
1.9.2 Phases 2 and 3: Preprocessing and Compiling a C Program 16
1.9.3 Phase 4: Linking 16
1.9.4 Phase 5: Loading 17
1.9.5 Phase 6: Execution 17
1.9.6 Problems That May Occur at Execution Time 17
1.9.7 Standard Input, Standard Output and Standard Error Streams 17

1.10 Test-Driving a C Application in Windows, Linux and Mac OS X 17
1.10.1 Running a C Application from the Windows Command Prompt 18
1.10.2 Running a C Application Using GNU C with Linux 21

Contents

viii Contents

1.10.3 Running a C Application Using the Teminal on Mac OS X 24
1.11 Operating Systems 27

1.11.1 Windows—A Proprietary Operating System 27
1.11.2 Linux—An Open-Source Operating System 27
1.11.3 Apple’s Mac OS X; Apple’s iOS for iPhone®, iPad® and

iPod Touch® Devices 28
1.11.4 Google’s Android 28

1.12 The Internet and World Wide Web 29
1.12.1 The Internet: A Network of Networks 29
1.12.2 The World Wide Web: Making the Internet User-Friendly 29
1.12.3 Web Services 30
1.12.4 Ajax 32
1.12.5 The Internet of Things 32

1.13 Some Key Software Terminology 32
1.14 Keeping Up-to-Date with Information Technologies 34

2 Introduction to C Programming 39
2.1 Introduction 40
2.2 A Simple C Program: Printing a Line of Text 40
2.3 Another Simple C Program: Adding Two Integers 44
2.4 Memory Concepts 48
2.5 Arithmetic in C 49
2.6 Decision Making: Equality and Relational Operators 53
2.7 Secure C Programming 57

3 Structured Program Development in C 69
3.1 Introduction 70
3.2 Algorithms 70
3.3 Pseudocode 70
3.4 Control Structures 71
3.5 The if Selection Statement 73
3.6 The if…else Selection Statement 74
3.7 The while Iteration Statement 78
3.8 Formulating Algorithms Case Study 1: Counter-Controlled Iteration 79
3.9 Formulating Algorithms with Top-Down, Stepwise Refinement

Case Study 2: Sentinel-Controlled Iteration 82
3.10 Formulating Algorithms with Top-Down, Stepwise Refinement

Case Study 3: Nested Control Statements 88
3.11 Assignment Operators 92
3.12 Increment and Decrement Operators 93
3.13 Secure C Programming 95

4 C Program Control 113
4.1 Introduction 114

Contents ix

4.2 Iteration Essentials 114
4.3 Counter-Controlled Iteration 115
4.4 for Iteration Statement 116
4.5 for Statement: Notes and Observations 119
4.6 Examples Using the for Statement 120
4.7 switch Multiple-Selection Statement 123
4.8 do…while Iteration Statement 129
4.9 break and continue Statements 130
4.10 Logical Operators 132
4.11 Confusing Equality (==) and Assignment (=) Operators 135
4.12 Structured Programming Summary 137
4.13 Secure C Programming 142

5 C Functions 157
5.1 Introduction 158
5.2 Modularizing Programs in C 158
5.3 Math Library Functions 159
5.4 Functions 161
5.5 Function Definitions 161

5.5.1 square Function 162
5.5.2 maximum Function 165

5.6 Function Prototypes: A Deeper Look 166
5.7 Function Call Stack and Stack Frames 168
5.8 Headers 172
5.9 Passing Arguments By Value and By Reference 173
5.10 Random Number Generation 174
5.11 Example: A Game of Chance; Introducing enum 178

5.12 Storage Classes 182
5.13 Scope Rules 184
5.14 Recursion 187
5.15 Example Using Recursion: Fibonacci Series 190
5.16 Recursion vs. Iteration 194
5.17 Secure C Programming 195

6 C Arrays 214
6.1 Introduction 215
6.2 Arrays 215
6.3 Defining Arrays 217
6.4 Array Examples 217

6.4.1 Defining an Array and Using a Loop to Set the Array’s
Element Values 217

6.4.2 Initializing an Array in a Definition with an Initializer List 218
6.4.3 Specifying an Array’s Size with a Symbolic Constant and

Initializing Array Elements with Calculations 220

x Contents

6.4.4 Summing the Elements of an Array 221
6.4.5 Using Arrays to Summarize Survey Results 222
6.4.6 Graphing Array Element Values with Histograms 224
6.4.7 Rolling a Die 60,000,000 Times and Summarizing the Results

in an Array 225
6.5 Using Character Arrays to Store and Manipulate Strings 225

6.5.1 Initializing a Character Array with a String 226
6.5.2 Initializing a Character Array with an Intializer List of Characters 226
6.5.3 Accessing the Characters in a String 226
6.5.4 Inputting into a Character Array 226
6.5.5 Outputting a Character Array That Represents a String 227
6.5.6 Demonstrating Character Arrays 227

6.6 Static Local Arrays and Automatic Local Arrays 228
6.7 Passing Arrays to Functions 230
6.8 Sorting Arrays 234
6.9 Case Study: Computing Mean, Median and Mode Using Arrays 236
6.10 Searching Arrays 241

6.10.1 Searching an Array with Linear Search 241
6.10.2 Searching an Array with Binary Search 242

6.11 Multidimensional Arrays 246
6.11.1 Illustrating a Double-Subcripted Array 246
6.11.2 Initializing a Double-Subcripted Array 247
6.11.3 Setting the Elements in One Row 249
6.11.4 Totaling the Elements in a Two-Dimensional Array 249
6.11.5 Two-Dimensonal Array Manipulations 250

6.12 Variable-Length Arrays 253
6.13 Secure C Programming 256

7 C Pointers 274
7.1 Introduction 275
7.2 Pointer Variable Definitions and Initialization 276
7.3 Pointer Operators 277
7.4 Passing Arguments to Functions by Reference 279
7.5 Using the const Qualifier with Pointers 283

7.5.1 Converting a String to Uppercase Using a Non-Constant Pointer
to Non-Constant Data 284

7.5.2 Printing a String One Character at a Time Using a Non-Constant
Pointer to Constant Data 285

7.5.3 Attempting to Modify a Constant Pointer to Non-Constant Data 287
7.5.4 Attempting to Modify a Constant Pointer to Constant Data 288

7.6 Bubble Sort Using Pass-by-Reference 289
7.7 sizeof Operator 292
7.8 Pointer Expressions and Pointer Arithmetic 295

7.8.1 Allowed Operators for Pointer Arithmetic 295
7.8.2 Aiming a Pointer at an Array 295

Contents xi

7.8.3 Adding an Integer to a Pointer 296
7.8.4 Subtracting an Integer from a Pointer 296
7.8.5 Incrementing and Decrementing a Pointer 296
7.8.6 Subtracting One Pointer from Another 297
7.8.7 Assigning Pointers to One Another 297
7.8.8 Pointer to void 297
7.8.9 Comparing Pointers 297

7.9 Relationship between Pointers and Arrays 298
7.9.1 Pointer/Offset Notation 298
7.9.2 Pointer/Index Notation 299
7.9.3 Cannot Modify an Array Name with Pointer Arithmetic 299
7.9.4 Demonstrating Pointer Indexing and Offsets 299
7.9.5 String Copying with Arrays and Pointers 300

7.10 Arrays of Pointers 302
7.11 Case Study: Card Shuffling and Dealing Simulation 303
7.12 Pointers to Functions 308

7.12.1 Sorting in Ascending or Descending Order 308
7.12.2 Using Function Pointers to Create a Menu-Driven System 311

7.13 Secure C Programming 313

8 C Characters and Strings 333
8.1 Introduction 334
8.2 Fundamentals of Strings and Characters 334
8.3 Character-Handling Library 336

8.3.1 Functions isdigit, isalpha, isalnum and isxdigit 336
8.3.2 Functions islower, isupper, tolower and toupper 339
8.3.3 Functions isspace, iscntrl, ispunct, isprint and isgraph 340

8.4 String-Conversion Functions 342
8.4.1 Function strtod 342
8.4.2 Function strtol 343
8.4.3 Function strtoul 344

8.5 Standard Input/Output Library Functions 344
8.5.1 Functions fgets and putchar 345
8.5.2 Function getchar 346
8.5.3 Function sprintf 347
8.5.4 Function sscanf 348

8.6 String-Manipulation Functions of the String-Handling Library 349
8.6.1 Functions strcpy and strncpy 350
8.6.2 Functions strcat and strncat 350

8.7 Comparison Functions of the String-Handling Library 351
8.8 Search Functions of the String-Handling Library 353

8.8.1 Function strchr 354
8.8.2 Function strcspn 355
8.8.3 Function strpbrk 355
8.8.4 Function strrchr 356

xii Contents

8.8.5 Function strspn 357
8.8.6 Function strstr 357
8.8.7 Function strtok 358

8.9 Memory Functions of the String-Handling Library 359
8.9.1 Function memcpy 360
8.9.2 Function memmove 361
8.9.3 Function memcmp 362
8.9.4 Function memchr 362
8.9.5 Function memset 363

8.10 Other Functions of the String-Handling Library 363
8.10.1 Function strerror 364
8.10.2 Function strlen 364

8.11 Secure C Programming 365

9 C Formatted Input/Output 377
9.1 Introduction 378
9.2 Streams 378
9.3 Formatting Output with printf 378
9.4 Printing Integers 379
9.5 Printing Floating-Point Numbers 380

9.5.1 Conversion Specifiers e, E and f 381
9.5.2 Conversion Specifiers g and G 381
9.5.3 Demonstrating Floating-Point Conversion Specifiers 382

9.6 Printing Strings and Characters 382
9.7 Other Conversion Specifiers 383
9.8 Printing with Field Widths and Precision 384

9.8.1 Specifying Field Widths for Printing Integers 384
9.8.2 Specifying Precisions for Integers, Floating-Point Numbers

and Strings 385
9.8.3 Combining Field Widths and Precisions 386

9.9 Using Flags in the printf Format Control String 387
9.9.1 Right and Left Justification 387
9.9.2 Printing Positive and Negative Numbers with and without

the + Flag 388
9.9.3 Using the Space Flag 388
9.9.4 Using the # Flag 389
9.9.5 Using the 0 Flag 389

9.10 Printing Literals and Escape Sequences 390
9.11 Reading Formatted Input with scanf 390

9.11.1 scanf Syntax 391
9.11.2 scanf Conversion Specifiers 391
9.11.3 Reading Integers with scanf 392
9.11.4 Reading Floating-Point Numbers with scanf 393
9.11.5 Reading Characters and Strings with scanf 393
9.11.6 Using Scan Sets with scanf 394

Contents xiii

9.11.7 Using Field Widths with scanf 395
9.11.8 Skipping Characters in an Input Stream 396

9.12 Secure C Programming 397

10 C Structures, Unions, Bit Manipulation and
Enumerations 404

10.1 Introduction 405
10.2 Structure Definitions 405

10.2.1 Self-Referential Structures 406
10.2.2 Defining Variables of Structure Types 407
10.2.3 Structure Tag Names 407
10.2.4 Operations That Can Be Performed on Structures 407

10.3 Initializing Structures 408
10.4 Accessing Structure Members with . and -> 408
10.5 Using Structures with Functions 410
10.6 typedef 411
10.7 Example: High-Performance Card Shuffling and Dealing Simulation 411
10.8 Unions 414

10.8.1 Union Declarations 414
10.8.2 Operations That Can Be Performed on Unions 415
10.8.3 Initializing Unions in Declarations 415
10.8.4 Demonstrating Unions 415

10.9 Bitwise Operators 416
10.9.1 Displaying an Unsigned Integer in Bits 417
10.9.2 Making Function displayBits More Generic and Portable 419
10.9.3 Using the Bitwise AND, Inclusive OR, Exclusive OR and

Complement Operators 420
10.9.4 Using the Bitwise Left- and Right-Shift Operators 423
10.9.5 Bitwise Assignment Operators 424

10.10 Bit Fields 425
10.10.1 Defining Bit Fields 425
10.10.2 Using Bit Fields to Represent a Card’s Face, Suit and Color 426
10.10.3 Unnamed Bit Fields 428

10.11 Enumeration Constants 428
10.12 Anonymous Structures and Unions 430
10.13 Secure C Programming 430

11 C File Processing 441
11.1 Introduction 442
11.2 Files and Streams 442
11.3 Creating a Sequential-Access File 443

11.3.1 Pointer to a FILE 445
11.3.2 Using fopen to Open the File 445
11.3.3 Using feof to Check for the End-of-File Indicator 445

xiv Contents

11.3.4 Using fprintf to Write to the File 446
11.3.5 Using fclose to Close the File 446
11.3.6 File Open Modes 447

11.4 Reading Data from a Sequential-Access File 449
11.4.1 Resetting the File Position Pointer 450
11.4.2 Credit Inquiry Program 450

11.5 Random-Access Files 454
11.6 Creating a Random-Access File 454
11.7 Writing Data Randomly to a Random-Access File 456

11.7.1 Positioning the File Position Pointer with fseek 458
11.7.2 Error Checking 459

11.8 Reading Data from a Random-Access File 459
11.9 Case Study: Transaction-Processing Program 461
11.10 Secure C Programming 466

12 C Data Structures 477
12.1 Introduction 478
12.2 Self-Referential Structures 479
12.3 Dynamic Memory Allocation 479
12.4 Linked Lists 480

12.4.1 Function insert 486
12.4.2 Function delete 487
12.4.3 Function printList 489

12.5 Stacks 489
12.5.1 Function push 493
12.5.2 Function pop 494
12.5.3 Applications of Stacks 494

12.6 Queues 495
12.6.1 Function enqueue 499
12.6.2 Function dequeue 500

12.7 Trees 501
12.7.1 Function insertNode 504
12.7.2 Traversals: Functions inOrder, preOrder and postOrder 505
12.7.3 Duplicate Elimination 506
12.7.4 Binary Tree Search 506
12.7.5 Other Binary Tree Operations 506

12.8 Secure C Programming 506

13 C Preprocessor 518
13.1 Introduction 519
13.2 #include Preprocessor Directive 519
13.3 #define Preprocessor Directive: Symbolic Constants 520
13.4 #define Preprocessor Directive: Macros 521

13.4.1 Macro with One Argument 521

Contents xv

13.4.2 Macro with Two Arguments 522
13.4.3 Macro Continuation Character 522
13.4.4 #undef Preprocessor Directive 522
13.4.5 Standard Library Functions and Macros 522
13.4.6 Do Not Place Expressions with Side Effects in Macros 523

13.5 Conditional Compilation 523
13.5.1 #if…#endif Preprocessor Directive 523
13.5.2 Commenting Out Blocks of Code with #if…#endif 523
13.5.3 Conditionally Compiling Debugging Code 524

13.6 #error and #pragma Preprocessor Directives 524
13.7 # and ## Operators 524
13.8 Line Numbers 525
13.9 Predefined Symbolic Constants 525
13.10 Assertions 526
13.11 Secure C Programming 526

14 Other C Topics 531
14.1 Introduction 532
14.2 Redirecting I/O 532

14.2.1 Redirecting Input with < 532
14.2.2 Redirecting Input with | 533
14.2.3 Redirecting Output 533

14.3 Variable-Length Argument Lists 533
14.4 Using Command-Line Arguments 535
14.5 Compiling Multiple-Source-File Programs 537

14.5.1 extern Declarations for Global Variables in Other Files 537
14.5.2 Function Prototypes 537
14.5.3 Restricting Scope with static 538
14.5.4 Makefiles 538

14.6 Program Termination with exit and atexit 538
14.7 Suffixes for Integer and Floating-Point Literals 540
14.8 Signal Handling 540
14.9 Dynamic Memory Allocation: Functions calloc and realloc 543
14.10 Unconditional Branching with goto 543

15 C++ as a Better C; Introducing Object
Technology 549

15.1 Introduction 550
15.2 C++ 550
15.3 A Simple Program: Adding Two Integers 551

15.3.1 Addition Program in C++ 551
15.3.2 <iostream> Header 552
15.3.3 main Function 552
15.3.4 Variable Declarations 552

xvi Contents

15.3.5 Standard Output Stream and Standard Input Stream Objects 552
15.3.6 std::endl Stream Manipulator 553
15.3.7 std:: Explained 553
15.3.8 Concatenated Stream Outputs 553
15.3.9 return Statement Not Required in main 553
15.3.10 Operator Overloading 553

15.4 C++ Standard Library 554
15.5 Header Files 554
15.6 Inline Functions 556
15.7 C++ Keywords 558
15.8 References and Reference Parameters 559

15.8.1 Reference Parameters 559
15.8.2 Passing Arguments by Value and by Reference 560
15.8.3 References as Aliases within a Function 562
15.8.4 Returning a Reference from a Function 563
15.8.5 Error Messages for Uninitialized References 564

15.9 Empty Parameter Lists 564
15.10 Default Arguments 564
15.11 Unary Scope Resolution Operator 566
15.12 Function Overloading 567
15.13 Function Templates 570

15.13.1 Defining a Function Template 570
15.13.2 Using a Function Template 571

15.14 Introduction to Object Technology and the UML 573
15.14.1 Basic Object Technology Concepts 573
15.14.2 Classes, Data Members and Member Functions 574
15.14.3 Object-Oriented Analysis and Design 575
15.14.4 The Unified Modeling Language 576

15.15 Introduction to C++ Standard Library Class Template vector 576
15.15.1 Problems Associated with C-Style Pointer-Based Arrays 576
15.15.2 Using Class Template vector 577
15.15.3 Exception Handling: Processing an Out-of-Range Index 581

15.16 Wrap-Up 583

16 Introduction to Classes, Objects and Strings 589
16.1 Introduction 590
16.2 Defining a Class with a Member Function 590
16.3 Defining a Member Function with a Parameter 593
16.4 Data Members, set Member Functions and get Member Functions 597
16.5 Initializing Objects with Constructors 602
16.6 Placing a Class in a Separate File for Reusability 606
16.7 Separating Interface from Implementation 610
16.8 Validating Data with set Functions 615
16.9 Wrap-Up 620

Contents xvii

17 Classes: A Deeper Look; Throwing Exceptions 627
17.1 Introduction 628
17.2 Time Class Case Study 629
17.3 Class Scope and Accessing Class Members 635
17.4 Access Functions and Utility Functions 636
17.5 Time Class Case Study: Constructors with Default Arguments 637
17.6 Destructors 643
17.7 When Constructors and Destructors Are Called 643
17.8 Time Class Case Study: A Subtle Trap—Returning a Reference or a

Pointer to a private Data Member 647
17.9 Default Memberwise Assignment 650
17.10 const Objects and const Member Functions 652
17.11 Composition: Objects as Members of Classes 654
17.12 friend Functions and friend Classes 660
17.13 Using the this Pointer 662
17.14 static Class Members 668
17.15 Wrap-Up 673

18 Operator Overloading; Class string 683
18.1 Introduction 684
18.2 Using the Overloaded Operators of Standard Library Class string 685
18.3 Fundamentals of Operator Overloading 688
18.4 Overloading Binary Operators 689
18.5 Overloading the Binary Stream Insertion and Stream Extraction Operators 690
18.6 Overloading Unary Operators 694
18.7 Overloading the Unary Prefix and Postfix ++ and -- Operators 695
18.8 Case Study: A Date Class 696
18.9 Dynamic Memory Management 701
18.10 Case Study: Array Class 703

18.10.1 Using the Array Class 704
18.10.2 Array Class Definition 708

18.11 Operators as Member vs. Non-Member Functions 716
18.12 Converting Between Types 716
18.13 explicit Constructors and Conversion Operators 718
18.14 Overloading the Function Call Operator () 720
18.15 Wrap-Up 721

19 Object-Oriented Programming: Inheritance 732
19.1 Introduction 733
19.2 Base Classes and Derived Classes 733
19.3 Relationship between Base and Derived Classes 736

19.3.1 Creating and Using a CommissionEmployee Class 736
19.3.2 Creating a BasePlusCommissionEmployee Class Without

Using Inheritance 741

xviii Contents

19.3.3 Creating a CommissionEmployee–BasePlusCommissionEmployee
Inheritance Hierarchy 747

19.3.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance
Hierarchy Using protected Data 751

19.3.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance
Hierarchy Using private Data 754

19.4 Constructors and Destructors in Derived Classes 759
19.5 public, protected and private Inheritance 761
19.6 Software Engineering with Inheritance 762
19.7 Wrap-Up 762

20 Object-Oriented Programming: Polymorphism 767
20.1 Introduction 768
20.2 Introduction to Polymorphism: Polymorphic Video Game 769
20.3 Relationships Among Objects in an Inheritance Hierarchy 769

20.3.1 Invoking Base-Class Functions from Derived-Class Objects 770
20.3.2 Aiming Derived-Class Pointers at Base-Class Objects 773
20.3.3 Derived-Class Member-Function Calls via Base-Class Pointers 774
20.3.4 Virtual Functions and Virtual Destructors 776

20.4 Type Fields and switch Statements 783
20.5 Abstract Classes and Pure virtual Functions 783
20.6 Case Study: Payroll System Using Polymorphism 785

20.6.1 Creating Abstract Base Class Employee 786
20.6.2 Creating Concrete Derived Class SalariedEmployee 790
20.6.3 Creating Concrete Derived Class CommissionEmployee 792
20.6.4 Creating Indirect Concrete Derived Class

BasePlusCommissionEmployee 794
20.6.5 Demonstrating Polymorphic Processing 796

20.7 (Optional) Polymorphism, Virtual Functions and Dynamic Binding
“Under the Hood” 800

20.8 Case Study: Payroll System Using Polymorphism and Runtime Type
Information with Downcasting, dynamic_cast, typeid and type_info 803

20.9 Wrap-Up 807

21 Stream Input/Output: A Deeper Look 812
21.1 Introduction 813
21.2 Streams 814

21.2.1 Classic Streams vs. Standard Streams 814
21.2.2 iostream Library Headers 815
21.2.3 Stream Input/Output Classes and Objects 815

21.3 Stream Output 817
21.3.1 Output of char * Variables 818
21.3.2 Character Output Using Member Function put 818

21.4 Stream Input 819
21.4.1 get and getline Member Functions 819

Contents xix

21.4.2 istream Member Functions peek, putback and ignore 822
21.4.3 Type-Safe I/O 822

21.5 Unformatted I/O Using read, write and gcount 822
21.6 Introduction to Stream Manipulators 823

21.6.1 Integral Stream Base: dec, oct, hex and setbase 824
21.6.2 Floating-Point Precision (precision, setprecision) 824
21.6.3 Field Width (width, setw) 826
21.6.4 User-Defined Output Stream Manipulators 827

21.7 Stream Format States and Stream Manipulators 828
21.7.1 Trailing Zeros and Decimal Points (showpoint) 829
21.7.2 Justification (left, right and internal) 830
21.7.3 Padding (fill, setfill) 832
21.7.4 Integral Stream Base (dec, oct, hex, showbase) 833
21.7.5 Floating-Point Numbers; Scientific and Fixed Notation

(scientific, fixed) 834
21.7.6 Uppercase/Lowercase Control (uppercase) 835
21.7.7 Specifying Boolean Format (boolalpha) 835
21.7.8 Setting and Resetting the Format State via Member F

unction flags 836
21.8 Stream Error States 837
21.9 Tying an Output Stream to an Input Stream 840
21.10 Wrap-Up 840

22 Exception Handling: A Deeper Look 849
22.1 Introduction 850
22.2 Example: Handling an Attempt to Divide by Zero 850
22.3 Rethrowing an Exception 856
22.4 Stack Unwinding 857
22.5 When to Use Exception Handling 859
22.6 Constructors, Destructors and Exception Handling 860
22.7 Exceptions and Inheritance 861
22.8 Processing new Failures 861
22.9 Class unique_ptr and Dynamic Memory Allocation 864
22.10 Standard Library Exception Hierarchy 867
22.11 Wrap-Up 868

23 Introduction to Custom Templates 874
23.1 Introduction 875
23.2 Class Templates 875
23.3 Function Template to Manipulate a Class-Template Specialization Object 880
23.4 Nontype Parameters 882
23.5 Default Arguments for Template Type Parameters 882
23.6 Overloading Function Templates 883
23.7 Wrap-Up 883

xx Contents

A C and C++ Operator Precedence Charts 886

B ASCII Character Set 890

C Number Systems 891
C.1 Introduction 892
C.2 Abbreviating Binary Numbers as Octal and Hexadecimal Numbers 895
C.3 Converting Octal and Hexadecimal Numbers to Binary Numbers 896
C.4 Converting from Binary, Octal or Hexadecimal to Decimal 896
C.5 Converting from Decimal to Binary, Octal or Hexadecimal 897
C.6 Negative Binary Numbers: Two’s Complement Notation 899

D Sorting: A Deeper Look 904
D.1 Introduction 905
D.2 Big O Notation 905
D.3 Selection Sort 906
D.4 Insertion Sort 910
D.5 Merge Sort 913

E Multithreading and Other C11 and C99 Topics 924
E.1 Introduction 925
E.2 New C99 Headers 926
E.3 Designated Initializers and Compound Literals 927
E.4 Type bool 929
E.5 Implicit int in Function Declarations 931
E.6 Complex Numbers 932
E.7 Additions to the Preprocessor 933
E.8 Other C99 Features 934

E.8.1 Compiler Minimum Resource Limits 934
E.8.2 The restrict Keyword 935
E.8.3 Reliable Integer Division 935
E.8.4 Flexible Array Members 935
E.8.5 Relaxed Constraints on Aggregate Initialization 936
E.8.6 Type Generic Math 936
E.8.7 Inline Functions 936
E.8.8 Return Without Expression 937
E.8.9 __func__ Predefined Identifier 937
E.8.10 va_copy Macro 937

E.9 New Features in the C11 Standard 937
E.9.1 New C11 Headers 938
E.9.2 Multithreading Support 938

Contents xxi

E.9.3 quick_exit function 946
E.9.4 Unicode® Support 946
E.9.5 _Noreturn Function Specifier 946
E.9.6 Type-Generic Expressions 946
E.9.7 Annex L: Analyzability and Undefined Behavior 947
E.9.8 Memory Alignment Control 947
E.9.9 Static Assertions 947
E.9.10 Floating-Point Types 948

E.10 Web Resources 948

Appendices on the Web 951

Index 952

Appendices F, G and H are PDF documents posted online at the book’s Companion
Website (located at www.pearsonhighered.com/deitel).

F Using the Visual Studio Debugger

G Using the GNU gdb Debugger

H Using the Xcode Debugger

This page intentionally left blank

Welcome to the C programming language and to C How to Program, Eighth Edition! This
book presents leading-edge computing technologies for college students, instructors and
software-development professionals.

At the heart of the book is the Deitel signature “live-code approach”—we present con-
cepts in the context of complete working programs, rather than in code snippets. Each
code example is followed by one or more sample executions. Read the online Before You
Begin section at

to learn how to set up your computer to run the hundreds of code examples. All the source
code is available at

and

Use the source code we provide to run every program as you study it.
We believe that this book and its support materials will give you an informative, chal-

lenging and entertaining introduction to C. As you read the book, if you have questions,
send an e-mail to deitel@deitel.com—we’ll respond promptly. For book updates, visit
www.deitel.com/books/chtp8/, join our social media communities:

• Facebook®—http://facebook.com/DeitelFan

• Twitter®—@deitel

• LinkedIn®—http://linkedin.com/company/deitel-&-associates

• YouTube™—http://youtube.com/DeitelTV

• Google+™—http://google.com/+DeitelFan

and register for the Deitel® Buzz Online e-mail newsletter at:

New and Updated Features
Here are some key features of C How to Program, 8/e:

• Integrated More Capabilities of the C11 and C99 standards. Support for the C11
and C99 standards varies by compiler. Microsoft Visual C++ supports a subset of
the features that were added to C in C99 and C11—primarily the features that
are also required by the C++ standard. We incorporated several widely supported
C11 and C99 features into the book’s early chapters, as appropriate for introduc-

http://www.deitel.com/books/chtp8/chtp8_BYB.pdf

http://www.deitel.com/books/chtp8

http://www.pearsonhighered.com/deitel

http://www.deitel.com/newsletter/subscribe.html

Preface

xxiv Preface

tory courses and for the compilers we used in this book. Appendix E, Multi-
threading and Other C11 and C99 Topics, presents more advanced features
(such as multithreading for today’s increasingly popular multi-core architectures)
and various other features that are not widely supported by today’s C compilers.

• All Code Tested on Linux, Windows and OS X. We retested all the example and
exercise code using GNU gcc on Linux, Visual C++ on Windows (in Visual Stu-
dio 2013 Community Edition) and LLVM in Xcode on OS X.

• Updated Chapter 1. The new Chapter 1 engages students with updated intrigu-
ing facts and figures to get them excited about studying computers and computer
programming. The chapter includes current technology trends and hardware dis-
cussions, the data hierarchy, social networking and a table of business and tech-
nology publications and websites that will help you stay up to date with the latest
technology news and trends. We’ve included updated test-drives that show how
to run a command-line C program on Linux, Microsoft Windows and OS X. We
also updated the discussions of the Internet and web, and the introduction to ob-
ject technology.

• Updated Coverage of C++ and Object-Oriented Programming. We updated
Chapters 15–23 on object-oriented programming in C++ with material from our
textbook C++ How to Program, 9/e, which is up-to-date with the C++11 standard.

• Updated Code Style. We removed the spacing inside parentheses and square
brackets, and toned down our use of comments a bit. We also added parentheses
to certain compound conditions for clarity.

• Variable Declarations. Because of improved compiler support, we were able to
move variable declarations closer to where they’re first used and define for-loop
counter-control variables in each for’s initialization section.

• Summary Bullets. We removed the end-of-chapter terminology lists and updated
the detailed section-by-section, bullet-list summaries with bolded key terms and,
for most, page references to their defining occurrences.

• Use of Standard Terminology. To help students prepare to work in industry
worldwide, we audited the book against the C standard and upgraded our termi-
nology to use C standard terms in preference to general programming terms.

• Online Debugger Appendices. We’ve updated the online GNU gdb and Visual
C++® debugging appendices, and added an Xcode® debugging appendix.

• Additional Exercises. We updated various exercises and added some new ones,
including one for the Fisher-Yates unbiased shuffling algorithm in Chapter 10.

Other Features
Other features of C How to Program, 8/e include:

• Secure C Programming Sections. Many of the C chapters end with a Secure C
Programming Section. We’ve also posted a Secure C Programming Resource
Center at www.deitel.com/SecureC/. For more details, see the section “A Note
About Secure C Programming” on the next page.

 A Note About Secure C Programming xxv

• Focus on Performance Issues. C (and C++) are favored by designers of performance-
intensive systems such as operating systems, real-time systems, embedded systems
and communications systems, so we focus intensively on performance issues.

• “Making a Difference” Contemporary Exercises. We encourage you to use com-
puters and the Internet to research and solve significant problems. These exercises
are meant to increase awareness of important issues the world is facing. We hope
you’ll approach them with your own values, politics and beliefs.

• Sorting: A Deeper Look. Sorting places data in order, based on one or more sort
keys. We begin our sorting presentation in Chapter 6 with a simple algorithm—
in Appendix D, we present a deeper look. We consider several algorithms and
compare them with regard to their memory consumption and processor de-
mands. For this purpose, we present a friendly introduction to Big O notation,
which indicates how hard an algorithm may have to work to solve a problem.
Through examples and exercises, Appendix D discusses the selection sort, inser-
tion sort, recursive merge sort, recursive selection sort, bucket sort and recursive
Quicksort. Sorting is an intriguing problem because different sorting techniques
achieve the same final result but they can vary hugely in their consumption of
memory, CPU time and other system resources.

• Titled Programming Exercises. Most of the programming exercises are titled to
help instructors conveniently choose assignments appropriate for their students.

• Order of Evaluation. We caution the reader about subtle order of evaluation issues.

• C++-Style // Comments. We use the newer, more concise C++-style // com-
ments in preference to C’s older style /*...*/ comments.

A Note About Secure C Programming
Throughout this book, we focus on C programming fundamentals. When we write each
How to Program book, we search the corresponding language’s standards document for the
features that we feel novices need to learn in a first programming course, and features that
professional programmers need to know to begin working in that language. We also cover
computer-science and software-engineering fundamentals for novices—our core audience.

Industrial-strength coding techniques in any programming language are beyond the
scope of an introductory textbook. For that reason, our Secure C Programming sections
present some key issues and techniques, and provide links and references so you can con-
tinue learning.

Experience has shown that it’s difficult to build industrial-strength systems that stand
up to attacks from viruses, worms, etc. Today, via the Internet, such attacks can be instan-
taneous and global in scope. Software vulnerabilities often come from simple program-
ming issues. Building security into software from the start of the development cycle can
greatly reduce costs and vulnerabilities.

The CERT® Coordination Center (www.cert.org) was created to analyze and
respond promptly to attacks. CERT—the Computer Emergency Response Team—pub-
lishes and promotes secure coding standards to help C programmers and others implement
industrial-strength systems that avoid the programming practices that leave systems vul-
nerable to attacks. The CERT standards evolve as new security issues arise.

xxvi Preface

We’ve upgraded our code (as appropriate for an introductory book) to conform to var-
ious CERT recommendations. If you’ll be building C systems in industry, consider reading
The CERT C Secure Coding Standard, 2/e (Robert Seacord, Addison-Wesley Professional,
2014) and Secure Coding in C and C++, 2/e (Robert Seacord, Addison-Wesley Professional,
2013). The CERT guidelines are available free online at

Mr. Seacord, a technical reviewer for the C portion of the last edition of this book, provided
specific recommendations on each of our Secure C Programming sections. Mr. Seacord is
the Secure Coding Manager at CERT at Carnegie Mellon University’s Software Engineering
Institute (SEI) and an adjunct professor in the Carnegie Mellon University School of Com-
puter Science.

The Secure C Programming sections at the ends of Chapters 2–13 discuss many impor-
tant topics, including:

Web-Based Materials
The book’s open access Companion Website (http://www.pearsonhighered.com/deitel)
contains source code for all the code examples and the following appendices in PDF format:

• Appendix F, Using the Visual Studio Debugger

• Appendix G, Using the GNU gdb Debugger

• Appendix H, Using the Xcode Debugger

Dependency Charts
Figures 1 and 2 on the next two pages show the dependencies among the chapters to help
instructors plan their syllabi. C How to Program, 8/e is appropriate for CS1 and many CS2
courses, and for intermediate-level C and C++ programming courses. The C++ part of the
book assumes that you’ve studied C Chapters 1–10.

Teaching Approach
C How to Program, 8/e, contains a rich collection of examples. We focus on good software
engineering, program clarity, preventing common errors, program portability and perfor-
mance issues.

https://www.securecoding.cert.org/confluence/display/seccode/

CERT+C+Coding+Standard

• testing for arithmetic overflows
• using unsigned integer types
• the more secure functions in the C

standard’s Annex K
• the importance of checking the sta-

tus information returned by stan-
dard-library functions

• range checking
• secure random-number generation
• array bounds checking

• preventing buffer overflows
• input validation
• avoiding undefined behaviors
• choosing functions that return

status information vs. using similar
functions that do not

• ensuring that pointers are always
NULL or contain valid addresses

• using C functions vs. using prepro-
cessor macros, and more.

 Teaching Approach xxvii

Syntax Shading. For readability, we syntax shade the code, similar to the way most IDEs
and code editors syntax color code. Our syntax-shading conventions are:

Fig. 1 | C chapter dependency chart.

comments appear like this in gray

keywords appear like this in dark blue
constants and literal values appear like this in light blue

all other code appears in black

Arrays, Pointers
 and Strings

Introduction
1 Introduction to Computers,

the Internet and the Web

Intro to Programming
2 Intro to C Programming

Control Statements
and Functions
3 Structured Program

Development in C

4 C Program Control

5 C Functions

6 C Arrays

8 C Characters and Strings

7 C Pointers

5.14–5.16 Recursion

12 C Data Structures

D Sorting: A Deeper Look

Data Structures

Other Topics, Multithreading
and the C11 Standard

C Chapter
Dependency
Chart
[Note: Arrows pointing into a
chapter indicate that chapter’s
dependencies.]

E Multithreading and Other
C11 and C99 Topics

10 C Structures, Unions, Bit
Manipulation and Enumerations

Aggregate Types

Streams and Files

11 C File Processing

9 C Formatted Input/Output

13 C Preprocessor 14 Other C Topics

xxviii Preface

Code Highlighting. We place gray rectangles around the key code in each program.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold colored text for easy reference. We emphasize C program text
in the Lucida font (for example, int x = 5;).

Objectives. Each chapter begins with a list of objectives.

Illustrations/Figures. Abundant flowcharts, tables, line drawings, UML diagrams (in the
C++ chapters), programs and program outputs are included.

Programming Tips. We include programming tips to help you focus on important aspects
of program development. These tips and practices represent the best we’ve gleaned from a
combined eight decades of programming and teaching experience.

Fig. 2 | C++ chapter dependency chart.

Good Programming Practices
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

Common Programming Errors
Pointing out these Common Programming Errors reduces the likelihood that you’ll
make them.

Error-Prevention Tips
These tips contain suggestions for exposing and removing bugs from your programs and
for avoiding bugs in the first place.

Object-Based
Programming

C++ Chapter
Dependency
Chart

17 Classes: A Deeper Look;
Throwing Exceptions

18 Operator Overloading;
Class string

Object-Oriented
Programming

22 Exception Handling:
A Deeper Look

19 OOP: Inheritance

21 Stream
Input/Output

20 OOP:
Polymorphism

23 Intro to Custom
Templates

15 C++ as a Better C;
Intro to Object Technology

16 Intro to Classes and Objects

 Software Used in C How to Program, 8/e xxix

Summary Bullets. We present a detailed section-by-section, bullet-list summary of each
chapter with bolded key terms. For easy reference, most of the key terms are followed by
the page number of their defining occurrences.

Self-Review Exercises and Answers. Extensive self-review exercises and answers are includ-
ed for self-study.

Exercises. Each chapter concludes with a substantial set of exercises including:

• simple recall of important terminology and concepts

• identifying the errors in code samples

• writing individual program statements

• writing small portions of C functions (and C++ member functions and classes)

• writing complete programs

• implementing major projects

Index. We’ve included an extensive index, which is especially helpful when you use the
book as a reference. Defining occurrences of key terms are highlighted in the index with a
bold colored page number.

Software Used in C How to Program, 8/e
We tested the programs in C How to Program, 8/e using the following free compilers:

• GNU C and C++ (http://gcc.gnu.org/install/binaries.html), which are al-
ready installed on most Linux systems and can be installed on OS X and Windows
systems.

• Microsoft’s Visual C++ in Visual Studio 2013 Community edition, which you
can download from http://go.microsoft.com/?linkid=9863608

• LLVM in Apple’s Xcode IDE, which OS X users can download from the Mac
App Store.

For other free C and C++ compilers, visit:

Performance Tips
These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

Portability Tips
The Portability Tips help you write code that will run on a variety of platforms.

Software Engineering Observations
The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

http://www.thefreecountry.com/compilers/cpp.shtml

http://www.compilers.net/Dir/Compilers/CCpp.htm
http://www.freebyte.com/programming/cpp/#cppcompilers

http://en.wikipedia.org/wiki/List_of_compilers#C.2B.2B_compilers

xxx Preface

CourseSmart Web Books
Today’s students and instructors have increasing demands on their time and money. Pearson
has responded to that need by offering various digital texts and course materials online
through CourseSmart. Faculty can review course materials online, saving time and costs. It
offers students a high-quality digital version of the text for less than the cost of a print copy.
Students receive the same content offered in the print textbook enhanced by search, note-
taking and printing tools. For more information, visit http://www.coursesmart.com.

Instructor Resources
The following supplements are available to qualified instructors only through Pearson Educa-
tion’s password-protected Instructor Resource Center (www.pearsonhighered.com/irc):

• PowerPoint® slides containing all the code and figures in the text, plus bulleted
items that summarize key points.

• Test Item File of multiple-choice questions (approximately two per top-level book
section)

• Solutions Manual with solutions to most (but not all) of the end-of-chapter exer-
cises. Please check the Instructor Resource Center to determine which exercises
have solutions.

Please do not write to us requesting access to the Instructor Resource Center. Access is
restricted to college instructors teaching from the book. Instructors may obtain access
only through their Pearson representatives. If you’re not a registered faculty member, con-
tact your Pearson representative or visit http://www.pearsonhighered.com/replocator/.

Solutions are not provided for “project” exercises. Check out our Programming Proj-
ects Resource Center for lots of additional exercise and project possibilities (http://
www.deitel.com/ProgrammingProjects/).

Acknowledgments
We’d like to thank Abbey Deitel and Barbara Deitel for long hours devoted to this project.
Abbey co-authored Chapter 1. We’re fortunate to have worked with the dedicated team
of publishing professionals at Pearson. We appreciate the guidance, savvy and energy of
Tracy Johnson, Executive Editor, Computer Science. Kelsey Loanes and Bob Engelhardt
did a marvelous job managing the review and production processes, respectively.

C How to Program, 8/e Reviewers
We wish to acknowledge the efforts of our reviewers. Under tight deadlines, they scrutinized
the text and the programs and provided countless suggestions for improving the presenta-
tion: Dr. Brandon Invergo (GNU/European Bioinformatics Institute), Danny Kalev (A
Certified System Analyst, C Expert and Former Member of the C++ Standards Committee),
Jim Hogg (Program Manager, C/C++ Compiler Team, Microsoft Corporation), José Anto-
nio González Seco (Parliament of Andalusia), Sebnem Onsay (Special Instructor, Oakland
University School of Engineering and Computer Science), Alan Bunning (Purdue Universi-
ty), Paul Clingan (Ohio State University), Michael Geiger (University of Massachusetts,
Lowell), Jeonghwa Lee (Shippensburg University), Susan Mengel (Texas Tech University),
Judith O'Rourke (SUNY at Albany) and Chen-Chi Shin (Radford University).

 A Special Thank You to Brandon Invergo and Jim Hogg xxxi

Other Recent Editions Reviewers
William Albrecht (University of South Florida), Ian Barland (Radford University), Ed
James Beckham (Altera), John Benito (Blue Pilot Consulting, Inc. and Convener of ISO
WG14—the Working Group responsible for the C Programming Language Standard),
Dr. John F. Doyle (Indiana University Southeast), Alireza Fazelpour (Palm Beach Com-
munity College), Mahesh Hariharan (Microsoft), Hemanth H.M. (Software Engineer at
SonicWALL), Kevin Mark Jones (Hewlett Packard), Lawrence Jones, (UGS Corp.), Don
Kostuch (Independent Consultant), Vytautus Leonavicius (Microsoft), Xiaolong Li (Indi-
ana State University), William Mike Miller (Edison Design Group, Inc.), Tom Rethard
(The University of Texas at Arlington), Robert Seacord (Secure Coding Manager at SEI/
CERT, author of The CERT C Secure Coding Standard and technical expert for the inter-
national standardization working group for the programming language C), José Antonio
González Seco (Parliament of Andalusia), Benjamin Seyfarth (University of Southern Mis-
sissippi), Gary Sibbitts (St. Louis Community College at Meramec), William Smith (Tul-
sa Community College) and Douglas Walls (Senior Staff Engineer, C compiler, Sun
Microsystems—now part of Oracle).

A Special Thank You to Brandon Invergo and Jim Hogg
We were privileged to have Brandon Invergo (GNU/European Bioinformatics Institute)
and Jim Hogg (Program Manager, C/C++ Compiler Team, Microsoft Corporation) do full-
book reviews. They scrutinized the C portion of the book, providing numerous insights
and constructive comments. The largest part of our audience uses either the GNU gcc
compiler or Microsoft’s Visual C++ compiler (which also compiles C). Brandon and Jim
helped us ensure that our content was accurate for the GNU and Microsoft compilers, re-
spectively. Their comments conveyed a love of software engineering, computer science
and education that we share.

Well, there you have it! C is a powerful programming language that will help you
write high-performance, portable programs quickly and effectively. It scales nicely into the
realm of enterprise systems development to help organizations build their business-critical
and mission-critical information systems. As you read the book, we would sincerely appre-
ciate your comments, criticisms, corrections and suggestions for improving the text. Please
address all correspondence—including questions—to:

We’ll respond promptly, and post corrections and clarifications on:

We hope you enjoy working with C How to Program, Eighth Edition as much as we enjoyed
writing it!

Paul Deitel
Harvey Deitel

About the Authors
Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. Through Deitel & Associates, Inc.,

deitel@deitel.com

www.deitel.com/books/chtp8/

xxxii Preface

he has delivered hundreds of programming courses to industry clients, including Cisco,
IBM, Siemens, Sun Microsystems, Dell, Lucent Technologies, Fidelity, NASA at the Ken-
nedy Space Center, the National Severe Storm Laboratory, White Sands Missile Range,
Hospital Sisters Health System, Rogue Wave Software, Boeing, SunGard Higher Educa-
tion, Stratus, Cambridge Technology Partners, One Wave, Hyperion Software, Adra Sys-
tems, Entergy, CableData Systems, Nortel Networks, Puma, iRobot, Invensys and many
more. He and his co-author, Dr. Harvey M. Deitel, are the world’s best-selling program-
ming-language textbook/professional book/video authors.

Dr. Harvey M. Deitel, Chairman and Chief Strategy Officer of Deitel & Associates,
Inc., has 54 years of experience in the computer field. Dr. Deitel earned B.S. and M.S.
degrees in electrical engineering from MIT and a Ph.D. in mathematics from Boston Uni-
versity (all with a focus on computing). He has extensive college teaching experience,
including earning tenure and serving as the Chairman of the Computer Science Department
at Boston College before founding Deitel & Associates in 1991 with his son, Paul Deitel.
The Deitels’ publications have earned international recognition, with translations published
in Chinese, Korean, Japanese, German, Russian, Spanish, French, Polish, Italian, Portu-
guese, Greek, Urdu and Turkish. Dr. Deitel has delivered hundreds of programming courses
to academic institutions, major corporations, government organizations and the military.

About Deitel & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in computer pro-
gramming languages, object technology, mobile app development and Internet and web
software technology. The company’s training clients include many of the world’s largest
companies, government agencies, branches of the military, and academic institutions. The
company offers instructor-led training courses delivered at client sites worldwide on major
programming languages and platforms, including C, C++, Java™, Android app develop-
ment, Swift™ and iOS® app development, Visual C#®, Visual Basic®, Visual C++®, Py-
thon®, object technology, Internet and web programming and a growing list of additional
programming and software development courses.

Through its 40-year publishing partnership with Pearson/Prentice Hall, Deitel & Asso-
ciates, Inc., publishes leading-edge programming textbooks and professional books in print
and popular e-book formats, and LiveLessons video courses (available on Safari Books Online
and other video platforms). Deitel & Associates, Inc. and the authors can be reached at:

To learn more about Deitel’s Dive-Into® Series Corporate Training curriculum deliv-
ered to groups of software engineers at client sites worldwide, visit:

To request a proposal for on-site, instructor-led training at your organization, e-mail
deitel@deitel.com.

Individuals wishing to purchase Deitel books and LiveLessons video training can do so
through www.deitel.com. Bulk orders by corporations, the government, the military and
academic institutions should be placed directly with Pearson. For more information, visit

deitel@deitel.com

http://www.deitel.com/training

http://www.informit.com/store/sales.aspx

1Introduction to Computers,
the Internet and the Web

O b j e c t i v e s
In this chapter, you’ll learn:

■ Basic computer concepts.

■ The different types of
programming languages.

■ The history of the C
programming language.

■ The purpose of the C
Standard Library.

■ The basics of object
technology.

■ A typical C program-
development environment.

■ To test-drive a C application
in Windows, Linux and Mac
OS X.

■ Some basics of the Internet
and the World Wide Web.

2 Chapter 1 Introduction to Computers, the Internet and the Web

1.1 Introduction
Welcome to C and C++! C is a concise yet powerful computer programming language
that’s appropriate for technically oriented people with little or no programming experience
and for experienced programmers to use in building substantial software systems. C How
to Program, Eighth Edition, is an effective learning tool for each of these audiences.

The core of the book emphasizes software engineering through the proven methodol-
ogies of structured programming in C and object-oriented programming in C++. The book
presents hundreds of complete working programs and shows the outputs produced when
those programs are run on a computer. We call this the “live-code approach.” All of these
example programs may be downloaded from our website www.deitel.com/books/chtp8/.

Most people are familiar with the exciting tasks that computers perform. Using this
textbook, you’ll learn how to command computers to perform those tasks. It’s software
(i.e., the instructions you write to command computers to perform actions and make deci-
sions) that controls computers (often referred to as hardware).

1.1 Introduction
1.2 Hardware and Software

1.2.1 Moore’s Law
1.2.2 Computer Organization

1.3 Data Hierarchy
1.4 Machine Languages, Assembly

Languages and High-Level Languages
1.5 The C Programming Language
1.6 C Standard Library
1.7 C++ and Other C-Based Languages
1.8 Object Technology

1.8.1 The Automobile as an Object
1.8.2 Methods and Classes
1.8.3 Instantiation
1.8.4 Reuse
1.8.5 Messages and Method Calls
1.8.6 Attributes and Instance Variables
1.8.7 Encapsulation and Information Hiding
1.8.8 Inheritance

1.9 Typical C Program-Development
Environment

1.9.1 Phase 1: Creating a Program
1.9.2 Phases 2 and 3: Preprocessing and

Compiling a C Program
1.9.3 Phase 4: Linking
1.9.4 Phase 5: Loading
1.9.5 Phase 6: Execution
1.9.6 Problems That May Occur at

Execution Time

1.9.7 Standard Input, Standard Output and
Standard Error Streams

1.10 Test-Driving a C Application in
Windows, Linux and Mac OS X

1.10.1 Running a C Application from the
Windows Command Prompt

1.10.2 Running a C Application Using GNU
C with Linux

1.10.3 Running a C Application Using the
Teminal on Mac OS X

1.11 Operating Systems
1.11.1 Windows—A Proprietary Operating

System
1.11.2 Linux—An Open-Source Operating

System
1.11.3 Apple’s Mac OS X; Apple’s iOS for

iPhone®, iPad® and iPod Touch®
Devices

1.11.4 Google’s Android
1.12 The Internet and World Wide Web

1.12.1 The Internet: A Network of Networks
1.12.2 The World Wide Web: Making the

Internet User-Friendly
1.12.3 Web Services
1.12.4 Ajax
1.12.5 The Internet of Things

1.13 Some Key Software Terminology
1.14 Keeping Up-to-Date with

Information Technologies

Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

1.2 Hardware and Software 3

1.2 Hardware and Software
Computers can perform calculations and make logical decisions phenomenally faster than
human beings can. Many of today’s personal computers can perform billions of calcula-
tions in one second—more than a human can perform in a lifetime. Supercomputers are
already performing thousands of trillions (quadrillions) of instructions per second! China’s
National University of Defense Technology’s Tianhe-2 supercomputer can perform over
33 quadrillion calculations per second (33.86 petaflops)!1 To put that in perspective, the
Tianhe-2 supercomputer can perform in one second about 3 million calculations for every per-
son on the planet! And supercomputing “upper limits” are growing quickly.

Computers process data under the control of sequences of instructions called com-
puter programs. These software programs guide the computer through ordered actions
specified by people called computer programmers.

A computer consists of various devices referred to as hardware (e.g., the keyboard,
screen, mouse, hard disks, memory, DVD drives and processing units). Computing costs
are dropping dramatically, owing to rapid developments in hardware and software tech-
nologies. Computers that might have filled large rooms and cost millions of dollars
decades ago are now inscribed on silicon chips smaller than a fingernail, costing perhaps a
few dollars each. Ironically, silicon is one of the most abundant materials on Earth—it’s
an ingredient in common sand. Silicon-chip technology has made computing so econom-
ical that computers have become a commodity.

1.2.1 Moore’s Law
Every year, you probably expect to pay at least a little more for most products and services.
The opposite has been the case in the computer and communications fields, especially
with regard to the hardware supporting these technologies. For many decades, hardware
costs have fallen rapidly.

Every year or two, the capacities of computers have approximately doubled inexpen-
sively. This remarkable trend often is called Moore’s Law, named for the person who iden-
tified it in the 1960s, Gordon Moore, co-founder of Intel—the leading manufacturer of
the processors in today’s computers and embedded systems. Moore’s Law and related
observations apply especially to the amount of memory that computers have for programs,
the amount of secondary storage (such as disk storage) they have to hold programs and
data over longer periods of time, and their processor speeds—the speeds at which they exe-
cute their programs (i.e., do their work).

Similar growth has occurred in the communications field—costs have plummeted as
enormous demand for communications bandwidth (i.e., information-carrying capacity)
has attracted intense competition. We know of no other fields in which technology
improves so quickly and costs fall so rapidly. Such phenomenal improvement is truly fos-
tering the Information Revolution.

1. http://www.top500.org.

4 Chapter 1 Introduction to Computers, the Internet and the Web

1.2.2 Computer Organization
Regardless of differences in physical appearance, computers can be envisioned as divided
into various logical units or sections (Fig. 1.1).

Logical unit Description

Input unit This “receiving” section obtains information (data and computer programs)
from input devices and places it at the disposal of the other units for process-
ing. Most user input is entered into computers through keyboards, touch
screens and mouse devices. Other forms of input include receiving voice com-
mands, scanning images and barcodes, reading from secondary storage devices
(such as hard drives, DVD drives, Blu-ray Disc™ drives and USB flash
drives—also called “thumb drives” or “memory sticks”), receiving video from a
webcam and having your computer receive information from the Internet (such
as when you stream videos from YouTube® or download e-books from Ama-
zon). Newer forms of input include position data from a GPS device, and
motion and orientation information from an accelerometer (a device that
responds to up/down, left/right and forward/backward acceleration) in a smart-
phone or game controller (such as Microsoft® Kinect® for Xbox®, Wii™
Remote and Sony® PlayStation® Move).

Output unit This “shipping” section takes information the computer has processed and
places it on various output devices to make it available for use outside the com-
puter. Most information that’s output from computers today is displayed on
screens (including touch screens), printed on paper (“going green” discourages
this), played as audio or video on PCs and media players (such as Apple’s iPods)
and giant screens in sports stadiums, transmitted over the Internet or used to
control other devices, such as robots and “intelligent” appliances. Information
is also commonly output to secondary storage devices, such as hard drives,
DVD drives and USB flash drives. Popular recent forms of output are smart-
phone and game controller vibration, and virtual reality devices like Oculus
Rift.

Memory unit This rapid-access, relatively low-capacity “warehouse” section retains
information that has been entered through the input unit, making it
immediately available for processing when needed. The memory unit also
retains processed information until it can be placed on output devices by the
output unit. Information in the memory unit is volatile—it’s typically lost
when the computer’s power is turned off. The memory unit is often called
either memory, primary memory or RAM (Random Access Memory). Main
memories on desktop and notebook computers contain as much as 128 GB of
RAM, though 2 to 16 GB is most common. GB stands for gigabytes; a gigabyte
is approximately one billion bytes. A byte is eight bits. A bit is either a 0 or a 1.

Arithmetic
and logic unit
(ALU)

This “manufacturing” section performs calculations, such as addition, subtrac-
tion, multiplication and division. It also contains the decision mechanisms that
allow the computer, for example, to compare two items from the memory unit
to determine whether they’re equal. In today’s systems, the ALU is imple-
mented as part of the next logical unit, the CPU.

Fig. 1.1 | Logical units of a computer. (Part 1 of 2.)

1.3 Data Hierarchy 5

1.3 Data Hierarchy
Data items processed by computers form a data hierarchy that becomes larger and more
complex in structure as we progress from the simplest data items (called “bits”) to richer
ones, such as characters and fields. Figure 1.2 illustrates a portion of the data hierarchy.

Bits
The smallest data item in a computer can assume the value 0 or the value 1. It’s called a
bit (short for “binary digit”—a digit that can assume one of two values). Remarkably, the
impressive functions performed by computers involve only the simplest manipulations of
0s and 1s—examining a bit’s value, setting a bit’s value and reversing a bit’s value (from 1 to
0 or from 0 to 1).

Characters
It’s tedious for people to work with data in the low-level form of bits. Instead, they prefer to
work with decimal digits (0–9), letters (A–Z and a–z), and special symbols (e.g., $, @, %, &, *,
(,), –, +, ", :, ? and /). Digits, letters and special symbols are known as characters. The com-
puter’s character set is the set of all the characters used to write programs and represent data
items. Computers process only 1s and 0s, so a computer’s character set represents every char-
acter as a pattern of 1s and 0s. C supports various character sets (including Unicode®) that
are composed of characters containing one, two or four bytes (8, 16 or 32 bits). Unicode con-
tains characters for many of the world’s languages. See Appendix B for more information on

Central
processing
unit (CPU)

This “administrative” section coordinates and supervises the operation of the
other sections. The CPU tells the input unit when information should be read
into the memory unit, tells the ALU when information from the memory unit
should be used in calculations and tells the output unit when to send
information from the memory unit to certain output devices. Many of today’s
computers have multiple CPUs and, hence, can perform many operations
simultaneously. A multi-core processor implements multiple processors on a
single integrated-circuit chip—a dual-core processor has two CPUs and a quad-
core processor has four CPUs. Today’s desktop computers have processors that
can execute billions of instructions per second.

Secondary
storage unit

This is the long-term, high-capacity “warehousing” section. Programs or data
not actively being used by the other units normally are placed on secondary
storage devices (e.g., your hard drive) until they’re again needed, possibly hours,
days, months or even years later. Information on secondary storage devices is
persistent—it’s preserved even when the computer’s power is turned off. Sec-
ondary storage information takes much longer to access than information in
primary memory, but its cost per unit is much less. Examples of secondary stor-
age devices include hard drives, DVD drives and USB flash drives, some of
which can hold over 2 TB (TB stands for terabytes; a terabyte is approximately
one trillion bytes). Typical hard drives on desktop and notebook computers
hold up to 2 TB, and some desktop hard drives can hold up to 6 TB.

Logical unit Description

Fig. 1.1 | Logical units of a computer. (Part 2 of 2.)

6 Chapter 1 Introduction to Computers, the Internet and the Web

the ASCII (American Standard Code for Information Interchange) character set—the pop-
ular subset of Unicode that represents uppercase and lowercase letters, digits and some com-
mon special characters.

Fields
Just as characters are composed of bits, fields are composed of characters or bytes. A field
is a group of characters or bytes that conveys meaning. For example, a field consisting of
uppercase and lowercase letters can be used to represent a person’s name, and a field con-
sisting of decimal digits could represent a person’s age.

Records
Several related fields can be used to compose a record. In a payroll system, for example,
the record for an employee might consist of the following fields (possible types for these
fields are shown in parentheses):

• Employee identification number (a whole number)

• Name (a string of characters)

• Address (a string of characters)

• Hourly pay rate (a number with a decimal point)

• Year-to-date earnings (a number with a decimal point)

• Amount of taxes withheld (a number with a decimal point)

Fig. 1.2 | Data hierarchy.

Tom Blue

Sally Black

Judy Green File

J u d y Field

Character J

Record

Iris Orange

Randy Red

01001010

1 Bit

Judy Green

1.3 Data Hierarchy 7

Thus, a record is a group of related fields. In the preceding example, all the fields belong to
the same employee. A company might have many employees and a payroll record for each.

Files
A file is a group of related records. [Note: More generally, a file contains arbitrary data in
arbitrary formats. In some operating systems, a file is viewed simply as a sequence of bytes—
any organization of the bytes in a file, such as organizing the data into records, is a view
created by the application programmer.] It’s not unusual for an organization to have many
files, some containing billions, or even trillions, of characters of information.

Database
A database is a collection of data organized for easy access and manipulation. The most
popular model is the relational database, in which data is stored in simple tables. A table
includes records and fields. For example, a table of students might include first name, last
name, major, year, student ID number and grade point average fields. The data for each
student is a record, and the individual pieces of information in each record are the fields.
You can search, sort and otherwise manipulate the data based on its relationship to multiple
tables or databases. For example, a university might use data from the student database in
combination with data from databases of courses, on-campus housing, meal plans, etc.

Big Data
The amount of data being produced worldwide is enormous and growing quickly. Accord-
ing to IBM, approximately 2.5 quintillion bytes (2.5 exabytes) of data are created daily and
90% of the world’s data was created in just the past two years!2 According to an IDC
study, the global data supply will reach 40 zettabytes (equal to 40 trillion gigabytes) annu-
ally by 2020.3 Figure 1.3 shows some common byte measurements. Big data applications
deal with massive amounts of data and this field is growing quickly, creating lots of oppor-
tunity for software developers. According to a study by Gartner Group, over 4 million IT
jobs globally will support big data by 2015.4

2. http://www.ibm.com/smarterplanet/us/en/business_analytics/article/

it_business_intelligence.html.
3. http://recode.net/2014/01/10/stuffed-why-data-storage-is-hot-again-really/.

Unit Bytes Which is approximately

 1 kilobyte (KB) 1024 bytes 103 (1024 bytes exactly)

 1 megabyte (MB) 1024 kilobytes 106 (1,000,000 bytes)

 1 gigabyte (GB) 1024 megabytes 109 (1,000,000,000 bytes)

 1 terabyte (TB) 1024 gigabytes 1012 (1,000,000,000,000 bytes)

 1 petabyte (PB) 1024 terabytes 1015 (1,000,000,000,000,000 bytes)

 1 exabyte (EB) 1024 petabytes 1018 (1,000,000,000,000,000,000 bytes)

 1 zettabyte (ZB) 1024 exabytes 1021 (1,000,000,000,000,000,000,000 bytes)

Fig. 1.3 | Byte measurements.

4. http://tech.fortune.cnn.com/2013/09/04/big-data-employment-boom/.

8 Chapter 1 Introduction to Computers, the Internet and the Web

1.4 Machine Languages, Assembly Languages and High-
Level Languages
Programmers write instructions in various programming languages, some directly under-
standable by computers and others requiring intermediate translation steps. Hundreds of
such languages are in use today. These may be divided into three general types:

1. Machine languages

2. Assembly languages

3. High-level languages

Machine Languages
Any computer can directly understand only its own machine language, defined by its
hardware design. Machine languages generally consist of strings of numbers (ultimately re-
duced to 1s and 0s) that instruct computers to perform their most elementary operations
one at a time. Machine languages are machine dependent (a particular machine language
can be used on only one type of computer). Such languages are cumbersome for humans.
For example, here’s a section of an early machine-language payroll program that adds over-
time pay to base pay and stores the result in gross pay:

Assembly Languages and Assemblers
Programming in machine language was simply too slow and tedious for most program-
mers. Instead of using the strings of numbers that computers could directly understand,
programmers began using English-like abbreviations to represent elementary operations.
These abbreviations formed the basis of assembly languages. Translator programs called as-
semblers were developed to convert early assembly-language programs to machine lan-
guage at computer speeds. The following section of an assembly-language payroll program
also adds overtime pay to base pay and stores the result in gross pay:

Although such code is clearer to humans, it’s incomprehensible to computers until trans-
lated to machine language.

High-Level Languages and Compilers
With the advent of assembly languages, computer usage increased rapidly, but program-
mers still had to use numerous instructions to accomplish even the simplest tasks. To
speed the programming process, high-level languages were developed in which single
statements could be written to accomplish substantial tasks. Translator programs called
compilers convert high-level language programs into machine language. High-level lan-
guages allow you to write instructions that look almost like everyday English and contain
commonly used mathematical notations. A payroll program written in a high-level lan-
guage might contain a single statement such as

+1300042774
+1400593419

+1200274027

load basepay

add overpay
store grosspay

grossPay = basePay + overTimePay

1.5 The C Programming Language 9

From the programmer’s standpoint, high-level languages are preferable to machine and
assembly languages. C is one of the most widely used high-level programming languages.

Interpreters
Compiling a large high-level language program into machine language can take consider-
able computer time. Interpreter programs, developed to execute high-level language pro-
grams directly, avoid the delay of compilation, although they run slower than compiled
programs.

1.5 The C Programming Language
C evolved from two previous languages, BCPL and B. BCPL was developed in 1967 by
Martin Richards as a language for writing operating systems and compilers. Ken Thomp-
son modeled many features in his B language after their counterparts in BCPL, and in
1970 he used B to create early versions of the UNIX operating system at Bell Laboratories.

The C language was evolved from B by Dennis Ritchie at Bell Laboratories and was
originally implemented in 1972. C initially became widely known as the development lan-
guage of the UNIX operating system. Many of today’s leading operating systems are
written in C and/or C++. C is mostly hardware independent—with careful design, it’s pos-
sible to write C programs that are portable to most computers.

Built for Performance
C is widely used to develop systems that demand performance, such as operating systems,
embedded systems, real-time systems and communications systems (Figure 1.4).

Application Description

Operating systems C’s portability and performance make it desirable for imple-
menting operating systems, such as Linux and portions of
Microsoft’s Windows and Google’s Android. Apple’s OS X is
built in Objective-C, which was derived from C. We discuss
some key popular desktop/notebook operating systems and
mobile operating systems in Section 1.11.

Embedded systems The vast majority of the microprocessors produced each year are
embedded in devices other than general-purpose computers.
These embedded systems include navigation systems, smart
home appliances, home security systems, smartphones, tablets,
robots, intelligent traffic intersections and more. C is one of the
most popular programming languages for developing embedded
systems, which typically need to run as fast as possible and con-
serve memory. For example, a car’s antilock brakes must
respond immediately to slow or stop the car without skidding;
game controllers used for video games should respond instanta-
neously to prevent any lag between the controller and the action
in the game, and to ensure smooth animations.

Fig. 1.4 | Some popular performance-oriented C applications. (Part 1 of 2.)

10 Chapter 1 Introduction to Computers, the Internet and the Web

By the late 1970s, C had evolved into what’s now referred to as “traditional C.” The
publication in 1978 of Kernighan and Ritchie’s book, The C Programming Language, drew
wide attention to the language. This became one of the most successful computer science
books of all time.

Standardization
The rapid expansion of C over various types of computers (sometimes called hardware plat-
forms) led to many variations that were similar but often incompatible. This was a serious
problem for programmers who needed to develop code that would run on several platforms.
It became clear that a standard version of C was needed. In 1983, the X3J11 technical com-
mittee was created under the American National Standards Committee on Computers and
Information Processing (X3) to “provide an unambiguous and machine-independent defi-
nition of the language.” In 1989, the standard was approved as ANSI X3.159-1989 in the
United States through the American National Standards Institute (ANSI), then worldwide
through the International Standards Organization (ISO). We call this simply Standard C.
This standard was updated in 1999—its standards document is referred to as INCITS/ISO/
IEC 9899-1999 and often referred to simply as C99. Copies may be ordered from the Amer-
ican National Standards Institute (www.ansi.org) at webstore.ansi.org/ansidocstore.

The C11 Standard
We also discuss the latest C standard (referred to as C11), which was approved in 2011. C11
refines and expands C’s capabilities. We’ve integrated into the text and Appendix E (in easy-
to-include-or-omit sections) many of the new features implemented in leading C compilers.

1.6 C Standard Library
As you’ll learn in Chapter 5, C programs consist of pieces called functions. You can pro-
gram all the functions that you need to form a C program, but most C programmers take

Real-time systems Real-time systems are often used for “mission-critical” applica-
tions that require nearly instantaneous and predictable response
times. Real-time systems need to work continuously—for exam-
ple, an air-traffic-control system must constantly monitor the
positions and velocities of the planes and report that information
to air-traffic controllers without delay so that they can alert the
planes to change course if there’s a possibility of a collision.

Communications systems Communications systems need to route massive amounts of
data to their destinations quickly to ensure that things such as
audio and video are delivered smoothly and without delay.

Portability Tip 1.1
Because C is a hardware-independent, widely available language, applications written in
C often can run with little or no modification on a wide range of computer systems.

Application Description

Fig. 1.4 | Some popular performance-oriented C applications. (Part 2 of 2.)

1.7 C++ and Other C-Based Languages 11

advantage of the rich collection of existing functions called the C Standard Library. Thus,
there are really two parts to learning how to program in C—learning the C language itself
and learning how to use the functions in the C Standard Library. Throughout the book,
we discuss many of these functions. P. J. Plauger’s book The Standard C Library is must
reading for programmers who need a deep understanding of the library functions, how to
implement them and how to use them to write portable code. We use and explain many
C library functions throughout this text.

C How to Program, 8/e encourages a building-block approach to creating programs.
Avoid “reinventing the wheel.” Instead, use existing pieces—this is called software reuse.
When programming in C you’ll typically use the following building blocks:

• C Standard Library functions

• Functions you create yourself

• Functions other people (whom you trust) have created and made available to you

The advantage of creating your own functions is that you’ll know exactly how they
work. You’ll be able to examine the C code. The disadvantage is the time-consuming effort
that goes into designing, developing, debugging and performance-tuning new functions.

1.7 C++ and Other C-Based Languages
C++ was developed by Bjarne Stroustrup at Bell Laboratories. It has its roots in C, provid-
ing a number of features that “spruce up” the C language. More important, it provides ca-
pabilities for object-oriented programming. Objects are essentially reusable software
components that model items in the real world. Using a modular, object-oriented design-
and-implementation approach can make software-development groups more productive.
Chapters 15–23 present a condensed treatment of C++ selected from our book C++ How
to Program. Figure 1.5 introduces several other popular C-based programming languages.

Performance Tip 1.1
Using C Standard Library functions instead of writing your own versions can improve
program performance, because these functions are carefully written to perform efficiently.

Portability Tip 1.2
Using C Standard Library functions instead of writing your own comparable versions can
improve program portability, because these functions are used in virtually all Standard C
implementations.

Programming
language Description

Objective-C Objective-C is an object-oriented language based on C. It was developed in the
early 1980s and later acquired by NeXT, which in turn was acquired by Apple. It
has become the key programming language for the OS X operating system and
all iOS-powered devices (such as iPods, iPhones and iPads).

Fig. 1.5 | Popular C-based programming languages. (Part 1 of 2.)

12 Chapter 1 Introduction to Computers, the Internet and the Web

1.8 Object Technology
This section is intended for readers who will be studying C++ in the later part of this book.
Building software quickly, correctly and economically remains an elusive goal at a time
when demands for new and more powerful software are soaring. Objects, or more precisely
the classes objects come from, are essentially reusable software components. There are date
objects, time objects, audio objects, video objects, automobile objects, people objects, etc.
Almost any noun can be reasonably represented as a software object in terms of attributes

Java Sun Microsystems in 1991 funded an internal corporate research project which
resulted in the C++-based object-oriented programming language called Java. A
key goal of Java is to enable the writing of programs that will run on a broad vari-
ety of computer systems and computer-controlled devices. This is sometimes
called “write once, run anywhere.” Java is used to develop large-scale enterprise
applications, to enhance the functionality of web servers (the computers that pro-
vide the content we see in our web browsers), to provide applications for con-
sumer devices (smartphones, television set-top boxes and more) and for many
other purposes. Java is also the language of Android app development.

C# Microsoft’s three primary object-oriented programming languages are Visual
Basic (based on the original Basic), Visual C++ (based on C++) and Visual C#
(based on C++ and Java, and developed for integrating the Internet and the web
into computer applications). Non-Microsoft versions of C# are also available.

PHP PHP, an object-oriented, open-source scripting language supported by a commu-
nity of users and developers, is used by millions of websites. PHP is platform
independent—implementations exist for all major UNIX, Linux, Mac and Win-
dows operating systems. PHP also supports many databases, including the popu-
lar open-source MySQL.

Python Python, another object-oriented scripting language, was released publicly in
1991. Developed by Guido van Rossum of the National Research Institute for
Mathematics and Computer Science in Amsterdam (CWI), Python draws heav-
ily from Modula-3—a systems programming language. Python is “extensible”—
it can be extended through classes and programming interfaces.

JavaScript JavaScript is the most widely used scripting language. It’s primarily used to add
dynamic behavior to web pages—for example, animations and improved interac-
tivity with the user. It’s provided with all major web browsers.

Swift Swift, Apple’s new programming language for developing iOS and Mac apps, was
announced at the Apple World Wide Developer Conference (WWDC) in June
2014. Although apps can still be developed and maintained with Objective-C,
Swift is Apple’s app-development language of the future. It’s a modern language
that eliminates some of the complexity of Objective-C, making it easier for
beginners and those transitioning from other high-level languages such as Java,
C#, C++ and C. Swift emphasizes performance and security, and has full access
to the iOS and Mac programming capabilities.

Programming
language Description

Fig. 1.5 | Popular C-based programming languages. (Part 2 of 2.)

1.8 Object Technology 13

(e.g., name, color and size) and behaviors (e.g., calculating, moving and communicating).
Software developers are discovering that using a modular, object-oriented design-and-
implementation approach can make software-development groups much more productive
than was possible with earlier techniques—object-oriented programs are often easier to
understand, correct and modify.

1.8.1 The Automobile as an Object
To help you understand objects and their contents, let’s begin with a simple analogy. Sup-
pose you want to drive a car and make it go faster by pressing its accelerator pedal. What must
happen before you can do this? Well, before you can drive a car, someone has to design it.
A car typically begins as engineering drawings, similar to the blueprints that describe the
design of a house. These drawings include the design for an accelerator pedal. The pedal
hides from the driver the complex mechanisms that actually make the car go faster, just as
the brake pedal “hides” the mechanisms that slow the car, and the steering wheel “hides”
the mechanisms that turn the car. This enables people with little or no knowledge of how
engines, braking and steering mechanisms work to drive a car easily.

Just as you cannot cook meals in the kitchen of a blueprint, you cannot drive a car’s
engineering drawings. Before you can drive a car, it must be built from the engineering
drawings that describe it. A completed car has an actual accelerator pedal to make it go
faster, but even that’s not enough—the car won’t accelerate on its own (hopefully!), so the
driver must press the pedal to accelerate the car.

1.8.2 Methods and Classes
Let’s use our car example to introduce some key object-oriented programming concepts.
Performing a task in a program requires a method. The method houses the program state-
ments that actually perform its tasks. It hides these statements from its user, just as a car’s
accelerator pedal hides from the driver the mechanisms of making the car go faster. In ob-
ject-oriented programming languages, we create a program unit called a class to house the
set of methods that perform the class’s tasks. For example, a class that represents a bank
account might contain one method to deposit money to an account, another to withdraw
money from an account and a third to inquire what the account’s current balance is. A class
is similar in concept to a car’s engineering drawings, which house the design of an accel-
erator pedal, steering wheel, and so on.

1.8.3 Instantiation
Just as someone has to build a car from its engineering drawings before you can actually
drive a car, you must build an object of a class before a program can perform the tasks that
the class’s methods define. The process of doing this is called instantiation. An object is
then referred to as an instance of its class.

1.8.4 Reuse
Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new
classes and programs saves time and effort. Reuse also helps you build more reliable and

14 Chapter 1 Introduction to Computers, the Internet and the Web

effective systems, because existing classes and components often have undergone extensive
testing, debugging and performance tuning. Just as the notion of interchangeable parts was
crucial to the Industrial Revolution, reusable classes are crucial to the software revolution
that has been spurred by object technology.

1.8.5 Messages and Method Calls
When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
that is, to go faster. Similarly, you send messages to an object. Each message is implemented
as a method call that tells a method of the object to perform its task. For example, a pro-
gram might call a particular bank-account object’s deposit method to increase the account’s
balance.

1.8.6 Attributes and Instance Variables
A car, besides having capabilities to accomplish tasks, also has attributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total
miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an
odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but not how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank-account object has
a balance attribute that represents the amount of money in the account. Each bank-
account object knows the balance in the account it represents, but not the balances of the
other accounts in the bank. Attributes are specified by the class’s instance variables.

1.8.7 Encapsulation and Information Hiding
Classes (and their objects) encapsulate, i.e., encase, their attributes and methods. A class’s
(and its objects) attributes and methods are intimately related. Objects may communicate
with one another, but they’re normally not allowed to know how other objects are imple-
mented—implementation details are hidden within the objects themselves. This informa-
tion hiding, as we’ll see, is crucial to good software engineering.

1.8.8 Inheritance
A new class of objects can be created conveniently by inheritance—the new class (called
the subclass) starts with the characteristics of an existing class (called the superclass), pos-
sibly customizing them and adding unique characteristics of its own. In our car analogy,
an object of class “convertible” certainly is an object of the more general class “automo-
bile,” but more specifically, the roof can be raised or lowered.

Software Engineering Observation 1.1
Use a building-block approach to creating your programs. Avoid reinventing the wheel—
use existing high-quality pieces wherever possible. Such software reuse is a key benefit of
object-oriented programming.

1.9 Typical C Program-Development Environment 15

1.9 Typical C Program-Development Environment
C systems generally consist of several parts: a program-development environment, the lan-
guage and the C Standard Library. The following discussion explains the typical C devel-
opment environment shown in Fig. 1.6.

Fig. 1.6 | Typical C development environment.

Compiler

Phase 3:
Compiler creates
object code and stores
it on disk.

Linker

Phase 4:
Linker links the object
code with the libraries,
creates an executable file and
stores it on disk.

Disk

Disk

Disk

Disk

Disk

Editor

Phase 1:
Programmer creates program
in the editor and stores it on
disk.

Preprocessor
Phase 2:
Preprocessor program
processes the code.

Loader

Phase 5:
Loader puts program
in memory.

.
.
.

CPU
Phase 6:
CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes..

.
.

Primary
Memory

Primary
Memory

16 Chapter 1 Introduction to Computers, the Internet and the Web

C programs typically go through six phases to be executed (Fig. 1.6). These are: edit,
preprocess, compile, link, load and execute. Although C How to Program, 8/e, is a generic
C textbook (written independently of the details of any particular operating system), we
concentrate in this section on a typical Linux-based C system. [Note: The programs in this
book will run with little or no modification on most current C systems, including Micro-
soft Windows-based systems.] If you’re not using a Linux system, refer to the documenta-
tion for your system or ask your instructor how to accomplish these tasks in your
environment. Check out our C Resource Center at www.deitel.com/C to locate “getting
started” tutorials for popular C compilers and development environments.

1.9.1 Phase 1: Creating a Program
Phase 1 consists of editing a file. This is accomplished with an editor program. Two edi-
tors widely used on Linux systems are vi and emacs. Software packages for the C/C++ in-
tegrated program development environments such as Eclipse and Microsoft Visual Studio
have editors that are integrated into the programming environment. You type a C program
with the editor, make corrections if necessary, then store the program on a secondary stor-
age device such as a hard disk. C program filenames should end with the .c extension.

1.9.2 Phases 2 and 3: Preprocessing and Compiling a C Program
In Phase 2, you give the command to compile the program. The compiler translates the C
program into machine-language code (also referred to as object code). In a C system, a pre-
processor program executes automatically before the compiler’s translation phase begins.
The C preprocessor obeys special commands called preprocessor directives, which indicate
that certain manipulations are to be performed on the program before compilation. These
manipulations usually consist of including other files in the file to be compiled and perform-
ing various text replacements. The most common preprocessor directives are discussed in the
early chapters; a detailed discussion of preprocessor features appears in Chapter 13.

In Phase 3, the compiler translates the C program into machine-language code. A
syntax error occurs when the compiler cannot recognize a statement because it violates the
rules of the language. The compiler issues an error message to help you locate and fix the
incorrect statement. The C Standard does not specify the wording for error messages
issued by the compiler, so the error messages you see on your system may differ from those
on other systems. Syntax errors are also called compile errors, or compile-time errors.

1.9.3 Phase 4: Linking
The next phase is called linking. C programs typically contain references to functions de-
fined elsewhere, such as in the standard libraries or in the private libraries of groups of pro-
grammers working on a particular project. The object code produced by the C compiler
typically contains “holes” due to these missing parts. A linker links the object code with
the code for the missing functions to produce an executable image (with no missing piec-
es). On a typical Linux system, the command to compile and link a program is called gcc
(the GNU C compiler). To compile and link a program named welcome.c, type

at the Linux prompt and press the Enter key (or Return key). [Note: Linux commands are
case sensitive; make sure that each c is lowercase and that the letters in the filename are in

gcc welcome.c

1.10 Test-Driving a C Application in Windows, Linux and Mac OS X 17

the appropriate case.] If the program compiles and links correctly, a file called a.out (by
default) is produced. This is the executable image of our welcome.c program.

1.9.4 Phase 5: Loading
The next phase is called loading. Before a program can be executed, the program must first
be placed in memory. This is done by the loader, which takes the executable image from
disk and transfers it to memory. Additional components from shared libraries that support
the program are also loaded.

1.9.5 Phase 6: Execution
Finally, the computer, under the control of its CPU, executes the program one instruction
at a time. To load and execute the program on a Linux system, type ./a.out at the Linux
prompt and press Enter.

1.9.6 Problems That May Occur at Execution Time
Programs do not always work on the first try. Each of the preceding phases can fail because
of various errors that we’ll discuss. For example, an executing program might attempt to
divide by zero (an illegal operation on computers just as in arithmetic). This would cause
the computer to display an error message. You would then return to the edit phase, make
the necessary corrections and proceed through the remaining phases again to determine
that the corrections work properly.

1.9.7 Standard Input, Standard Output and Standard Error Streams
Most C programs input and/or output data. Certain C functions take their input from
stdin (the standard input stream), which is normally the keyboard, but stdin can be re-
directed to another stream. Data is often output to stdout (the standard output stream),
which is normally the computer screen, but stdout can be redirected to another stream.
When we say that a program prints a result, we normally mean that the result is displayed
on a screen. Data may be output to devices such as disks and printers. There’s also a stan-
dard error stream referred to as stderr. The stderr stream (normally connected to the
screen) is used for displaying error messages. It’s common to route regular output data,
i.e., stdout, to a device other than the screen while keeping stderr assigned to the screen
so that the user can be immediately informed of errors.

1.10 Test-Driving a C Application in Windows, Linux
and Mac OS X
In this section, you’ll run and interact with your first C application. You’ll begin by run-
ning a guess-the-number game, which randomly picks a number from 1 to 1000 and

Common Programming Error 1.1
Errors such as division-by-zero occur as a program runs, so they are called runtime errors
or execution-time errors. Divide-by-zero is generally a fatal error, i.e., one that causes the
program to terminate immediately without successfully performing its job. Nonfatal errors
allow programs to run to completion, often producing incorrect results.

18 Chapter 1 Introduction to Computers, the Internet and the Web

prompts you to guess it. If your guess is correct, the game ends. If your guess is not correct,
the application indicates it’s higher or lower than the correct number. There’s no limit on
the number of guesses you can make but you should be able to guess any of the numbers
in this range correctly in 10 or fewer tries. There’s some nice computer science behind this
game—in Section 6.10, Searching Arrays, you’ll explore the binary search technique.

For this test-drive only, we’ve modified this application from the exercise you’ll be
asked to create in Chapter 5. Normally this application randomly selects the correct
answers. The modified application uses the same sequence of correct answers every time
you execute the program (though the particular sequence may vary by compiler), so you
can use the same guesses we use in this section and see the same results.

We’ll demonstrate running a C application using the Windows Command Prompt, a
shell on Linux and a Terminal window in Mac OS X. The application runs similarly on all
three platforms. After you perform the test-drive for your platform, you can try the ran-
domized version of the game, which we’ve provided with each test drive’s version of the
example in a subfolder named randomized_version.

Many development environments are available in which you can compile, build and
run C applications, such as GNU C, Dev C++, Microsoft Visual C++, CodeLite, Net-
Beans, Eclipse, Xcode, etc. Consult your instructor for information on your specific devel-
opment environment. Most C++ development environments can compile both C and
C++ programs.

In the following steps, you’ll run the application and enter various numbers to guess
the correct number. The elements and functionality that you see in this application are
typical of those you’ll learn to program in this book. We use fonts to distinguish between
features you see on the screen (e.g., the Command Prompt) and elements that are not
directly related to the screen. We emphasize screen features like titles and menus (e.g., the
File menu) in a semibold sans-serif Helvetica font, and to emphasize filenames, text dis-
played by an application and values you should enter into an application (e.g., Guess-
Number or 500) we use a sans-serif Lucida font. As you’ve noticed, the defining
occurrence of each key term is set in bold blue type.

For the Windows version of the test drive in this section, we’ve modified the back-
ground color of the Command Prompt window to make the Command Prompt windows
more readable. To modify the Command Prompt colors on your system, open a Command
Prompt by selecting Start > All Programs > Accessories > Command Prompt, then right click
the title bar and select Properties. In the "Command Prompt" Properties dialog box that
appears, click the Colors tab, and select your preferred text and background colors.

1.10.1 Running a C Application from the Windows Command Prompt
1. Checking your setup. It’s important to read the Before You Begin section at

www.deitel.com/books/chtp8/ to make sure that you’ve copied the book’s ex-
amples to your hard drive correctly.

2. Locating the completed application. Open a Command Prompt window. To
change to the directory for the completed GuessNumber application, type
cd C:\examples\ch01\GuessNumber\Windows, then press Enter (Fig. 1.7). The
command cd is used to change directories.

1.10 Test-Driving a C Application in Windows, Linux and Mac OS X 19

3. Running the GuessNumber application. Now that you are in the directory that
contains the GuessNumber application, type the command GuessNumber

(Fig. 1.8) and press Enter. [Note: GuessNumber.exe is the actual name of the ap-
plication; however, Windows assumes the .exe extension by default.]

4. Entering your first guess. The application displays "Please type your first
guess.", then displays a question mark (?) as a prompt on the next line
(Fig. 1.8). At the prompt, enter 500 (Fig. 1.9).

5. Entering another guess. The application displays "Too high. Try again.", mean-
ing that the value you entered is greater than the number the application chose as
the correct guess. So, you should enter a lower number for your next guess. At the
prompt, enter 250 (Fig. 1.10). The application again displays "Too high. Try
again.", because the value you entered is still greater than the number that the
application chose.

Fig. 1.7 | Opening a Command Prompt window and changing the directory.

Fig. 1.8 | Running the GuessNumber application.

Fig. 1.9 | Entering your first guess.

20 Chapter 1 Introduction to Computers, the Internet and the Web

6. Entering additional guesses. Continue to play the game by entering values until
you guess the correct number. The application will display "Excellent! You
guessed the number!" (Fig. 1.11).

7. Playing the game again or exiting the application. After you guess correctly, the
application asks if you’d like to play another game (Fig. 1.11). At the prompt, en-
tering 1 causes the application to choose a new number and displays the message
“Please type your first guess.” followed by a question-mark prompt
(Fig. 1.12), so you can make your first guess in the new game. Entering 2 ends
the application and returns you to the application’s directory at the Command
Prompt (Fig. 1.13). Each time you execute this application from the beginning
(i.e., Step 3), it will choose the same numbers for you to guess.

8. Close the Command Prompt window.

Fig. 1.10 | Entering a second guess and receiving feedback.

Fig. 1.11 | Entering additional guesses and guessing the correct number.

1.10 Test-Driving a C Application in Windows, Linux and Mac OS X 21

1.10.2 Running a C Application Using GNU C with Linux
For the figures in this section, we use a bold font to point out the user input required by
each step. In this test drive, we assume that you know how to copy the examples into your
home directory. Please see your instructor if you have any questions regarding copying the
files to your Linux system. Also, for the figures in this section, we use a bold font to point
out the user input required by each step. The prompt in the shell on our system uses the
tilde (~) character to represent the home directory, and each prompt ends with the dollar-
sign ($) character. The prompt will vary among Linux systems.

1. Checking your setup. It’s important to read the Before You Begin section at
www.deitel.com/books/chtp8/ to make sure that you’ve copied the book’s ex-
amples to your hard drive correctly.

2. Locating the completed application. From a Linux shell, change to the completed
GuessNumber application directory (Fig. 1.14) by typing

then pressing Enter. The command cd is used to change directories.

Fig. 1.12 | Playing the game again.

Fig. 1.13 | Exiting the game.

 cd examples/ch01/GuessNumber/GNU

~$ cd examples/ch01/GuessNumber/GNU
~/examples/ch01/GuessNumber/GNU$

Fig. 1.14 | Changing to the GuessNumber application’s directory.

22 Chapter 1 Introduction to Computers, the Internet and the Web

3. Compiling the GuessNumber application. To run an application on the GNU
C++ compiler, you must first compile it by typing

as in Fig. 1.15. This command compiles the application. The -o option is fol-
lowed by the name you’d like the executable file to have—GuessNumber.

4. Running the GuessNumber application. To run the executable file GuessNumber,
type ./GuessNumber at the next prompt, then press Enter (Fig. 1.16).

5. Entering your first guess. The application displays "Please type your first
guess.", then displays a question mark (?) as a prompt on the next line
(Fig. 1.16). At the prompt, enter 500 (Fig. 1.17).

6. Entering another guess. The application displays "Too high. Try again.", mean-
ing that the value you entered is greater than the number the application chose as
the correct guess (Fig. 1.17). At the next prompt, enter 250 (Fig. 1.18). This time
the application displays "Too low. Try again.", because the value you entered is
less than the correct guess.

 gcc GuessNumber.c -o GuessNumber

~/examples/ch01/GuessNumber/GNU$ gcc -std=c11 GuessNumber.c -o GuessNumber
~/examples/ch01/GuessNumber/GNU$

Fig. 1.15 | Compiling the GuessNumber application using the gcc command.

~/examples/ch01/GuessNumber/GNU$./GuessNumber
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
?

Fig. 1.16 | Running the GuessNumber application.

~/examples/ch01/GuessNumber/GNU$./GuessNumber
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
? 500
Too high. Try again.
?

Fig. 1.17 | Entering an initial guess.

1.10 Test-Driving a C Application in Windows, Linux and Mac OS X 23

7. Entering additional guesses. Continue to play the game (Fig. 1.19) by entering
values until you guess the correct number. When you guess correctly, the appli-
cation displays "Excellent! You guessed the number!"

8. Playing the game again or exiting the application. After you guess the correct
number, the application asks if you’d like to play another game. At the prompt,
entering 1 causes the application to choose a new number and displays the mes-
sage "Please type your first guess." followed by a question-mark prompt
(Fig. 1.20) so that you can make your first guess in the new game. Entering 2 ends
the application and returns you to the application’s directory in the shell
(Fig. 1.21). Each time you execute this application from the beginning (i.e., Step
4), it will choose the same numbers for you to guess.

~/examples/ch01/GuessNumber/GNU$./GuessNumber
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
? 500
Too high. Try again.
? 250
Too low. Try again.
?

Fig. 1.18 | Entering a second guess and receiving feedback.

Too low. Try again.
? 375
Too low. Try again.
? 437
Too high. Try again.
? 406
Too high. Try again.
? 391
Too high. Try again.
? 383
Too low. Try again.
? 387
Too high. Try again.
? 385
Too high. Try again.
? 384
Excellent! You guessed the number!
Would you like to play again?
Please type (1=yes, 2=no)?

Fig. 1.19 | Entering additional guesses and guessing the correct number.

24 Chapter 1 Introduction to Computers, the Internet and the Web

1.10.3 Running a C Application Using the Teminal on Mac OS X
For the figures in this section, we use a bold font to point out the user input required by
each step. You’ll use Mac OS X’s Terminal window to perform this test-drive. To open a
Terminal window, click the Spotlight Search icon in the upper-right corner of your screen,
then type Terminal to locate the Terminal application. Under Applications in the Spotlight
Search results, select Terminal to open a Terminal window. The prompt in a Terminal win-
dow has the form hostName:~ userFolder$ to represent your user directory. For the figures
in this section, we removed the hostName: part and used the generic name userFolder to
represent your user account’s folder.

1. Checking your setup. It’s important to read the Before You Begin section at
www.deitel.com/books/chtp8/ to make sure that you’ve copied the book’s ex-
amples to your hard drive correctly. We assume that the examples are located in
your user account’s Documents/examples folder.

2. Locating the completed application. In the Terminal window, change to the com-
pleted GuessNumber application directory (Fig. 1.22) by typing

then pressing Enter. The command cd is used to change directories.

3. Compiling the GuessNumber application. To run an application, you must first
compile it by typing

Excellent! You guessed the number!
Would you like to play again?
Please type (1=yes, 2=no)? 1
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
?

Fig. 1.20 | Playing the game again.

Excellent! You guessed the number!
Would you like to play again?
Please type (1=yes, 2=no)? 2
~/examples/ch01/GuessNumber/GNU$

Fig. 1.21 | Exiting the game.

 cd Documents/examples/ch01/GuessNumber/GNU

hostName:~ userFolder$ cd Documents/examples/ch01/GuessNumber/GNU
hostName:GNU$

Fig. 1.22 | Changing to the GuessNumber application’s directory.

 clang GuessNumber.c -o GuessNumber

1.10 Test-Driving a C Application in Windows, Linux and Mac OS X 25

as in Fig. 1.23. This command compiles the application and produces an execut-
able file called GuessNumber.

4. Running the GuessNumber application. To run the executable file GuessNumber,
type ./GuessNumber at the next prompt, then press Enter (Fig. 1.24).

5. Entering your first guess. The application displays "Please type your first
guess.", then displays a question mark (?) as a prompt on the next line
(Fig. 1.24). At the prompt, enter 500 (Fig. 1.25).

6. Entering another guess. The application displays "Too low. Try again."
(Fig. 1.25), meaning that the value you entered is less than the number the appli-
cation chose as the correct guess. At the next prompt, enter 750 (Fig. 1.26). Again
the application displays "Too low. Try again.", because the value you entered is
less than the correct guess.

7. Entering additional guesses. Continue to play the game (Fig. 1.27) by entering
values until you guess the correct number. When you guess correctly, the appli-
cation displays "Excellent! You guessed the number!"

hostName:GNU~ userFolder$ clang GuessNumber.c -o GuessNumber
hostName:GNU~ userFolder$

Fig. 1.23 | Compiling the GuessNumber application using the gcc command.

hostName:GNU~ userFolder$./GuessNumber
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
?

Fig. 1.24 | Running the GuessNumber application.

hostName:GNU~ userFolder$./GuessNumber
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
? 500
Too low. Try again.
?

Fig. 1.25 | Entering an initial guess.

26 Chapter 1 Introduction to Computers, the Internet and the Web

8. Playing the game again or exiting the application. After you guess the correct
number, the application asks if you’d like to play another game. At the prompt,
entering 1 causes the application to choose a new number and displays the mes-
sage "Please type your first guess." followed by a question-mark prompt
(Fig. 1.28) so you can make your first guess in the new game. Entering 2 ends the
application and returns you to the application’s folder in the Terminal window
(Fig. 1.29). Each time you execute this application from the beginning (i.e., Step
4), it will choose the same numbers for you to guess.

hostName:GNU~ userFolder$./GuessNumber
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
? 500
Too low. Try again.
? 750
Too low. Try again.
?

Fig. 1.26 | Entering a second guess and receiving feedback.

? 825
Too high. Try again.
? 788
Too low. Try again.
? 806
Too low. Try again.
? 815
Too high. Try again.
? 811
Too high. Try again.
? 808
Excellent! You guessed the number!
Would you like to play again?
Please type (1=yes, 2=no)?

Fig. 1.27 | Entering additional guesses and guessing the correct number.

Excellent! You guessed the number!
Would you like to play again?
Please type (1=yes, 2=no)? 1
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
?

Fig. 1.28 | Playing the game again.

1.11 Operating Systems 27

1.11 Operating Systems
Operating systems are software systems that make using computers more convenient for
users, application developers and system administrators. They provide services that allow
each application to execute safely, efficiently and concurrently (i.e., in parallel) with other
applications. The software that contains the core components of the operating system is
the kernel. Popular desktop operating systems include Linux, Windows and Mac OS X.
Popular mobile operating systems used in smartphones and tablets include Google’s An-
droid, Apple’s iOS (for its iPhone, iPad and iPod Touch devices), Windows Phone and
BlackBerry OS.

1.11.1 Windows—A Proprietary Operating System
In the mid-1980s, Microsoft developed the Windows operating system, consisting of a
graphical user interface built on top of DOS—an enormously popular personal-computer
operating system that users interacted with by typing commands. Windows borrowed
many concepts (such as icons, menus and windows) popularized by early Apple Macintosh
operating systems and originally developed by Xerox PARC. Windows 8.1 is Microsoft’s
latest operating system—its features include PC and tablet support, a tiles-based user in-
terface, security enhancements, touch-screen and multi-touch support, and more. Win-
dows is a proprietary operating system—it’s controlled by Microsoft exclusively. It’s by far
the world’s most widely used operating system.

1.11.2 Linux—An Open-Source Operating System
The Linux operating system—which is popular in servers, personal computers and embed-
ded systems—is perhaps the greatest success of the open-source movement. The open-
source software development style departs from the proprietary development style (used,
for example, with Microsoft’s Windows and Apple’s Mac OS X). With open-source de-
velopment, individuals and companies—often worldwide—contribute their efforts in de-
veloping, maintaining and evolving software. Anyone can use and customize it for their
own purposes, typically at no charge.

Some organizations in the open-source community are the Eclipse Foundation (the
Eclipse Integrated Development Environment helps programmers conveniently develop
software), the Mozilla Foundation (creators of the Firefox web browser), the Apache Software
Foundation (creators of the Apache web server that delivers web pages over the Internet in
response to web-browser requests) and GitHub and SourceForge (which provide the tools
for managing open-source projects).

Rapid improvements to computing and communications, decreasing costs and open-
source software have made it easier and more economical to create software-based busi-

Excellent! You guessed the number!
Would you like to play again?
Please type (1=yes, 2=no)? 2
hostName:GNU~ userFolder$

Fig. 1.29 | Exiting the game.

28 Chapter 1 Introduction to Computers, the Internet and the Web

nesses now than just a few decades ago. Facebook, which was launched from a college
dorm room, was built with open-source software.5

A variety of issues—such as Microsoft’s market power, the relatively small number of
user-friendly Linux applications and the diversity of Linux distributions (Red Hat Linux,
Ubuntu Linux and many others)—have prevented widespread Linux use on desktop com-
puters. But Linux has become extremely popular on servers and in embedded systems,
such as Google’s Android-based smartphones.

1.11.3 Apple’s Mac OS X; Apple’s iOS for iPhone®, iPad® and iPod
Touch® Devices
Apple, founded in 1976 by Steve Jobs and Steve Wozniak, quickly became a leader in per-
sonal computing. In 1979, Jobs and several Apple employees visited Xerox PARC (Palo
Alto Research Center) to learn about Xerox’s desktop computer that featured a graphical
user interface (GUI). That GUI served as the inspiration for the Apple Macintosh,
launched with much fanfare in a memorable Super Bowl ad in 1984.

The Objective-C programming language, created by Brad Cox and Tom Love at
Stepstone in the early 1980s, added capabilities for object-oriented programming (OOP)
to the C programming language. Steve Jobs left Apple in 1985 and founded NeXT Inc.
In 1988, NeXT licensed Objective-C from StepStone and developed an Objective-C com-
piler and libraries which were used as the platform for the NeXTSTEP operating system’s
user interface and Interface Builder—used to construct graphical user interfaces.

Jobs returned to Apple in 1996 when Apple bought NeXT. Apple’s Mac OS X oper-
ating system is a descendant of NeXTSTEP. Apple’s proprietary operating system, iOS, is
derived from Apple’s Mac OS X and is used in the iPhone, iPad and iPod Touch devices.

1.11.4 Google’s Android
Android—the fastest growing tablet and smartphone operating system—is based on the Li-
nux kernel and Java as its primary programming language. One benefit of developing An-
droid apps is the openness of the platform. The operating system is open source and free.

The Android operating system was developed by Android, Inc., which was acquired by
Google in 2005. In 2007, the Open Handset Alliance™—which has 87 company members
worldwide—was formed to develop, maintain and evolve Android, driving innovation in
mobile technology and improving the user experience while reducing costs. As of April 2013,
more than 1.5 million Android devices (smartphones, tablets, etc.) were being activated
worldwide daily.6 Android devices now include smartphones, tablets, e-readers, robots, jet
engines, NASA satellites, game consoles, refrigerators, televisions, cameras, health-care
devices, smartwatches, automobile in-vehicle infotainment systems (for controlling the
radio, GPS, phone calls, thermostat, etc.) and more.7 Android also executes on desktop and
notebook computers.8

5. https://code.facebook.com/projects/.
6. http://www.technobuffalo.com/2013/04/16/google-daily-android-activations-1-5-

million/.
7. http://www.businessweek.com/articles/2013-05-29/behind-the-internet-of-things-

is-android-and-its-everywhere.
8. http://www.android-x86.org.

1.12 The Internet and World Wide Web 29

1.12 The Internet and World Wide Web
In the late 1960s, ARPA—the Advanced Research Projects Agency of the United States
Department of Defense—rolled out plans for networking the main computer systems of
approximately a dozen ARPA-funded universities and research institutions. The comput-
ers were to be connected with communications lines operating at speeds on the order of
50,000 bits per second, a stunning rate at a time when most people (of the few who even
had networking access) were connecting over telephone lines to computers at a rate of 110
bits per second. Academic research was about to take a giant leap forward. ARPA proceed-
ed to implement what quickly became known as the ARPANET, the precursor to today’s
Internet. Today’s fastest Internet speeds are on the order of billions of bits per second with
trillion-bits-per-second speeds on the horizon!

Things worked out differently from the original plan. Although the ARPANET
enabled researchers to network their computers, its main benefit proved to be the capa-
bility for quick and easy communication via what came to be known as electronic mail (e-
mail). This is true even on today’s Internet, with e-mail, instant messaging, file transfer
and social media such as Facebook and Twitter enabling billions of people worldwide to
communicate quickly and easily.

The protocol (set of rules) for communicating over the ARPANET became known as
the Transmission Control Protocol (TCP). TCP ensured that messages, consisting of
sequentially numbered pieces called packets, were properly routed from sender to receiver,
arrived intact and were assembled in the correct order.

1.12.1 The Internet: A Network of Networks
In parallel with the early evolution of the Internet, organizations worldwide were imple-
menting their own networks for both intraorganization (that is, within an organization)
and interorganization (that is, between organizations) communication. A huge variety of
networking hardware and software appeared. One challenge was to enable these different
networks to communicate with each other. ARPA accomplished this by developing the In-
ternet Protocol (IP), which created a true “network of networks,” the current architecture
of the Internet. The combined set of protocols is now called TCP/IP.

Businesses rapidly realized that by using the Internet, they could improve their oper-
ations and offer new and better services to their clients. Companies started spending large
amounts of money to develop and enhance their Internet presence. This generated fierce
competition among communications carriers and hardware and software suppliers to meet
the increased infrastructure demand. As a result, bandwidth—the information-carrying
capacity of communications lines—on the Internet has increased tremendously, while
hardware costs have plummeted.

1.12.2 The World Wide Web: Making the Internet User-Friendly
The World Wide Web (simply called “the web”) is a collection of hardware and software
associated with the Internet that allows computer users to locate and view multimedia-
based documents (documents with various combinations of text, graphics, animations, au-
dios and videos) on almost any subject. The introduction of the web was a relatively recent
event. In 1989, Tim Berners-Lee of CERN (the European Organization for Nuclear Re-
search) began to develop a technology for sharing information via “hyperlinked” text doc-

30 Chapter 1 Introduction to Computers, the Internet and the Web

uments. Berners-Lee called his invention the HyperText Markup Language (HTML). He
also wrote communication protocols such as HyperText Transfer Protocol (HTTP) to
form the backbone of his new hypertext information system, which he referred to as the
World Wide Web.

In 1994, Berners-Lee founded an organization, called the World Wide Web Consor-
tium (W3C, http://www.w3.org), devoted to developing web technologies. One of the
W3C’s primary goals is to make the web universally accessible to everyone regardless of
disabilities, language or culture.

1.12.3 Web Services
Web services are software components stored on one computer that can be accessed by an
app (or other software component) on another computer over the Internet. With web ser-
vices, you can create mashups, which enable you to rapidly develop apps by combining com-
plementary web services, often from multiple organizations and possibly other forms of
information feeds. For example, 100 Destinations (http://www.100destinations.co.uk)
combines the photos and tweets from Twitter with the mapping capabilities of Google Maps
to allow you to explore countries around the world through the photos of others.

Programmableweb (http://www.programmableweb.com/) provides a directory of over
11,150 APIs and 7,300 mashups, plus how-to guides and sample code for creating your own
mashups. Figure 1.30 lists some popular web services. According to Programmableweb, the
three most widely used APIs for mashups are Google Maps, Twitter and YouTube.

Web services source How it’s used

Google Maps Mapping services

Twitter Microblogging

YouTube Video search

Facebook Social networking

Instagram Photo sharing

Foursquare Mobile check-in

LinkedIn Social networking for business

Groupon Social commerce

Netflix Movie rentals

eBay Internet auctions

Wikipedia Collaborative encyclopedia

PayPal Payments

Last.fm Internet radio

Amazon eCommerce Shopping for books and lots of other products

Salesforce.com Customer Relationship Management (CRM)

Skype Internet telephony

Fig. 1.30 | Some popular web services (http://www.programmableweb.com/
category/all/apis). (Part 1 of 2.)

1.12 The Internet and World Wide Web 31

Figure 1.31 lists directories where you’ll find information about many of the most
popular web services. Figure 1.32 lists a few popular web mashups.

Microsoft Bing Search

Flickr Photo sharing

Zillow Real-estate pricing

Yahoo Search Search

WeatherBug Weather

Directory URL

ProgrammableWeb www.programmableweb.com

Google Code API Directory code.google.com/apis/gdata/docs/directory.html

Fig. 1.31 | Web services directories.

URL Description

http://twikle.com/ Twikle uses Twitter web services to aggregate popular
news stories being shared online.

http://trendsmap.com/ TrendsMap uses Twitter and Google Maps. It allows
you to track tweets by location and view them on a
map in real time.

http://www.coindesk.com/price/
bitcoin-price-ticker-widget/

The Bitcoin Price Ticker Widget uses CoinDesk’s
APIs to display the real-time Bitcoin price, the day’s
high and low prices and a graph of the price fluctua-
tions over the last sixty minutes.

http://www.dutranslation.com/ The Double Translation mashup allows you to use
Bing and Google translation services simultaneously
to translate text to and from over 50 languages. You
can then compare the results between the two.

http://musicupdated.com/ Music Updated uses Last.fm and YouTube web ser-
vices. Use it to track album releases, concert informa-
tion and more for your favorite artists.

Fig. 1.32 | A few popular web mashups.

Web services source How it’s used

Fig. 1.30 | Some popular web services (http://www.programmableweb.com/
category/all/apis). (Part 2 of 2.)

32 Chapter 1 Introduction to Computers, the Internet and the Web

1.12.4 Ajax
Ajax technology helps Internet-based applications perform like desktop applications—a
difficult task, given that such applications suffer transmission delays as data is shuttled
back and forth between your computer and server computers on the Internet. Using Ajax,
applications like Google Maps have achieved excellent performance and approach the
look-and-feel of desktop applications.

1.12.5 The Internet of Things
The Internet is no longer just a network of computers—it’s an Internet of Things. A thing
is any object with an IP address and the ability to send data automatically over the Inter-
net—e.g., a car with a transponder for paying tolls, a heart monitor implanted in a human,
a smart meter that reports energy usage, mobile apps that can track your movement and
location, and smart thermostats that adjust room temperatures based on weather forecasts
and activity in the home.

1.13 Some Key Software Terminology
Figure 1.33 lists a number of buzzwords that you’ll hear in the software development com-
munity.

Technology Description

Agile software
development

Agile software development is a set of methodologies that try to get soft-
ware implemented faster and using fewer resources. Check out the Agile
Alliance (www.agilealliance.org) and the Agile Manifesto
(www.agilemanifesto.org).

Refactoring Refactoring involves reworking programs to make them clearer and easier
to maintain while preserving their correctness and functionality. It’s
widely employed with agile development methodologies. Many IDEs
contain built-in refactoring tools to do major portions of the reworking
automatically.

Design patterns Design patterns are proven architectures for constructing flexible and
maintainable object-oriented software. The field of design patterns tries
to enumerate those recurring patterns, encouraging software designers to
reuse them to develop better-quality software using less time, money and
effort.

LAMP LAMP is an acronym for the open-source technologies that many devel-
opers use to build web applications inexpensively—it stands for Linux,
Apache, MySQL and PHP (or Perl or Python—two other popular scripting
languages). MySQL is an open-source database-management system.
PHP is the most popular open-source server-side “scripting” language for
developing web applications. Apache is the most popular web server soft-
ware. The equivalent for Windows development is WAMP—Windows,
Apache, MySQL and PHP.

Fig. 1.33 | Software technologies. (Part 1 of 2.)

1.13 Some Key Software Terminology 33

Software is complex. Large, real-world software applications can take many months
or even years to design and implement. When large software products are under develop-
ment, they typically are made available to the user communities as a series of releases, each
more complete and polished than the last (Fig. 1.34).

Software as a Service
(SaaS)

Software has generally been viewed as a product; most software still is
offered this way. If you want to run an application, you buy a software
package from a software vendor—often a CD, DVD or web download.
You then install that software on your computer and run it as needed. As
new versions appear, you upgrade your software, often at considerable
cost in time and money. This process can become cumbersome for orga-
nizations that must maintain tens of thousands of systems on a diverse
array of computer equipment. With Software as a Service (SaaS), the
software runs on servers elsewhere on the Internet. When that server is
updated, all clients worldwide see the new capabilities—no local installa-
tion is needed. You access the service through a browser. Browsers are
quite portable, so you can run the same applications on a wide variety of
computers from anywhere in the world. Salesforce.com, Google, and
Microsoft’s Office Live and Windows Live all offer SaaS.

Platform as a Service
(PaaS)

Platform as a Service (PaaS) provides a computing platform for develop-
ing and running applications as a service over the web, rather than install-
ing the tools on your computer. Some PaaS providers are Google App
Engine, Amazon EC2 and Windows Azure™.

Cloud computing SaaS and PaaS are examples of cloud computing. You can use software
and data stored in the “cloud”—i.e., accessed on remote computers (or
servers) via the Internet and available on demand—rather than having it
stored locally on your desktop, notebook computer or mobile device.
This allows you to increase or decrease computing resources to meet your
needs at any given time, which is more cost effective than purchasing
hardware to provide enough storage and processing power to meet occa-
sional peak demands. Cloud computing also saves money by shifting to
the service provider the burden of managing these apps (such as installing
and upgrading the software, security, backups and disaster recovery).

Software Development
Kit (SDK)

Software Development Kits (SDKs) include the tools and documenta-
tion developers use to program applications.

Version Description

Alpha Alpha software is the earliest release of a software product that’s still under
active development. Alpha versions are often buggy, incomplete and unstable
and are released to a relatively small number of developers for testing new
features, getting early feedback, etc.

Fig. 1.34 | Software product-release terminology. (Part 1 of 2.)

Technology Description

Fig. 1.33 | Software technologies. (Part 2 of 2.)

34 Chapter 1 Introduction to Computers, the Internet and the Web

1.14 Keeping Up-to-Date with Information Technologies
Figure 1.35 lists key technical and business publications that will help you stay up-to-date
with the latest news and trends and technology. You can also find a growing list of Inter-
net- and web-related Resource Centers at www.deitel.com/ResourceCenters.html.

Beta Beta versions are released to a larger number of developers later in the devel-
opment process after most major bugs have been fixed and new features are
nearly complete. Beta software is more stable, but still subject to change.

Release
candidates

Release candidates are generally feature complete, (mostly) bug free and ready
for use by the community, which provides a diverse testing environment—
the software is used on different systems, with varying constraints and for a
variety of purposes.

Final release Any bugs that appear in the release candidate are corrected, and eventually
the final product is released to the general public. Software companies often
distribute incremental updates over the Internet.

Continuous
beta

Software that’s developed using this approach (for example, Google search or
Gmail) generally does not have version numbers. It’s hosted in the cloud (not
installed on your computer) and is constantly evolving so that users always
have the latest version.

Publication URL

AllThingsD allthingsd.com
Bloomberg BusinessWeek www.businessweek.com

CNET news.cnet.com

Communications of the ACM cacm.acm.org

Computerworld www.computerworld.com

Engadget www.engadget.com

eWeek www.eweek.com

Fast Company www.fastcompany.com

Fortune money.cnn.com/magazines/fortune

GigaOM gigaom.com

Hacker News news.ycombinator.com

IEEE Computer Magazine www.computer.org/portal/web/computingnow/computer

InfoWorld www.infoworld.com

Mashable mashable.com

PCWorld www.pcworld.com

SD Times www.sdtimes.com

Fig. 1.35 | Technical and business publications. (Part 1 of 2.)

Version Description

Fig. 1.34 | Software product-release terminology. (Part 2 of 2.)

 Self-Review Exercises 35

Slashdot slashdot.org

Stack Overflow stackoverflow.com

Technology Review technologyreview.com

Techcrunch techcrunch.com

The Next Web thenextweb.com

The Verge www.theverge.com

Wired www.wired.com

Publication URL

Fig. 1.35 | Technical and business publications. (Part 2 of 2.)

Self-Review Exercises
1.1 Fill in the blanks in each of the following statements:

a) Computers process data under the control of sets of instructions called .
b) The key logical units of the computer are the , , , ,

 and .
c) The three types of languages discussed in the chapter are , and

.
d) The programs that translate high-level-language programs into machine language are

called .
e) is an operating system for mobile devices based on the Linux kernel and Java.
f) software is generally feature complete, (supposedly) bug free and ready for use

by the community.
g) The Wii Remote, as well as many smartphones, use a(n) which allows the de-

vice to respond to motion.
h) C is widely known as the development language of the operating system.
i) is the new programming language for developing iOS and Mac apps.

1.2 Fill in the blanks in each of the following sentences about the C environment.
a) C programs are normally typed into a computer using a(n) program.
b) In a C system, a(n) program automatically executes before the translation

phase begins.
c) The two most common kinds of preprocessor directives are and .
d) The program combines the output of the compiler with various library func-

tions to produce an executable image.
e) The program transfers the executable image from disk to memory.

1.3 Fill in the blanks in each of the following statements (based on Section 1.8):
a) Objects have the property of —although objects may know how to commu-

nicate with one another across well-defined interfaces, they normally are not allowed to
know how other objects are implemented.

b) In object-oriented programming languages, we create to house the set of
methods that perform tasks.

c) With , new classes of objects are derived by absorbing characteristics of existing
classes, then adding unique characteristics of their own.

d) The size, shape, color and weight of an object are considered of the object’s class.

36 Chapter 1 Introduction to Computers, the Internet and the Web

Answers to Self-Review Exercises
1.1 a) programs. b) input unit, output unit, memory unit, central processing unit, arithmetic
and logic unit, secondary storage unit. c) machine languages, assembly languages, high-level lan-
guages. d) compilers. e) Android. f) Release candidate. g) acceleromoter. h) UNIX. i) Swift.

1.2 a) editor. b) preprocessor. c) including other files in the file to be compiled, performing var-
ious text replacements. d) linker. e) loader.

1.3 a) information hiding. b) classes. c) inheritance. d) attributes.

Exercises
1.4 Categorize each of the following items as either hardware or software:

a) CPU
b) C++ compiler
c) ALU
d) C++ preprocessor
e) input unit
f) an editor program

1.5 Fill in the blanks in each of the following statements:
a) The logical unit that receives information from outside the computer for use by the

computer is the .
b) The process of instructing the computer to solve a problem is called .
c) is a type of computer language that uses Englishlike abbreviations for ma-

chine-language instructions.
d) is a logical unit that sends information which has already been processed by

the computer to various devices so that it may be used outside the computer.
e) and are logical units of the computer that retain information.
f) is a logical unit of the computer that performs calculations.
g) is a logical unit of the computer that makes logical decisions.
h) languages are most convenient to the programmer for writing programs

quickly and easily.
i) The only language a computer can directly understand is that computer’s .
j) The is a logical unit of the computer that coordinates the activities of all the

other logical units.

1.6 Fill in the blanks in each of the following statements:
a) is now used to develop large-scale enterprise applications, to enhance the

functionality of web servers, to provide applications for consumer devices and for many
other purposes.

b) initially became widely known as the development language of the UNIX op-
erating system.

c) The programming language was developed by Bjarne Stroustrup in the early
1980s at Bell Laboratories.

1.7 Discuss the meaning of each of the following names:
a) stdin

b) stdout
c) stderr

1.8 Why is so much attention today focused on object-oriented programming?

1.9 (Internet Negatives) Besides their numerous benefits, the Internet and the web have several
downsides, such as privacy issues, identity theft, spam and malware. Research some of the negative

 Making a Difference 37

aspects of the Internet. List five problems and describe what could possibly be done to help solve
each.

1.10 (Watch as an Object) You are probably wearing on your wrist one of the most common
types of objects—a watch. Discuss how each of the following terms and concepts applies to the no-
tion of a watch: object, attributes, behaviors, class, inheritance (consider, for example, an alarm
clock), messages, encapsulation and information hiding.

Making a Difference
Throughout the book we’ve included Making a Difference exercises in which you’ll be asked to
work on problems that really matter to individuals, communities, countries and the world.

1.11 (Test-Drive: Carbon Footprint Calculator) Some scientists believe that carbon emissions,
especially from the burning of fossil fuels, contribute significantly to global warming and that this
can be combatted if individuals take steps to limit their use of carbon-based fuels. Organizations and
individuals are increasingly concerned about their “carbon footprints.” Websites such as TerraPass

http://www.terrapass.com/carbon-footprint-calculator-2/

and Carbon Footprint

http://www.carbonfootprint.com/calculator.aspx

provide carbon-footprint calculators. Test-drive these calculators to determine your carbon foot-
print. Exercises in later chapters will ask you to program your own carbon-footprint calculator. To
prepare for this, use the web to research the formulas for calculating carbon footprints.

1.12 (Test-Drive: Body Mass Index Calculator) Obesity causes significant increases in illnesses
such as diabetes and heart disease. To determine whether a person is overweight or obese, you can
use a measure called the body mass index (BMI). The United States Department of Health and Hu-
man Services provides a BMI calculator at http://www.nhlbi.nih.gov/guidelines/obesity/BMI/
bmicalc.htm. Use it to calculate your own BMI. An exercise in Exercise 2.32 will ask you to pro-
gram your own BMI calculator. To prepare for this, use the web to research the formulas for calcu-
lating BMI.

1.13 (Attributes of Hybrid Vehicles) In this chapter you learned some basics of classes. Now you’ll
“flesh out” aspects of a class called “Hybrid Vehicle.” Hybrid vehicles are becoming increasingly
popular, because they often get much better mileage than purely gasoline-powered vehicles. Browse
the web and study the features of four or five of today’s popular hybrid cars, then list as many of
their hybrid-related attributes as you can. Some common attributes include city-miles-per-gallon
and highway-miles-per-gallon. Also list the attributes of the batteries (type, weight, etc.).

1.14 (Gender Neutrality) Many people want to eliminate sexism in all forms of communication.
You’ve been asked to create a program that can process a paragraph of text and replace gender-spe-
cific words with gender-neutral ones. Assuming that you’ve been given a list of gender-specific
words and their gender-neutral replacements (e.g., replace “wife” with “spouse,” “man” with “per-
son,” “daughter” with “child” and so on), explain the procedure you’d use to read through a para-
graph of text and manually perform these replacements. How might your procedure generate a
strange term like “woperchild?” In Chapter 4, you’ll learn that a more formal term for “procedure”
is “algorithm,” and that an algorithm specifies the steps to be performed and the order in which to
perform them.

1.15 (Privacy) Some online e-mail services save all e-mail correspondence for some period of
time. Suppose a disgruntled employee were to post all of the e-mail correspondences for millions of
people, including yours, on the Internet. Discuss the issues.

38 Chapter 1 Introduction to Computers, the Internet and the Web

1.16 (Programmer Responsibility and Liability) As a programmer in industry, you may develop
software that could affect people’s health or even their lives. Suppose a software bug in one of your
programs causes a cancer patient to receive an excessive dose during radiation therapy and that the
person is severely injured or dies. Discuss the issues.

1.17 (2010 “Flash Crash”) An example of the consequences of our excessive dependence on
computers was the so-called “flash crash” which occurred on May 6, 2010, when the U.S. stock mar-
ket fell precipitously in a matter of minutes, wiping out trillions of dollars of investments, and then
recovered within minutes. Research online the causes of this crash and discuss the issues it raises.

2Introduction to C
Programming

O b j e c t i v e s
In this chapter, you’ll:

■ Write simple C programs.

■ Use simple input and output
statements.

■ Use the fundamental data
types.

■ Learn computer memory
concepts.

■ Use arithmetic operators.

■ Learn the precedence of
arithmetic operators.

■ Write simple decision-
making statements.

■ Begin focusing on secure C
programming practices.

40 Chapter 2 Introduction to C Programming

2.1 Introduction
The C language facilitates a structured and disciplined approach to computer-program
design. In this chapter we introduce C programming and present several examples that
illustrate many important features of C. Each example is analyzed one statement at a time.
In Chapters 3 and 4 we present an introduction to structured programming in C. We then
use the structured approach throughout the remainder of the C portion of the text. We
provide the first of many “Secure C Programming” sections.

2.2 A Simple C Program: Printing a Line of Text
C uses some notations that may appear strange to people who have not programmed com-
puters. We begin by considering a simple C program. Our first example prints a line of
text. The program and its screen output are shown in Fig. 2.1.

Comments
Even though this program is simple, it illustrates several important features of the C lan-
guage. Lines 1 and 2

begin with //, indicating that these two lines are comments. You insert comments to doc-
ument programs and improve program readability. Comments do not cause the computer
to perform any action when the program is run—they’re ignored by the C compiler and

2.1 Introduction
2.2 A Simple C Program: Printing a Line

of Text
2.3 Another Simple C Program: Adding

Two Integers

2.4 Memory Concepts
2.5 Arithmetic in C
2.6 Decision Making: Equality and

Relational Operators
2.7 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

1 // Fig. 2.1: fig02_01.c

2 // A first program in C.
3 #include <stdio.h>
4
5 // function main begins program execution
6 int main(void)
7 {

8 printf("Welcome to C!\n");
9 } // end function main

Welcome to C!

Fig. 2.1 | A first program in C.

// Fig. 2.1: fig02_01.c

// A first program in C

2.2 A Simple C Program: Printing a Line of Text 41

do not cause any machine-language object code to be generated. The preceding comment
simply describes the figure number, filename and purpose of the program. Comments also
help other people read and understand your program.

You can also use /*…*/ multi-line comments in which everything from /* on the
first line to */ at the end of the last line is a comment. We prefer // comments because
they’re shorter and they eliminate common programming errors that occur with /*…*/

comments, especially when the closing */ is omitted.

#include Preprocessor Directive
Line 3

is a directive to the C preprocessor. Lines beginning with # are processed by the prepro-
cessor before compilation. Line 3 tells the preprocessor to include the contents of the stan-
dard input/output header (<stdio.h>) in the program. This header contains information
used by the compiler when compiling calls to standard input/output library functions such
as printf (line 8). We explain the contents of headers in more detail in Chapter 5.

Blank Lines and White Space
Line 4 is simply a blank line. You use blank lines, space characters and tab characters (i.e.,
“tabs”) to make programs easier to read. Together, these characters are known as white
space. White-space characters are normally ignored by the compiler.

The main Function
Line 6

is a part of every C program. The parentheses after main indicate that main is a program
building block called a function. C programs contain one or more functions, one of which
must be main. Every program in C begins executing at the function main. Functions can
return information. The keyword int to the left of main indicates that main “returns” an
integer (whole-number) value. We’ll explain what it means for a function to “return a val-
ue” when we demonstrate how to create your own functions in Chapter 5. For now, sim-
ply include the keyword int to the left of main in each of your programs.

Functions also can receive information when they’re called upon to execute. The void
in parentheses here means that main does not receive any information. In Chapter 14, we’ll
show an example of main receiving information.

A left brace, {, begins the body of every function (line 7). A corresponding right brace
ends each function (line 9). This pair of braces and the portion of the program between
the braces is called a block. The block is an important program unit in C.

An Output Statement
Line 8

#include <stdio.h>

int main(void)

Good Programming Practice 2.1
Every function should be preceded by a comment describing the function’s purpose.

printf("Welcome to C!\n");

42 Chapter 2 Introduction to C Programming

instructs the computer to perform an action, namely to print on the screen the string of
characters marked by the quotation marks. A string is sometimes called a character string,
a message or a literal. The entire line, including the printf function (the “f” stands for
“formatted”), its argument within the parentheses and the semicolon (;), is called a state-
ment. Every statement must end with a semicolon (also known as the statement termina-
tor). When the preceding printf statement is executed, it prints the message Welcome to
C! on the screen. The characters normally print exactly as they appear between the double
quotes in the printf statement.

Escape Sequences
Notice that the characters \n were not printed on the screen. The backslash (\) as used
here is called an escape character. It indicates that printf is supposed to do something out
of the ordinary. When encountering a backslash in a string, the compiler looks ahead at
the next character and combines it with the backslash to form an escape sequence. The
escape sequence \n means newline. When a newline appears in the string output by a
printf, the newline causes the cursor to position to the beginning of the next line on the
screen. Some common escape sequences are listed in Fig. 2.2.

Because the backslash has special meaning in a string, i.e., the compiler recognizes it
as an escape character, we use a double backslash (\\) to place a single backslash in a string.
Printing a double quote also presents a problem because double quotes mark the bound-
aries of a string—such quotes are not printed. By using the escape sequence \" in a string
to be output by printf, we indicate that printf should display a double quote. The right
brace, }, (line 9) indicates that the end of main has been reached.

We said that printf causes the computer to perform an action. As any program
executes, it performs a variety of actions and makes decisions. Section 2.6 discusses deci-
sion making. Chapter 3 discusses this action/decision model of programming in depth.

The Linker and Executables
Standard library functions like printf and scanf are not part of the C programming lan-
guage. For example, the compiler cannot find a spelling error in printf or scanf. When

Escape sequence Description

\n Newline. Position the cursor at the beginning of the next line.
\t Horizontal tab. Move the cursor to the next tab stop.
\a Alert. Produces a sound or visible alert without changing the current

cursor position.
\\ Backslash. Insert a backslash character in a string.
\" Double quote. Insert a double-quote character in a string.

Fig. 2.2 | Some common escape sequences .

Good Programming Practice 2.2
Add a comment to the line containing the right brace, }, that closes every function, in-
cluding main.

2.2 A Simple C Program: Printing a Line of Text 43

the compiler compiles a printf statement, it merely provides space in the object program
for a “call” to the library function. But the compiler does not know where the library func-
tions are—the linker does. When the linker runs, it locates the library functions and inserts
the proper calls to these library functions in the object program. Now the object program
is complete and ready to be executed. For this reason, the linked program is called an ex-
ecutable. If the function name is misspelled, the linker will spot the error, because it will
not be able to match the name in the C program with the name of any known function in
the libraries.

Using Multiple printfs
The printf function can print Welcome to C! several different ways. For example, the pro-
gram of Fig. 2.3 produces the same output as the program of Fig. 2.1. This works because
each printf resumes printing where the previous printf stopped printing. The first
printf (line 8) prints Welcome followed by a space (but no newline), and the second
printf (line 9) begins printing on the same line immediately following the space.

One printf can print several lines by using additional newline characters as in
Fig. 2.4. Each time the \n (newline) escape sequence is encountered, output continues at
the beginning of the next line.

Common Programming Error 2.1
Mistyping the name of the output function printf as print in a program.

Good Programming Practice 2.3
Indent the entire body of each function one level of indentation (we recommend three
spaces) within the braces that define the body of the function. This indentation emphasizes
the functional structure of programs and helps make them easier to read.

Good Programming Practice 2.4
Set a convention for the indent size you prefer and then uniformly apply that convention.
The tab key may be used to create indents, but tab stops can vary. Professional style guides
often recommend using spaces rather than tabs.

1 // Fig. 2.3: fig02_03.c

2 // Printing on one line with two printf statements.
3 #include <stdio.h>
4
5 // function main begins program execution
6 int main(void)
7 {

8
9

10 } // end function main

Welcome to C!

Fig. 2.3 | Printing one line with two printf statements.

printf("Welcome ");
printf("to C!\n");

44 Chapter 2 Introduction to C Programming

2.3 Another Simple C Program: Adding Two Integers
Our next program uses the Standard Library function scanf to obtain two integers typed
by a user at the keyboard, computes the sum of these values and prints the result using
printf. The program and sample output are shown in Fig. 2.5. [In the input/output dia-
log of Fig. 2.5, we emphasize the numbers entered by the user in bold.]

1 // Fig. 2.4: fig02_04.c

2 // Printing multiple lines with a single printf.

3 #include <stdio.h>
4
5 // function main begins program execution

6 int main(void)
7 {

8 printf("Welcome to C!\n");
9 } // end function main

Welcome
to
C!

Fig. 2.4 | Printing multiple lines with a single printf.

1 // Fig. 2.5: fig02_05.c

2 // Addition program.

3 #include <stdio.h>
4
5 // function main begins program execution

6 int main(void)
7 {

8

9
10
11 printf("Enter first integer\n"); // prompt
12
13
14 printf("Enter second integer\n"); // prompt
15
16
17

18 sum = integer1 + integer2; // assign total to sum
19
20

21 } // end function main

Enter first integer
45
Enter second integer
72
Sum is 117

Fig. 2.5 | Addition program.

\n \n

int integer1; // first number to be entered by user
int integer2; // second number to be entered by user

scanf("%d", &integer1); // read an integer

scanf("%d", &integer2); // read an integer

int sum; // variable in which sum will be stored

printf("Sum is %d\n", sum); // print sum

2.3 Another Simple C Program: Adding Two Integers 45

The comment in lines 1–2 states the purpose of the program. As we stated earlier,
every program begins execution with main. The left brace { (line 7) marks the beginning
of the body of main, and the corresponding right brace } (line 21) marks the end of main.

Variables and Variable Definitions
Lines 8–9

are definitions. The names integer1 and integer2 are the names of variables—locations
in memory where values can be stored for use by a program. These definitions specify that
variables integer1 and integer2 are of type int, which means that they’ll hold integer val-
ues, i.e., whole numbers such as 7, –11, 0, 31914 and the like.

Define Variables Before They Are Used
All variables must be defined with a name and a data type before they can be used in a pro-
gram. The C standard allows you to place each variable definition anywhere in main before
that variable’s first use in the code (though some older compilers do not allow this). You’ll
see later why you should define variables close to their first use.

Defining Multiple Variables of the Same Type in One Statement
The preceding definitions could be combined into a single definition as follows:

but that would have made it difficult to associate comments with each of the variables, as
we did in lines 8–9.

Identifiers and Case Sensitivity
A variable name in C can be any valid identifier. An identifier is a series of characters con-
sisting of letters, digits and underscores (_) that does not begin with a digit. C is case sensi-
tive—uppercase and lowercase letters are different in C, so a1 and A1 are different identifiers.

int integer1; // first number to be entered by user
int integer2; // second number to be entered by user

int integer1, integer2;

Common Programming Error 2.2
Using a capital letter where a lowercase letter should be used (for example, typing Main
instead of main).

Error-Prevention Tip 2.1
Avoid starting identifiers with the underscore character (_) to prevent conflicts with com-
piler-generated identifiers and standard library identifiers.

Good Programming Practice 2.5
Choosing meaningful variable names helps make a program self-documenting—that is,
fewer comments are needed.

Good Programming Practice 2.6
The first letter of an identifier used as a simple variable name should be a lowercase letter.
Later in the text we’ll assign special significance to identifiers that begin with a capital
letter and to identifiers that use all capital letters.

46 Chapter 2 Introduction to C Programming

Prompting Messages
Line 11

displays the literal "Enter first integer" and positions the cursor to the beginning of
the next line. This message is called a prompt because it tells the user to take a specific ac-
tion.

The scanf Function and Formatted Inputs
Line 12

uses scanf (the “f” stands for “formatted”) to obtain a value from the user. The function
reads from the standard input, which is usually the keyboard.

This scanf has two arguments, "%d" and &integer1. The first, the format control
string, indicates the type of data that should be entered by the user. The %d conversion
specifier indicates that the data should be an integer (the letter d stands for “decimal
integer”). The % in this context is treated by scanf (and printf as we’ll see) as a special
character that begins a conversion specifier.

The second argument of scanf begins with an ampersand (&)—called the address
operator—followed by the variable name. The &, when combined with the variable name,
tells scanf the location (or address) in memory at which the variable integer1 is stored.
The computer then stores the value that the user enters for integer1 at that location. The
use of ampersand (&) is often confusing to novice programmers or to people who have pro-
grammed in other languages that do not require this notation. For now, just remember to
precede each variable in every call to scanf with an ampersand. Some exceptions to this
rule are discussed in Chapters 6 and 7. The use of the ampersand will become clear after
we study pointers in Chapter 7.

When the computer executes the preceding scanf, it waits for the user to enter a value
for variable integer1. The user responds by typing an integer, then pressing the Enter key
(sometimes labeled as the Return key) to send the number to the computer. The computer
then assigns this number, or value, to the variable integer1. Any subsequent references to
integer1 in this program will use this same value. Functions printf and scanf facilitate
interaction between the user and the computer. This interaction resembles a dialogue and
is often called interactive computing.

Good Programming Practice 2.7
Multiple-word variable names can help make a program more readable. Separate the words
with underscores as in total_commissions, or, if you run the words together, begin each
word after the first with a capital letter as in totalCommissions. The latter style—often
called camel casing because the pattern of uppercase and lowercase letters resembles the sil-
houette of a camel—is preferred.

printf("Enter first integer\n"); // prompt

scanf("%d", &integer1); // read an integer

Good Programming Practice 2.8
Place a space after each comma (,) to make programs more readable.

2.3 Another Simple C Program: Adding Two Integers 47

Prompting for and Inputting the Second Integer
Line 14

displays the message Enter second integer on the screen, then positions the cursor to the
beginning of the next line. This printf also prompts the user to take action. Line 15

obtains a value for variable integer2 from the user.

Defining the sum Variable
Line 17

defines the variable sum of type int just before its first use in line 18.

Assignment Statement
The assignment statement in line 18

calculates the total of variables integer1 and integer2 and assigns the result to variable
sum using the assignment operator =. The statement is read as, “sum gets the value of the
expression integer1 + integer2.” Most calculations are performed in assignments. The =
operator and the + operator are called binary operators because each has two operands. The
+ operator’s operands are integer1 and integer2. The = operator’s two operands are sum
and the value of the expression integer1 + integer2.

Printing with a Format Control String
Line 20

calls function printf to print the literal Sum is followed by the numerical value of variable
sum on the screen. This printf has two arguments, "Sum is %d\n" and sum. The first is the
format control string. It contains some literal characters to be displayed and the conversion
specifier %d indicating that an integer will be printed. The second argument specifies the
value to be printed. The conversion specifier for an integer is the same in both printf and
scanf—this is true for most C data types.

Combining a Variable Definition and Assignment Statement
You can assign a value to a variable in its definition—this is known as initializing the vari-
able. For example, lines 17–18 can be combined into the statement

printf("Enter second integer\n"); // prompt

scanf("%d", &integer2); // read an integer

int sum; // variable in which sum will be stored

sum = integer1 + integer2; // assign total to sum

Good Programming Practice 2.9
Place spaces on either side of a binary operator. This makes the operator stand out and
makes the program more readable.

Common Programming Error 2.3
A calculation in an assignment statement must be on the right side of the = operator. It’s
a compilation error to place a calculation on the left side of an assignment operator.

printf("Sum is %d\n", sum); // print sum

48 Chapter 2 Introduction to C Programming

which adds integer1 and integer2, then stores the result in the variable sum.

Calculations in printf Statements
Calculations can also be performed inside printf statements. For example, lines 17–20
can be replaced with the statement

in which case the variable sum is not needed.

2.4 Memory Concepts
Variable names such as integer1, integer2 and sum actually correspond to locations in
the computer’s memory. Every variable has a name, a type and a value.

In the addition program of Fig. 2.5, when the statement (line 12)

is executed, the value entered by the user is placed into a memory location to which the
name integer1 has been assigned. Suppose the user enters the number 45 as the value for
integer1. The computer will place 45 into location integer1, as shown in Fig. 2.6.
Whenever a value is placed in a memory location, the value replaces the previous value in
that location and the previous value is lost; thus, this process is said to be destructive.

Returning to our addition program again, when the statement (line 15)

executes, suppose the user enters the value 72. This value is placed into the location
integer2, and memory appears as in Fig. 2.7. These locations are not necessarily adjacent
in memory.

int sum = integer1 + integer2; // assign total to sum

printf("Sum is %d\n", integer1 + integer2);

Common Programming Error 2.4
Forgetting to precede a variable in a scanf statement with an ampersand (&) when that
variable should, in fact, be preceded by an ampersand results in an execution-time error.
On many systems, this causes a “segmentation fault” or “access violation.” Such an error
occurs when a user’s program attempts to access a part of the computer’s memory to which
it does not have access privileges. The precise cause of this error will be explained in
Chapter 7.

Common Programming Error 2.5
Preceding a variable included in a printf statement with an ampersand when, in fact,
that variable should not be preceded by an ampersand.

scanf("%d", &integer1); // read an integer

Fig. 2.6 | Memory location showing the name and value of a variable.

scanf("%d", &integer2); // read an integer

45integer1

2.5 Arithmetic in C 49

Once the program has obtained values for integer1 and integer2, it adds these
values and places the total into variable sum. The statement (line 18)

that performs the addition also replaces whatever value was stored in sum. This occurs when
the calculated total of integer1 and integer2 is placed into location sum (destroying the
value already in sum). After sum is calculated, memory appears as in Fig. 2.8. The values of
integer1 and integer2 appear exactly as they did before they were used in the calculation.
They were used, but not destroyed, as the computer performed the calculation. Thus,
when a value is read from a memory location, the process is said to be nondestructive.

2.5 Arithmetic in C
Most C programs perform calculations using the C arithmetic operators (Fig. 2.9).

Note the use of various special symbols not used in algebra. The asterisk (*) indicates
multiplication and the percent sign (%) denotes the remainder operator, which is introduced
below. In algebra, to multiply a times b, we simply place these single-letter variable names

Fig. 2.7 | Memory locations after both variables are input.

sum = integer1 + integer2; // assign total to sum

Fig. 2.8 | Memory locations after a calculation.

C operation Arithmetic operator Algebraic expression C expression

Addition + f + 7 f + 7

Subtraction – p – c p - c

Multiplication * bm b * m

Division / x / y or or x ÷ y x / y

Remainder % r mod s r % s

Fig. 2.9 | Arithmetic operators.

45

72

integer1

integer2

45

72

117

integer1

integer2

sum

x
y
--

50 Chapter 2 Introduction to C Programming

side by side, as in ab. In C, however, if we were to do this, ab would be interpreted as a
single, two-letter name (or identifier). Therefore, C (and many other programming lan-
guages) require that multiplication be explicitly denoted by using the * operator, as in a *
b. The arithmetic operators are all binary operators. For example, the expression 3 + 7 con-
tains the binary operator + and the operands 3 and 7.

Integer Division and the Remainder Operator
Integer division yields an integer result. For example, the expression 7 / 4 evaluates to 1
and the expression 17 / 5 evaluates to 3. C provides the remainder operator, %, which
yields the remainder after integer division. The remainder operator is an integer operator
that can be used only with integer operands. The expression x % y yields the remainder af-
ter x is divided by y. Thus, 7 % 4 yields 3 and 17 % 5 yields 2. We’ll discuss several interesting
applications of the remainder operator.

Arithmetic Expressions in Straight-Line Form
Arithmetic expressions in C must be written in straight-line form to facilitate entering
programs into the computer. Thus, expressions such as “a divided by b” must be written
as a/b so that all operators and operands appear in a straight line. The algebraic notation

is generally not acceptable to compilers, although some special-purpose software packages
do support more natural notation for complex mathematical expressions.

Parentheses for Grouping Subexpressions
Parentheses are used in C expressions in the same manner as in algebraic expressions. For
example, to multiply a times the quantity b + c we write a * (b + c).

Rules of Operator Precedence
C applies the operators in arithmetic expressions in a precise sequence determined by the
following rules of operator precedence, which are generally the same as those in algebra:

1. Operators in expressions contained within pairs of parentheses are evaluated first.
Parentheses are said to be at the “highest level of precedence.” In cases of nested,
or embedded, parentheses, such as

the operators in the innermost pair of parentheses are applied first.

2. Multiplication, division and remainder operations are applied next. If an ex-
pression contains several multiplication, division and remainder operations, eval-
uation proceeds from left to right. Multiplication, division and remainder are said
to be on the same level of precedence.

Common Programming Error 2.6
An attempt to divide by zero is normally undefined on computer systems and generally re-
sults in a fatal error that causes the program to terminate immediately without having
successfully performed its job. Nonfatal errors allow programs to run to completion, often
producing incorrect results.

 ((a + b) + c)

a
b
--

2.5 Arithmetic in C 51

3. Addition and subtraction operations are evaluated next. If an expression contains
several addition and subtraction operations, evaluation proceeds from left to right.
Addition and subtraction also have the same level of precedence, which is lower
than the precedence of the multiplication, division and remainder operations.

4. The assignment operator (=) is evaluated last.

The rules of operator precedence specify the order C uses to evaluate expressions.1

When we say evaluation proceeds from left to right, we’re referring to the associativity of
the operators. We’ll see that some operators associate from right to left. Figure 2.10 sum-
marizes these rules of operator precedence for the operators we’ve seen so far.

Sample Algebraic and C Expressions
Now let’s consider several expressions in light of the rules of operator precedence. Each
example lists an algebraic expression and its C equivalent. The following expression calcu-
lates the arithmetic mean (average) of five terms.

The parentheses here are required to group the additions because division has higher pre-
cedence than addition. The entire quantity (a + b + c + d + e) should be divided by 5. If
the parentheses are erroneously omitted, we obtain a + b + c + d + e / 5, which evaluates
incorrectly as

1. We use simple examples to explain the order of evaluation of expressions. Subtle issues occur in more
complex expressions that you’ll encounter later in the book. We’ll discuss these issues as they arise.

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested,
the expression in the innermost pair is evalu-
ated first. If there are several pairs of parenthe-
ses “on the same level” (i.e., not nested),
they’re evaluated left to right.

*
/
%

Multiplication
Division
Remainder

Evaluated second. If there are several, they’re
evaluated left to right.

+
-

Addition
Subtraction

Evaluated third. If there are several, they’re
evaluated left to right.

= Assignment Evaluated last.

Fig. 2.10 | Precedence of arithmetic operators.

Algebra:

C: m = (a + b + c + d + e) / 5;

m
a b c d e+ + + +

5
-------------------------------------=

a b c d
e
5
---+ + + +

52 Chapter 2 Introduction to C Programming

The following expression is the equation of a straight line:

No parentheses are required. The multiplication is evaluated first because multiplication
has a higher precedence than addition.

The following expression contains remainder (%), multiplication, division, addition,
subtraction and assignment operations:

The circled numbers indicate the order in which C evaluates the operators. The multipli-
cation, remainder and division are evaluated first in left-to-right order (i.e., they associate
from left to right) because they have higher precedence than addition and subtraction. The
addition and subtraction are evaluated next. They’re also evaluated left to right. Finally,
the result is assigned to the variable z.

Not all expressions with several pairs of parentheses contain nested parentheses. For
example, the following expression does not contain nested parentheses—instead, the
parentheses are said to be “on the same level.”

Evaluation of a Second-Degree Polynomial
To develop a better understanding of the rules of operator precedence, let’s see how C eval-
uates a second-degree polynomial.

The circled numbers under the statement indicate the order in which C performs the oper-
ations. There’s no arithmetic operator for exponentiation in C, so we’ve represented x2 as
x * x. The C Standard Library includes the pow (“power”) function to perform expo-
nentiation. Because of some subtle issues related to the data types required by pow, we defer
a detailed explanation of pow until Chapter 4.

Suppose variables a, b, c and x in the preceding second-degree polynomial are initial-
ized as follows: a = 2, b = 3, c = 7 and x = 5. Figure 2.11 illustrates the order in which the
operators are applied.

Using Parentheses for Clarity
As in algebra, it’s acceptable to place unnecessary parentheses in an expression to make the
expression clearer. These are called redundant parentheses. For example, the preceding
statement could be parenthesized as follows:

Algebra: y = mx + b

C: y = m * x + b;

a * (b + c) + c * (d + e)

 y = (a * x * x) + (b * x) + c;

z

6 1 2 4 3 5

= p * r % q + w / x - y;

z = pr mod q + w/x – yAlgebra:
C:

6 1 2 4 3 5

y = a * x * x + b * x + c;

2.6 Decision Making: Equality and Relational Operators 53

2.6 Decision Making: Equality and Relational Operators
Executable statements either perform actions (such as calculations or input or output of
data) or make decisions (we’ll soon see several examples of these). We might make a deci-
sion in a program, for example, to determine whether a person’s grade on an exam is great-
er than or equal to 60 and whether the program should print the message
“Congratulations! You passed.” This section introduces a simple version of C’s if state-
ment that allows a program to make a decision based on the truth or falsity of a statement
of fact called a condition. If the condition is true (i.e., the condition is met), the statement
in the body of the if statement is executed. If the condition is false (i.e., the condition
isn’t met), the body statement isn’t executed. Whether the body statement is executed or
not, after the if statement completes, execution proceeds with the next statement in se-
quence after the if statement.

Conditions in if statements are formed by using the equality operators and relational
operators summarized in Fig. 2.12. The relational operators all have the same level of
precedence and they associate left to right. The equality operators have a lower level of
precedence than the relational operators and they also associate left to right. [Note: In C,
a condition may actually be any expression that generates a zero (false) or nonzero (true)
value.]

Fig. 2.11 | Order in which a second-degree polynomial is evaluated.

Common Programming Error 2.7
A syntax error occurs if the two symbols in any of the operators ==, !=, >= and <= are sep-
arated by spaces.

(Leftmost multiplication)

(Leftmost multiplication)

(Multiplication before addition)

(Leftmost addition)

(Last addition)

(Last operation—place 72 in y)

Step 1. y = 2 * 5 * 5 + 3 * 5 + 7;

 2 * 5 is 10

Step 2. y = 10 * 5 + 3 * 5 + 7;

 10 * 5 is 50

Step 3. y = 50 + 3 * 5 + 7;

 3 * 5 is 15

Step 4. y = 50 + 15 + 7;

 50 + 15 is 65

Step 5. y = 65 + 7;

 65 + 7 is 72

Step 6. y = 72

54 Chapter 2 Introduction to C Programming

Figure 2.13 uses six if statements to compare two numbers entered by the user. If the
condition in any of these if statements is true, the printf statement associated with that
if executes. The program and three sample execution outputs are shown in the figure.

Common Programming Error 2.8
Confusing the equality operator == with the assignment operator. To avoid this confusion,
the equality operator should be read “double equals” and the assignment operator should
be read “gets” or “is assigned the value of.” As you’ll see, confusing these operators may not
cause an easy-to-recognize compilation error, but may cause extremely subtle logic errors.

Algebraic equality or
relational operator

C equality or
relational
operator

Example
of C
condition Meaning of C condition

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Equality operators

= == x == y x is equal to y

≠ != x != y x is not equal to y

Fig. 2.12 | Equality and relational operators.

1 // Fig. 2.13: fig02_13.c

2 // Using if statements, relational

3 // operators, and equality operators.
4 #include <stdio.h>
5
6 // function main begins program execution
7 int main(void)
8 {

9 printf("Enter two integers, and I will tell you\n");
10 printf("the relationships they satisfy: ");
11
12 int num1; // first number to be read from user
13 int num2; // second number to be read from user
14

15 scanf("%d %d", &num1, &num2); // read two integers
16

17

18
19

20

Fig. 2.13 | Using if statements, relational operators, and equality operators. (Part 1 of 2.)

if (num1 == num2) {
 printf("%d is equal to %d\n", num1, num2);
} // end if

2.6 Decision Making: Equality and Relational Operators 55

The program uses scanf (line 15) to read two integers into the int variables num1 and
num2. Each conversion specifier has a corresponding argument in which a value will be
stored. The first %d converts a value to be stored in the variable num1, and the second %d
converts a value to be stored in the variable num2.

21 if () {

22 printf("%d is not equal to %d\n", num1, num2);
23 } // end if
24
25 if () {

26 printf("%d is less than %d\n", num1, num2);
27 } // end if

28
29 if () {
30 printf("%d is greater than %d\n", num1, num2);
31 } // end if

32
33 if () {

34 printf("%d is less than or equal to %d\n", num1, num2);
35 } // end if
36
37 if () {

38 printf("%d is greater than or equal to %d\n", num1, num2);
39 } // end if
40 } // end function main

Enter two integers, and I will tell you
the relationships they satisfy: 3 7
3 is not equal to 7
3 is less than 7
3 is less than or equal to 7

Enter two integers, and I will tell you
the relationships they satisfy: 22 12
22 is not equal to 12
22 is greater than 12
22 is greater than or equal to 12

Enter two integers, and I will tell you
 the relationships they satisfy: 7 7
7 is equal to 7
7 is less than or equal to 7
7 is greater than or equal to 7

Good Programming Practice 2.10
Although it’s allowed, there should be no more than one statement per line in a program.

Fig. 2.13 | Using if statements, relational operators, and equality operators. (Part 2 of 2.)

num1 != num2

num1 < num2

num1 > num2

num1 <= num2

num1 >= num2

56 Chapter 2 Introduction to C Programming

Comparing Numbers
The if statement in lines 17–19

compares the values of variables num1 and num2 to test for equality. If the values are equal,
the statement in line 18 displays a line of text indicating that the numbers are equal. If the
conditions are true in one or more of the if statements starting in lines 21, 25, 29, 33
and 37, the corresponding body statement displays an appropriate line of text. Indenting
the body of each if statement and placing blank lines above and below each if statement
enhances program readability.

A left brace, {, begins the body of each if statement (e.g., line 17). A corresponding
right brace, }, ends each if statement’s body (e.g., line 19). Any number of statements can
be placed in the body of an if statement.2

Figure 2.14 lists from highest to lowest the precedence of the operators introduced in
this chapter. Operators are shown top to bottom in decreasing order of precedence. The
equals sign is also an operator. All these operators, with the exception of the assignment
operator =, associate from left to right. The assignment operator (=) associates from right
to left.

Common Programming Error 2.9
Placing commas (when none are needed) between conversion specifiers in the format con-
trol string of a scanf statement.

if (num1 == num2) {
 printf("%d is equal to %d\n", num1, num2);
} // end if

Common Programming Error 2.10
Placing a semicolon immediately to the right of the right parenthesis after the condition
in an if statement.

Good Programming Practice 2.11
A lengthy statement may be spread over several lines. If a statement must be split across
lines, choose breaking points that make sense (such as after a comma in a comma-separated
list). If a statement is split across two or more lines, indent all subsequent lines. It’s not
correct to split identifiers.

2. Using braces to delimit the body of an if statement is optional when the body contains only one
statement. It’s considered good practice to always use these braces. In Chapter 3, we’ll explain the
issues.

Good Programming Practice 2.12
Refer to the operator precedence chart when writing expressions containing many opera-
tors. Confirm that the operators in the expression are applied in the proper order. If you’re
uncertain about the order of evaluation in a complex expression, use parentheses to group
expressions or break the statement into several simpler statements. Be sure to observe that
some of C’s operators such as the assignment operator (=) associate from right to left rather
than from left to right.

2.7 Secure C Programming 57

Some of the words we’ve used in the C programs in this chapter—in particular int,
if and void—are keywords or reserved words of the language. Figure 2.15 contains the
C keywords. These words have special meaning to the C compiler, so you must be careful
not to use these as identifiers such as variable names.

In this chapter, we’ve introduced many important features of the C programming lan-
guage, including displaying data on the screen, inputting data from the user, performing
calculations and making decisions. In the next chapter, we build upon these techniques as
we introduce structured programming. You’ll become more familiar with indentation
techniques. We’ll study how to specify the order in which statements are executed—this is
called flow of control.

2.7 Secure C Programming
We mentioned The CERT C Secure Coding Standard in the Preface and indicated that we
would follow certain guidelines that will help you avoid programming practices that open
systems to attacks.

Operators Associativity

() left to right
* / % left to right
+ - left to right
< <= > >= left to right
== != left to right
= right to left

Fig. 2.14 | Precedence and associativity of the operators discussed so far.

Keywords

auto do goto signed unsigned

break double if sizeof void

case else int static volatile

char enum long struct while

const extern register switch

continue float return typedef

default for short union

Keywords added in C99 standard
_Bool _Complex _Imaginary inline restrict

Keywords added in C11 standard
_Alignas _Alignof _Atomic _Generic _Noreturn _Static_assert _Thread_local

Fig. 2.15 | C’s keywords.

58 Chapter 2 Introduction to C Programming

Avoid Single-Argument printfs3

One such guideline is to avoid using printf with a single string argument. If you need to
display a string that terminates with a newline, use the puts function, which displays its
string argument followed by a newline character. For example, in Fig. 2.1, line 8

should be written as:

We did not include \n in the preceding string because puts adds it automatically.
If you need to display a string without a terminating newline character, use printf

with two arguments—a "%s" format control string and the string to display. The %s con-
version specifier is for displaying a string. For example, in Fig. 2.3, line 8

should be written as:

Although the printfs in this chapter as written are actually not insecure, these changes
are responsible coding practices that will eliminate certain security vulnerabilities as we get
deeper into C—we’ll explain the rationale later in the book. From this point forward, we
use these practices in the chapter examples and you should use them in your exercise solu-
tions.

scanf and printf, scanf_s and printf_s
We introduced scanf and printf in this chapter. We’ll be saying more about these in sub-
sequent Secure C Coding Guidelines sections, beginning in Section 3.13. We’ll also dis-
cuss scanf_s and printf_s, which were introduced in C11.

3. For more information, see CERT C Secure Coding rule FIO30-C (www.securecoding.cert.org/
confluence/display/seccode/FIO30-C.+Exclude+user+input+from+format+strings). In Chap-
ter 6’s Secure C Programming section, we’ll explain the notion of user input as referred to by this CERT
guideline.

printf("Welcome to C!\n");

puts("Welcome to C!");

printf("Welcome ");

printf("%s", "Welcome ");

Summary
Section 2.1 Introduction
• The C language facilitates a structured and disciplined approach to computer-program design.

Section 2.2 A Simple C Program: Printing a Line of Text
• Comments (p. 40) begin with //. Comments document programs (p. 40) and improve program

readability. C also supports multi-line comments that begin with /* and end with */ (p. 41).

• Comments do not cause the computer to perform any action when the program is run. They’re
ignored by the C compiler and do not cause any machine-language object code to be generated.

• Lines beginning with # are processed by the preprocessor before the program is compiled. The
#include directive tells the preprocessor (p. 41) to include the contents of another file.

 Summary 59

• The <stdio.h> header (p. 41) contains information used by the compiler when compiling calls
to standard input/output library functions such as printf.

• The function main is a part of every C program. The parentheses after main indicate that main is
a program building block called a function (p. 41). C programs contain one or more functions,
one of which must be main. Every program in C begins executing at the function main.

• Functions can return information. The keyword int to the left of main indicates that main “re-
turns” an integer (whole-number) value.

• Functions can receive information when they’re called upon to execute. The void in parentheses
after main indicates that main does not receive any information.

• A left brace, {, begins the body of every function (p. 41). A corresponding right brace, }, ends
each function (p. 41). This pair of braces and the portion of the program between the braces is
called a block.

• The printf function (p. 42) instructs the computer to display information on the screen.

• A string is sometimes called a character string, a message or a literal (p. 42).

• Every statement (p. 42) must end with a semicolon (also known as the statement terminator;
p. 42).

• In \n (p. 42), the backslash (\) is called an escape character (p. 42). When encountering a back-
slash in a string, the compiler looks ahead at the next character and combines it with the back-
slash to form an escape sequence (p. 42). The escape sequence \n means newline.

• When a newline appears in the string output by a printf, the newline causes the cursor to posi-
tion to the beginning of the next line on the screen.

• The double backslash (\\) escape sequence can be used to place a single backslash in a string.

• The escape sequence \" represents a literal double-quote character.

Section 2.3 Another Simple C Program: Adding Two Integers
• A variable (p. 45) is a location in memory where a value can be stored for use by a program.

• Variables of type int (p. 45) hold integer values, i.e., whole numbers such as 7, –11, 0, 31914.

• All variables must be defined with a name and a data type before they can be used in a program.

• A variable name in C is any valid identifier. An identifier (p. 45) is a series of characters consist-
ing of letters, digits and underscores (_) that does not begin with a digit.

• C is case sensitive (p. 45)—uppercase and lowercase letters are different in C.

• Standard Library function scanf (p. 46) can be used to obtain input from the standard input,
which is usually the keyboard.

• The scanf format control string (p. 46) indicates the type(s) of data that should be input.

• The %d conversion specifier (p. 46) indicates that the data should be an integer (the letter d
stands for “decimal integer”). The % in this context is treated by scanf (and printf) as a special
character that begins a conversion specifier.

• The arguments that follow scanf’s format control string begin with an ampersand (&)—called
the address operator (p. 46)—followed by a variable name. The ampersand, when combined
with a variable name, tells scanf the location in memory at which the variable is located. The
computer then stores the value for the variable at that location.

• Most calculations are performed in assignment statements (p. 47).

• The = operator and the + operator are binary operators—each has two operands (p. 47).

• In a printf that specifies a format control string as its first argument the conversion specifiers
indicate placeholders for data to output.

60 Chapter 2 Introduction to C Programming

Section 2.4 Memory Concepts
• Variable names correspond to locations in the computer’s memory. Every variable has a name,

a type and a value.

• Whenever a value is placed in a memory location, the value replaces the previous value in that
location; thus, placing a new value into a memory location is said to be destructive (p. 48).

• When a value is read from a memory location, the process is said to be nondestructive (p. 49).

Section 2.5 Arithmetic in C
• In algebra, if we want to multiply a times b, we can simply place these single-letter variable names

side by side, as in ab. In C, however, if we were to do this, ab would be interpreted as a single,
two-letter name (or identifier). Therefore, C (like other programming languages, in general) re-
quires that multiplication be explicitly denoted by using the * operator, as in a * b.

• Arithmetic expressions (p. 49) in C must be written in straight-line form (p. 50) to facilitate
entering programs into the computer. Thus, expressions such as “a divided by b” must be written
as a/b, so that all operators and operands appear in a straight line.

• Parentheses are used to group terms in C expressions in much the same manner as in algebraic
expressions.

• C evaluates arithmetic expressions in a precise sequence determined by the following rules of op-
erator precedence (p. 50), which are generally the same as those followed in algebra.

• Multiplication, division and remainder operations are applied first. If an expression contains
several multiplication, division and remainder operations, evaluation proceeds from left to right.
Multiplication, division and remainder are said to be on the same level of precedence.

• Addition and subtraction operations are evaluated next. If an expression contains several addi-
tion and subtraction operations, evaluation proceeds from left to right. Addition and subtraction
also have the same level of precedence, which is lower than the precedence of the multiplication,
division and remainder operators.

• The rules of operator precedence specify the order C uses to evaluate expressions. The associativity
(p. 51) of the operators specifies whether they evaluate from left to right or from right to left.

Section 2.6 Decision Making: Equality and Relational Operators
• Executable C statements either perform actions or make decisions.

• C’s if statement (p. 53) allows a program to make a decision based on the truth or falsity of a
statement of fact called a condition (p. 53). If the condition is met (i.e., the condition is true;
p. 53) the statement in the body of the if statement executes. If the condition isn’t met (i.e., the
condition is false; p. 53) the body statement does not execute. Whether the body statement is
executed or not, after the if statement completes, execution proceeds with the next statement
after the if statement.

• Conditions in if statements are formed by using the equality and relational operators (p. 53).

• The relational operators all have the same level of precedence and associate left to right. The
equality operators have a lower level of precedence than the relational operators and they also as-
sociate left to right.

• To avoid confusing assignment (=) and equality (==), the assignment operator should be read
“gets” and the equality operator should be read “double equals.”

• In C programs, white-space characters such as tabs, newlines and spaces are normally ignored.
So, statements may be split over several lines. It’s not correct to split identifiers.

• Keywords (p. 57; or reserved words) have special meaning to the C compiler, so you cannot use
them as identifiers such as variable names.

 Self-Review Exercises 61

Section 2.7 Secure C Programming
• One practice to help avoid leaving systems open to attacks is to avoid using printf with a single

string argument.

• To display a string followed by a newline character, use the puts function (p. 58), which displays
its string argument followed by a newline character.

• To display a string without a trailing newline character, you can use printf with the "%s" con-
version specifier (p. 58) as the first argument and the string to display as the second argument.

Self-Review Exercises
2.1 Fill in the blanks in each of the following.

a) Every C program begins execution at the function .
b) Every function’s body begins with and ends with .
c) Every statement ends with a(n) .
d) The standard library function displays information on the screen.
e) The escape sequence \n represents the character, which causes the cursor

to position to the beginning of the next line on the screen.
f) The Standard Library function is used to obtain data from the keyboard.
g) The conversion specifier is used in a scanf format control string to indicate

that an integer will be input and in a printf format control string to indicate that an
integer will be output.

h) Whenever a new value is placed in a memory location, that value overrides the previous
value in that location. This process is said to be .

i) When a value is read from a memory location, the value in that location is preserved;
this process is said to be .

j) The statement is used to make decisions.

2.2 State whether each of the following is true or false. If false, explain why.
a) Function printf always begins printing at the beginning of a new line.
b) Comments cause the computer to display the text after // on the screen when the pro-

gram is executed.
c) The escape sequence \n when used in a printf format control string causes the cursor

to position to the beginning of the next line on the screen.
d) All variables must be defined before they’re used.
e) All variables must be given a type when they’re defined.
f) C considers the variables number and NuMbEr to be identical.
g) Definitions can appear anywhere in the body of a function.
h) All arguments following the format control string in a printf function must be preced-

ed by an ampersand (&).
i) The remainder operator (%) can be used only with integer operands.
j) The arithmetic operators *, /, %, + and - all have the same level of precedence.
k) A program that prints three lines of output must contain three printf statements.

2.3 Write a single C statement to accomplish each of the following:
a) Define the variables c, thisVariable, q76354 and number to be of type int.
b) Prompt the user to enter an integer. End your prompting message with a colon (:) fol-

lowed by a space and leave the cursor positioned after the space.
c) Read an integer from the keyboard and store the value entered in integer variable a.
d) If number is not equal to 7, print "The variable number is not equal to 7."
e) Print the message "This is a C program." on one line.
f) Print the message "This is a C program." on two lines so that the first line ends with C.

62 Chapter 2 Introduction to C Programming

g) Print the message "This is a C program." with each word on a separate line.
h) Print the message "This is a C program." with the words separated by tabs.

2.4 Write a statement (or comment) to accomplish each of the following:
a) State that a program will calculate the product of three integers.
b) Prompt the user to enter three integers.
c) Define the variables x, y and z to be of type int.
d) Read three integers from the keyboard and store them in the variables x, y and z.
e) Define the variable result, compute the product of the integers in the variables x, y and

z, and use that product to initialize the variable result.
f) Print "The product is" followed by the value of the integer variable result.

2.5 Using the statements you wrote in Exercise 2.4, write a complete program that calculates
the product of three integers.

2.6 Identify and correct the errors in each of the following statements:
a) printf("The value is %d\n", &number);
b) scanf("%d%d", &number1, number2);
c) if (c < 7);{

 printf("C is less than 7\n");
}

d) if (c => 7) {
 printf("C is greater than or equal to 7\n");
}

Answers to Self-Review Exercises
2.1 a) main. b) left brace ({), right brace (}). c) semicolon. d) printf. e) newline. f) scanf.
g) %d. h) destructive. i) nondestructive. j) if.

2.2 a) False. Function printf always begins printing where the cursor is positioned,
and this may be anywhere on a line of the screen.

b) False. Comments do not cause any action to be performed when the program is exe-
cuted. They’re used to document programs and improve their readability.

c) True.
d) True.
e) True.
f) False. C is case sensitive, so these variables are unique.
g) True.
h) False. Arguments in a printf function ordinarily should not be preceded by an am-

persand. Arguments following the format control string in a scanf function ordinarily
should be preceded by an ampersand. We’ll discuss exceptions to these rules in
Chapter 6 and Chapter 7.

i) True.
j) False. The operators *, / and % are on the same level of precedence, and the operators +

and - are on a lower level of precedence.
k) False. A printf statement with multiple \n escape sequences can print several lines.

2.3 a) int c, thisVariable, q76354, number;
b) printf("Enter an integer: ");
c) scanf("%d", &a);
d) if (number != 7) {

 printf("The variable number is not equal to 7.\n");
}

 Exercises 63

e) printf("This is a C program.\n");
f) printf("This is a C\nprogram.\n");
g) printf("This\nis\na\nC\nprogram.\n");
h) printf("This\tis\ta\tC\tprogram.\n");

2.4 a) // Calculate the product of three integers
b) printf("Enter three integers: ");
c) int x, y, z;
d) scanf("%d%d%d", &x, &y, &z);
e) int result = x * y * z;
f) printf("The product is %d\n", result);

2.5 See below.

2.6 a) Error: &number.
Correction: Eliminate the &. We discuss exceptions to this later.

b) Error: number2 does not have an ampersand.
Correction: number2 should be &number2. Later in the text we discuss exceptions to this.

c) Error: Semicolon after the right parenthesis of the condition in the if statement.
Correction: Remove the semicolon after the right parenthesis. [Note: The result of this
error is that the printf statement will be executed whether or not the condition in the
if statement is true. The semicolon after the right parenthesis is considered an empty
statement—a statement that does nothing.]

d) Error: => is not an operator in C.
Correction: The relational operator => should be changed to >= (greater than or equal to).

Exercises
2.7 Identify and correct the errors in each of the following statements. (Note: There may be
more than one error per statement.)

a) scanf("d", value);
b) printf("The product of %d and %d is %d"\n, x, y);
c) firstNumber + secondNumber = sumOfNumbers
d) if (number => largest)

 largest == number;
e) */ Program to determine the largest of three integers /*
f) Scanf("%d", anInteger);
g) printf("Remainder of %d divided by %d is\n", x, y, x % y);
h) if (x = y);

 printf(%d is equal to %d\n", x, y);

1 // Calculate the product of three integers

2 #include <stdio.h>
3
4 int main(void)
5 {

6 printf("Enter three integers: "); // prompt
7
8 int x, y, z; // declare variables
9 scanf("%d%d%d", &x, &y, &z); // read three integers

10
11 int result = x * y * z; // multiply values
12 printf("The product is %d\n", result); // display result
13 } // end function main

64 Chapter 2 Introduction to C Programming

i) print("The sum is %d\n," x + y);
j) Printf("The value you entered is: %d\n, &value);

2.8 Fill in the blanks in each of the following:
a) are used to document a program and improve its readability.
b) The function used to display information on the screen is .
c) A C statement that makes a decision is .
d) Calculations are normally performed by statements.
e) The function inputs values from the keyboard.

2.9 Write a single C statement or line that accomplishes each of the following:
a) Print the message “Enter two numbers.”
b) Assign the product of variables b and c to variable a.
c) State that a program performs a sample payroll calculation (i.e., use text that helps to

document a program).
d) Input three integer values from the keyboard and place them in int variables a, b and c.

2.10 State which of the following are true and which are false. If false, explain your answer.
a) C operators are evaluated from left to right.
b) The following are all valid variable names: _under_bar_, m928134, t5, j7, her_sales,

his_account_total, a, b, c, z, z2.
c) The statement printf("a = 5;"); is a typical example of an assignment statement.
d) A valid arithmetic expression containing no parentheses is evaluated from left to right.
e) The following are all invalid variable names: 3g, 87, 67h2, h22, 2h.

2.11 Fill in the blanks in each of the following:
a) What arithmetic operations are on the same level of precedence as multiplication?

.
b) When parentheses are nested, which set of parentheses is evaluated first in an arithmetic

expression? .
c) A location in the computer’s memory that may contain different values at various times

throughout the execution of a program is called a .

2.12 What, if anything, prints when each of the following statements is performed? If nothing
prints, then answer “Nothing.” Assume x = 2 and y = 3.

a) printf("%d", x);
b) printf("%d", x + x);
c) printf("x=");
d) printf("x=%d", x);
e) printf("%d = %d", x + y, y + x);
f) z = x + y;
g) scanf("%d%d", &x, &y);
h) // printf("x + y = %d", x + y);
i) printf("\n");

2.13 Which, if any, of the following C statements contain variables whose values are replaced?
a) scanf("%d%d%d%d%d", &b, &c, &d, &e, &f);
b) p = i + j + k + 7;
c) printf("Values are replaced");
d) printf("a = 5");

2.14 Given the equation y = ax3 + 7, which of the following, if any, are correct C statements for
this equation?

a) y = a * x * x * x + 7;
b) y = a * x * x * (x + 7);

 Exercises 65

c) y = (a * x) * x * (x + 7);
d) y = (a * x) * x * x + 7;
e) y = a * (x * x * x) + 7;
f) y = a * x * (x * x + 7);

2.15 State the order of evaluation of the operators in each of the following C statements and
show the value of x after each statement is performed.

a) x = 7 + 3 * 6 / 2 - 1;
b) x = 2 % 2 + 2 * 2 - 2 / 2;
c) x = (3 * 9 * (3 + (9 * 3 / (3))));

2.16 (Arithmetic) Write a program that asks the user to enter two numbers, obtains them from
the user and prints their sum, product, difference, quotient and remainder.

2.17 (Printing Values with printf) Write a program that prints the numbers 1 to 4 on the same
line. Write the program using the following methods.

a) Using one printf statement with no conversion specifiers.
b) Using one printf statement with four conversion specifiers.
c) Using four printf statements.

2.18 (Comparing Integers) Write a program that asks the user to enter two integers, obtains the
numbers from the user, then prints the larger number followed by the words “is larger.” If the
numbers are equal, print the message “These numbers are equal.” Use only the single-selection
form of the if statement you learned in this chapter.

2.19 (Arithmetic, Largest Value and Smallest Value) Write a program that inputs three different
integers from the keyboard, then prints the sum, the average, the product, the smallest and the larg-
est of these numbers. Use only the single-selection form of the if statement you learned in this chap-
ter. The screen dialogue should appear as follows:

2.20 (Diameter, Circumference and Area of a Circle) Write a program that reads in the radius
of a circle and prints the circle’s diameter, circumference and area. Use the constant value 3.14159
for π. Perform each of these calculations inside the printf statement(s) and use the conversion spec-
ifier %f. [Note: In this chapter, we’ve discussed only integer constants and variables. In Chapter 3
we’ll discuss floating-point numbers, i.e., values that can have decimal points.]

2.21 (Shapes with Asterisks) Write a program that prints the following shapes with asterisks.

2.22 What does the following code print?

printf("*\n**\n***\n****\n*****\n");

Enter three different integers: 13 27 14
Sum is 54
Average is 18
Product is 4914
Smallest is 13
Largest is 27

********* *** * *
* * * * *** * *
* * * * ***** * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
********* *** * *

66 Chapter 2 Introduction to C Programming

2.23 (Largest and Smallest Integers) Write a program that reads in three integers and then deter-
mines and prints the largest and the smallest integers in the group. Use only the programming tech-
niques you have learned in this chapter.

2.24 (Odd or Even) Write a program that reads an integer and determines and prints whether
it’s odd or even. [Hint: Use the remainder operator. An even number is a multiple of two. Any mul-
tiple of two leaves a remainder of zero when divided by 2.]

2.25 Print your initials in block letters down the page. Construct each block letter out of the let-
ter it represents, as shown on the top of the next page:

2.26 (Multiples) Write a program that reads in two integers and determines and prints whether
the first is a multiple of the second. [Hint: Use the remainder operator.]

2.27 (Checkerboard Pattern of Asterisks) Display the following checkerboard pattern with eight
printf statements and then display the same pattern with as few printf statements as possible.

2.28 Distinguish between the terms fatal error and nonfatal error. Why might you prefer to ex-
perience a fatal error rather than a nonfatal error?

2.29 (Integer Value of a Character) Here’s a peek ahead. In this chapter you learned about inte-
gers and the type int. C can also represent uppercase letters, lowercase letters and a considerable
variety of special symbols. C uses small integers internally to represent each different character. The
set of characters a computer uses together with the corresponding integer representations for those
characters is called that computer’s character set. You can print the integer equivalent of uppercase
A, for example, by executing the statement

printf("%d", 'A');
Write a C program that prints the integer equivalents of some uppercase letters, lowercase letters,
digits and special symbols. As a minimum, determine the integer equivalents of the following:
A B C a b c 0 1 2 $ * + / and the blank character.

PPPPPPPPP
 P P
 P P
 P P
 P P

 JJ
 J
J
 J
 JJJJJJJ

DDDDDDDDD
D D
D D
 D D
 DDDDD

* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *

 Making a Difference 67

2.30 (Separating Digits in an Integer) Write a program that inputs one five-digit number, sep-
arates the number into its individual digits and prints the digits separated from one another by three
spaces each. [Hint: Use combinations of integer division and the remainder operation.] For exam-
ple, if the user types in 42139, the program should print

2.31 (Table of Squares and Cubes) Using only the techniques you learned in this chapter, write
a program that calculates the squares and cubes of the numbers from 0 to 10 and uses tabs to print
the following table of values:

Making a Difference
2.32 (Body Mass Index Calculator) We introduced the body mass index (BMI) calculator in
Exercise 1.12. The formulas for calculating BMI are

or

Create a BMI calculator application that reads the user’s weight in pounds and height in inches
(or, if you prefer, the user’s weight in kilograms and height in meters), then calculates and displays
the user’s body mass index. Also, the application should display the following information from
the Department of Health and Human Services/National Institutes of Health so the user can eval-
uate his/her BMI:

[Note: In this chapter, you learned to use the int type to represent whole numbers. The BMI calcu-
lations when done with int values will both produce whole-number results. In Chapter 4 you’ll
learn to use the double type to represent numbers with decimal points. When the BMI calculations
are performed with doubles, they’ll both produce numbers with decimal points—these are called
“floating-point” numbers.]

4 2 1 3 9

number square cube
0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

BMI VALUES
Underweight: less than 18.5
Normal: between 18.5 and 24.9
Overweight: between 25 and 29.9
Obese: 30 or greater

BMI weightInPounds 703×
heightInInches heightInInches×
--=

BMI weightInKi ramslog
heightInMeters heightInMeters×
---=

68 Chapter 2 Introduction to C Programming

2.33 (Car-Pool Savings Calculator) Research several car-pooling websites. Create an application
that calculates your daily driving cost, so that you can estimate how much money could be saved by
car pooling, which also has other advantages such as reducing carbon emissions and reducing traffic
congestion. The application should input the following information and display the user’s cost per
day of driving to work:

a) Total miles driven per day.
b) Cost per gallon of gasoline.
c) Average miles per gallon.
d) Parking fees per day.
e) Tolls per day.

3
Structured Program
Development in C

O b j e c t i v e s
In this chapter, you’ll:

■ Use basic problem-solving
techniques.

■ Develop algorithms through
the process of top-down,
stepwise refinement.

■ Use the if selection
statement and the if…else
selection statement to select
actions.

■ Use the while iteration
statement to execute
statements in a program
repeatedly.

■ Use counter-controlled
iteration and sentinel-
controlled iteration.

■ Learn structured
programming.

■ Use increment, decrement
and assignment operators.

70 Chapter 3 Structured Program Development in C

3.1 Introduction
Before writing a program to solve a particular problem, we must have a thorough under-
standing of the problem and a carefully planned solution approach. Chapters 3 and 4 dis-
cuss techniques that facilitate the development of structured computer programs. In
Section 4.12, we present a summary of the structured programming techniques developed
here and in Chapter 4.

3.2 Algorithms
The solution to any computing problem involves executing a series of actions in a specific
order. A procedure for solving a problem in terms of

1. the actions to be executed, and

2. the order in which these actions are to be executed

is called an algorithm. The following example demonstrates that correctly specifying the
order in which the actions are to be executed is important.

Consider the “rise-and-shine algorithm” followed by one junior executive for getting
out of bed and going to work: (1) Get out of bed, (2) take off pajamas, (3) take a shower,
(4) get dressed, (5) eat breakfast, (6) carpool to work. This routine gets the executive to
work well prepared to make critical decisions. Suppose that the same steps are performed
in a slightly different order: (1) Get out of bed, (2) take off pajamas, (3) get dressed, (4)
take a shower, (5) eat breakfast, (6) carpool to work. In this case, our junior executive
shows up for work soaking wet. Specifying the order in which statements are to be exe-
cuted in a computer program is called program control. In this and the next chapter, we
investigate C’s program control capabilities.

3.3 Pseudocode
Pseudocode is an artificial and informal language that helps you develop algorithms. The
pseudocode we present here is particularly useful for developing algorithms that will be
converted to structured C programs. Pseudocode is similar to everyday English; it’s conve-
nient and user friendly although it’s not an actual computer programming language.

3.1 Introduction
3.2 Algorithms
3.3 Pseudocode
3.4 Control Structures
3.5 The if Selection Statement
3.6 The if…else Selection Statement
3.7 The while Iteration Statement

 3.8 Formulating Algorithms Case Study 1:
Counter-Controlled Iteration

3.9 Formulating Algorithms with Top-
Down, Stepwise Refinement Case
Study 2: Sentinel-Controlled Iteration

3.10 Formulating Algorithms with Top-
Down, Stepwise Refinement Case
Study 3: Nested Control Statements

3.11 Assignment Operators
3.12 Increment and Decrement Operators
3.13 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

3.4 Control Structures 71

Pseudocode programs are not executed on computers. Rather, they merely help you
“think out” a program before attempting to write it in a programming language like C.

Pseudocode consists purely of characters, so you may conveniently type pseudocode
programs into a computer using a text editor program. A carefully prepared pseudocode
program can be easily converted to a corresponding C program. This is done in many cases
simply by replacing pseudocode statements with their C equivalents.

Pseudocode consists only of action and decision statements—those that are executed
when the program has been converted from pseudocode to C and is run in C. Definitions
are not executable statements—they’re simply messages to the compiler. For example, the
definition

tells the compiler the type of variable i and instructs the compiler to reserve space in mem-
ory for the variable. But this definition does not cause any action—such as input, output,
a calculation or a comparison—to occur when the program is executed. Some program-
mers choose to list each variable and briefly mention the purpose of each at the beginning
of a pseudocode program.

3.4 Control Structures
Normally, statements in a program are executed one after the other in the order in which
they’re written. This is called sequential execution. Various C statements we’ll soon dis-
cuss enable you to specify that the next statement to be executed may be other than the
next one in sequence. This is called transfer of control.

During the 1960s, it became clear that the indiscriminate use of transfers of control
was the root of a great deal of difficulty experienced by software-development groups. The
finger of blame was pointed at the goto statement that allows you to specify a transfer of
control to one of many possible destinations in a program. The notion of so-called struc-
tured programming became almost synonymous with “goto elimination.”

The research of Bohm and Jacopini1 had demonstrated that programs could be
written without any goto statements. The challenge of the era was for programmers to shift
their styles to “goto-less programming.” It was not until well into the 1970s that the pro-
gramming profession started taking structured programming seriously. The results were
impressive, as software-development groups reported reduced development times, more
frequent on-time delivery of systems and more frequent within-budget completion of soft-
ware projects. Programs produced with structured techniques were clearer, easier to debug
and modify and more likely to be bug free in the first place.2

Bohm and Jacopini’s work demonstrated that all programs could be written in terms
of only three control structures, namely the sequence structure, the selection structure
and the iteration structure. The sequence structure is simple—unless directed otherwise,
the computer executes C statements one after the other in the order in which they’re
written. The flowchart segment of Fig. 3.1 illustrates C’s sequence structure.

int i;

1. C. Bohm and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two For-
mation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 336–371.

2. As you’ll see in Section 14.10, there are some special cases in which the goto statement is useful.

72 Chapter 3 Structured Program Development in C

Flowcharts
A flowchart is a graphical representation of an algorithm or of a portion of an algorithm.
Flowcharts are drawn using certain special-purpose symbols such as rectangles, diamonds,
rounded rectaingles, and small circles; these symbols are connected by arrows called flowlines.

Like pseudocode, flowcharts are useful for developing and representing algorithms,
although pseudocode is preferred by most programmers. Flowcharts clearly show how
control structures operate; that’s what we use them for in this text.

Consider the flowchart for the sequence structure in Fig. 3.1. We use the rectangle
symbol, also called the action symbol, to indicate any type of action including a calcula-
tion or an input/output operation. The flowlines in the figure indicate the order in which
the actions are performed—first, grade is added to total, then 1 is added to counter. C
allows us to have as many actions as we want in a sequence structure. As we’ll soon see,
anywhere a single action may be placed, we may place several actions in sequence.

When drawing a flowchart that represents a complete algorithm, the first symbol we
use is a rounded rectangle symbol containing the word “Begin.” The last symbol is a
rounded rectangle containing the word “End.” When drawing only a portion of an algo-
rithm as in Fig. 3.1, we omit the rounded rectangle symbols in favor of using small circle
symbols, also called connector symbols.

Perhaps the most important flowcharting symbol is the diamond symbol, also called
the decision symbol, which indicates that a decision is to be made. We’ll discuss the
diamond symbol in the next section.

Selection Statements in C
C provides three types of selection structures in the form of statements. The if selection
statement (Section 3.5) either selects (performs) an action if a condition is true or skips the
action if the condition is false. The if…else selection statement (Section 3.6) performs
an action if a condition is true and performs a different action if the condition is false. The
switch selection statement (discussed in Chapter 4) performs one of many different ac-
tions, depending on the value of an expression. The if statement is called a single-selec-
tion statement because it selects or ignores a single action. The if…else statement is
called a double-selection statement because it selects between two different actions. The
switch statement is called a multiple-selection statement because it selects among many
different actions.

Fig. 3.1 | Flowcharting C’s sequence structure.

add 1 to counter

add grade to total total = total + grade;

counter = counter + 1;

3.5 The if Selection Statement 73

Iteration Statements in C
C provides three types of iteration structures in the form of statements, namely while
(Section 3.7), do…while, and for (both discussed in Chapter 4).

That’s all there is. C has only seven control statements: sequence, three types of
selection and three types of iteration. Each C program is formed by combining as many of
each type of control statement as is appropriate for the algorithm the program implements.
As with the sequence structure of Fig. 3.1, we’ll see that the flowchart representation of
each control statement has two small circle symbols, one at the entry point to the control
statement and one at the exit point. These single-entry/single-exit control statements
make it easy to build clear programs. We can attache the control-statement flowchart seg-
ments to one another by connecting the exit point of one control statement to the entry
point of the next. This is much like the way in which a child stacks building blocks, so we
call this control-statement stacking. We’ll learn that there’s only one other way control
statements may be connected—a method called control-statement nesting. Thus, any C
program we’ll ever need to build can be constructed from only seven different types of con-
trol statements combined in only two ways. This is the essence of simplicity.

3.5 The if Selection Statement
Selection statements are used to choose among alternative courses of action. For example,
suppose the passing grade on an exam is 60. The pseudocode statement

determines whether the condition “student’s grade is greater than or equal to 60” is true
or false. If the condition is true, then “Passed” is printed, and the next pseudocode state-
ment in order is “performed” (remember that pseudocode isn’t a real programming lan-
guage). If the condition is false, the printing is ignored, and the next pseudocode statement
in order is performed.

The preceding pseudocode If statement may be written in C as

Notice that the C code corresponds closely to the pseudocode (of course you’ll also need
to declare the int variable grade). This is one of the properties of pseudocode that makes
it such a useful program-development tool. The second line of this selection statement is
indented. Such indentation is optional, but it’s highly recommended, as it helps emphasize
the inherent structure of structured programs. The C compiler ignores white-space char-
acters such as blanks, tabs and newlines used for indentation and vertical spacing.

The flowchart of Fig. 3.2 illustrates the single-selection if statement. This flowchart
contains what is perhaps the most important flowcharting symbol—the diamond symbol,
also called the decision symbol, which indicates that a decision is to be made. The decision
symbol contains an expression, such as a condition, that can be either true or false. The
decision symbol has two flowlines emerging from it. One indicates the direction to take
when the expression in the symbol is true and the other the direction to take when the
expression is false. Decisions can be based on conditions containing relational or equality

If student’s grade is greater than or equal to 60
Print “Passed”

if (grade >= 60) {
 puts("Passed");
} // end if

74 Chapter 3 Structured Program Development in C

operators. In fact, a decision can be based on any expression—if the expression evaluates
to zero, it’s treated as false, and if it evaluates to nonzero, it’s treated as true.

The if statement, too, is a single-entry/single-exit statement. We’ll soon learn that the
flowcharts for the remaining control structures can also contain (besides small circle sym-
bols and flowlines) only rectangle symbols to indicate the actions to be performed, and
diamond symbols to indicate decisions to be made. This is the action/decision model of pro-
gramming we’ve been emphasizing.

We can envision seven bins, each containing only control-statement flowcharts of one
of the seven types. These flowchart segments are empty—nothing is written in the rectan-
gles and nothing in the diamonds. Your task, then, is assembling a program from as many
of each type of control statement as the algorithm demands, combining them in only two
possible ways (stacking or nesting), and then filling in the actions and decisions in a manner
appropriate for the algorithm. We’ll discuss the variety of ways in which actions and deci-
sions may be written.

3.6 The if…else Selection Statement
The if selection statement performs an indicated action only when the condition is true;
otherwise the action is skipped. The if…else selection statement allows you to specify
that different actions are to be performed when the condition is true and when it’s false.
For example, the pseudocode statement

prints Passed if the student’s grade is greater than or equal to 60 and Failed if the student’s
grade is less than 60. In either case, after printing occurs, the next pseudocode statement
in sequence is “performed.” The body of the else is also indented.

Fig. 3.2 | Flowcharting the single-selection if statement.

If student’s grade is greater than or equal to 60
Print “Passed”

else
Print “Failed”

Good Programming Practice 3.1
Indent both body statements of an if…else statement (in both pseudocode and C).

grade >= 60
true

false

print “Passed”

3.6 The if…else Selection Statement 75

The preceding pseudocode If…else statement may be written in C as

The flowchart of Fig. 3.3 illustrates the flow of control in the if…else statement.
Once again, besides small circles and arrows, the only symbols in the flowchart are rectan-
gles (for actions) and a diamond (for a decision).

C provides the conditional operator (?:), which is closely related to the if…else

statement. The conditional operator is C’s only ternary operator—it takes three operands.
These together with the conditional operator form a conditional expression. The first
operand is a condition. The second operand is the value for the entire conditional
expression if the condition is true and the third operand is the value for the entire condi-
tional expression if the condition is false. For example, the puts statement

contains as its argument a conditional expression that evaluates to the string "Passed" if
the condition grade >= 60 is true and to the string "Failed" if the condition is false. The
puts statement performs in essentially the same way as the preceding if…else statement.

The second and third operands in a conditional expression can also be actions to be
executed. For example, the conditional expression

is read, “If grade is greater than or equal to 60, then puts("Passed"), otherwise
puts("Failed").” This, too, is comparable to the preceding if…else statement. Condi-
tional operators can be used in places where if…else statements cannot, including expres-
sions and arguments to functions (like printf).

Good Programming Practice 3.2
If there are several levels of indentation, each level should be indented the same additional
amount of space.

if (grade >= 60) {
 puts("Passed");
} // end if

else {
 puts("Failed");
} // end else

Fig. 3.3 | Flowcharting the double-selection if…else statement.

puts(grade >= 60 ? "Passed" : "Failed");

grade >= 60 ? puts("Passed") : puts("Failed");

truefalse
print “Failed” grade >= 60 print “Passed”

76 Chapter 3 Structured Program Development in C

Nested if...else Statements
Nested if…else statements test for multiple cases by placing if…else statements inside
if…else statements. For example, the following pseudocode statement will print A for
exam grades greater than or equal to 90, B for grades greater than or equal to 80 (but less
than 90), C for grades greater than or equal to 70 (but less than 80), D for grades greater
than or equal to 60 (but less than 70), and F for all other grades.

This pseudocode may be written in C as

Error-Prevention Tip 3.1
Use expressions of the same type for the second and third operands of the conditional
operator (?:) to avoid subtle errors.

If student’s grade is greater than or equal to 90
Print “A”

else
If student’s grade is greater than or equal to 80

Print “B”
else

If student’s grade is greater than or equal to 70
Print “C”

else
If student’s grade is greater than or equal to 60

Print “D”
else

Print “F”

if (grade >= 90) {
 puts("A");
} // end if

else {
 if (grade >= 80) {
 puts("B");
 } // end if

 else {
 if (grade >= 70) {
 puts("C");
 } // end if
 else {
 if (grade >= 60) {
 puts("D");
 } // end if

 else {
 puts("F");
 } // end else

 } // end else

 } // end else
} // end else

3.6 The if…else Selection Statement 77

If the variable grade is greater than or equal to 90, all four conditions will be true, but only
the puts statement after the first test will be executed. After that puts is executed, the else
part of the “outer” if…else statement is skipped.

You may prefer to write the preceding if statement as

As far as the C compiler is concerned, both forms are equivalent. The latter form is popular
because it avoids the deep indentation of the code to the right. Such indentation often
leaves little room on a line, forcing lines to be split and decreasing program readability.

The if selection statement expects only one statement in its body—if you have only one
statement in the if’s body, you do not need to enclose it in braces. To include several state-
ments in the body of an if, you must enclose the set of statements in braces ({ and }). A set
of statements contained within a pair of braces is called a compound statement or a block.

The following example includes a compound statement in the else part of an
if…else statement.

In this case, if grade is less than 60, the program executes both puts statements in the body
of the else and prints

The braces surrounding the two statements in the else clause are important. Without
them, the statement

if (grade >= 90) {
 puts("A");
} // end if

else if (grade >= 80) {
 puts("B");
} // end else if

else if (grade >= 70) {
 puts("C");
} // end else if

else if (grade >= 60) {
 puts("D");
} // end else if

else {
 puts("F");
} // end else

Software Engineering Observation 3.1
A compound statement can be placed anywhere in a program that a single statement can
be placed.

if (grade >= 60) {
 puts("Passed.");
} // end if

else {
 puts("Failed.");
 puts("You must take this course again.");
} // end else

Failed.
You must take this course again.

puts("You must take this course again.");

78 Chapter 3 Structured Program Development in C

would be outside the body of the else part of the if and would execute regardless of whether
the grade was less than 60, so even a passing student would have to take the course again!

A syntax error is caught by the compiler. A logic error has its effect at execution time.
A fatal logic error causes a program to fail and terminate prematurely. A nonfatal logic error
allows a program to continue executing but to produce incorrect results.

Just as a compound statement can be placed anywhere a single statement can be
placed, it’s also possible to have no statement at all, i.e., the empty statement. The empty
statement is represented by placing a semicolon (;) where a statement would normally be.

3.7 The while Iteration Statement
An iteration statement (also called an repetition statement or loop) allows you to specify
that an action is to be repeated while some condition remains true. The pseudocode state-
ment

describes the iteration that occurs during a shopping trip. The condition, “there are more
items on my shopping list” may be true or false. If it’s true, then the action, “Purchase next
item and cross it off my list” is performed. This action will be performed repeatedly while
the condition remains true. The statement(s) contained in the while iteration statement
constitute the body of the while. The while statement body may be a single statement or a
compound statement.

Eventually, the condition will become false (when the last item on the shopping list
has been purchased and crossed off the list). At this point, the iteration terminates, and the
first pseudocode statement after the iteration structure is executed.

Error-Prevention Tip 3.2
Always include your control statements’ bodies in braces ({ and }), even if those bodies
contain only a single statement. This solves the "dangling-else" problem, which we dis-
cuss in Exercises 3.30–3.31.

Common Programming Error 3.1
Placing a semicolon after the condition in an if statement as in if (grade >= 60); leads
to a logic error in single-selection if statements and a syntax error in double-selection if
statements.

Error-Prevention Tip 3.3
Typing the beginning and ending braces of compound statements before typing the indi-
vidual statements within the braces helps avoid omitting one or both of the braces, pre-
venting syntax errors and logic errors (where both braces are indeed required).

While there are more items on my shopping list
Purchase next item and cross it off my list

Common Programming Error 3.2
Not providing in the body of a while statement an action that eventually causes the con-
dition in the while to become false. Normally, such an iteration structure will never ter-
minate—an error called an “infinite loop.”

3.8 Counter-Controlled Iteration 79

As an example of a while statement, consider a program segment designed to find the
first power of 3 larger than 100. The integer variable product has been initialized to 3.
When the following code finishes executing, product will contain the desired answer:

The flowchart of Fig. 3.4 illustrates the flow of control in the preceding while iteration
statement. Once again, note that (besides small circles and arrows) the flowchart contains
only a rectangle symbol and a diamond symbol. The flowchart clearly shows the iteration.
The flowline emerging from the rectangle wraps back to the decision, which is tested each
time through the loop until the decision eventually becomes false. At this point, the while
statement is exited and control passes to the next statement in the program.

When the while statement is entered, the value of product is 3. The variable product
is repeatedly multiplied by 3, taking on the values 9, 27 and 81 successively. When
product becomes 243, the condition in the while statement, product <= 100, becomes
false. This terminates the iteration, and the final value of product is 243. Program execu-
tion continues with the next statement after the while.

3.8 Formulating Algorithms Case Study 1: Counter-
Controlled Iteration
To illustrate how algorithms are developed, we solve several variations of a class-averaging
problem. Consider the following problem statement:

A class of ten students took a quiz. The grades (integers in the range 0 to 100) for this
quiz are available to you. Determine the class average on the quiz.

The class average is equal to the sum of the grades divided by the number of students. The
algorithm for solving this problem on a computer must input each of the grades, perform
the averaging calculation, and print the result.

Common Programming Error 3.3
Spelling a keyword (such as while or if) with any uppercases letters (as in, While or If)
is a compilation error. Remember C is case sensitive and keywords contain only lowercase
letters.

product = 3;
while (product <= 100) {
 product = 3 * product;
}

Fig. 3.4 | Flowcharting the while iteration statement.

product <= 100
true

false

product = 3 * product

80 Chapter 3 Structured Program Development in C

Let’s use pseudocode to list the actions to execute and specify the order in which these
actions should execute. We use counter-controlled iteration to input the grades one at a
time. This technique uses a variable called a counter to specify the number of times a set
of statements should execute. In this example, iteration terminates when the counter
exceeds 10. In this case study we simply present the pseudocode algorithm (Fig. 3.5) and
the corresponding C program (Fig. 3.6). In the next case study we show how pseudocode
algorithms are developed. Counter-controlled iteration is often called definite iteration
because the number of iterations is known before the loop begins executing.

1 Set total to zero
2 Set grade counter to one
3
4 While grade counter is less than or equal to ten
5 Input the next grade
6 Add the grade into the total
7 Add one to the grade counter
8
9 Set the class average to the total divided by ten

10 Print the class average

Fig. 3.5 | Pseudocode algorithm that uses counter-controlled iteration to solve the class-average
problem.

1 // Fig. 3.6: fig03_06.c

2 // Class average program with counter-controlled iteration.

3 #include <stdio.h>
4
5 // function main begins program execution

6 int main(void)
7 {

8

9 int grade; // grade value
10 int total; // sum of grades entered by user
11 int average; // average of grades
12
13 // initialization phase

14 total = 0; // initialize total
15
16

17 // processing phase

18 while () { // loop 10 times
19 printf("%s", "Enter grade: "); // prompt for input
20 scanf("%d", &grade); // read grade from user
21 total = total + grade; // add grade to total
22

23 } // end while

24

Fig. 3.6 | Class-average problem with counter-controlled iteration. (Part 1 of 2.)

unsigned int counter; // number of grade to be entered next

counter = 1; // initialize loop counter

counter <= 10

counter = counter + 1; // increment counter

3.8 Counter-Controlled Iteration 81

The algorithm mentions a total and a counter. A total is a variable used to accumulate
the sum of a series of values. A counter is a variable (line 8) used to count—in this case, to
count the number of grades entered. Because the counter variable is used to count from 1
to 10 in this program (all positive values), we declared the variable as an unsigned int,
which can store only non-negative values (that is, 0 and higher). Variables used to store
totals should be initialized to zero before being used in a program; otherwise the sum would
include the previous value stored in the total’s memory location. Counter variables are
normally initialized to zero or one, depending on their use (we’ll present examples of
each). An uninitialized variable contains a “garbage” value—the value last stored in the
memory location reserved for that variable.

The averaging calculation in the program produced an integer result of 81. Actually,
the sum of the grades in this example is 817, which when divided by 10 should yield 81.7,
i.e., a number with a decimal point. We’ll see how to deal with such numbers (called
floating-point numbers) in the next section.

Important Note About the Placement of Variable Definitions
In Chapter 2, we mentioned that the C standard allows you to place each variable defini-
tion anywhere in main before that variable’s first use in the code. In this chapter, we con-
tinue to group our variable definitions at the beginning of main to emphasize the
initialization, processing and termination phases of simple programs. Beginning in
Chapter 4, we’ll place each variable definition just before that variable’s first use. We’ll see

25 // termination phase

26 average = total / 10; // integer division
27
28 printf("Class average is %d\n", average); // display result
29 } // end function main

Enter grade: 98
Enter grade: 76
Enter grade: 71
Enter grade: 87
Enter grade: 83
Enter grade: 90
Enter grade: 57
Enter grade: 79
Enter grade: 82
Enter grade: 94
Class average is 81

Common Programming Error 3.4
If a counter or total isn’t initialized, the results of your program will probably be incorrect.
This is an example of a logic error.

Error-Prevention Tip 3.4
Initialize all counters and totals.

Fig. 3.6 | Class-average problem with counter-controlled iteration. (Part 2 of 2.)

82 Chapter 3 Structured Program Development in C

in Chapter 5—when we discuss the scope of variables—how this practice helps you elimi-
nate errors.

3.9 Formulating Algorithms with Top-Down, Stepwise
Refinement Case Study 2: Sentinel-Controlled Iteration
Let’s generalize the class-average problem. Consider the following problem:

Develop a class-averaging program that will process an arbitrary number of grades
each time the program is run.

In the first class-average example, the number of grades (10) was known in advance. In this
example, no indication is given of how many grades are to be entered. The program must
process an arbitrary number of grades. How can the program determine when to stop the
input of grades? How will it know when to calculate and print the class average?

One way to solve this problem is to use a special value called a sentinel value (also
called a signal value, a dummy value, or a flag value) to indicate “end of data entry.”
The user types grades until all legitimate grades have been entered. The user then types
the sentinel value to indicate “the last grade has been entered.” Sentinel-controlled iter-
ation is often called indefinite iteration because the number of iterations isn’t known
before the loop begins executing.

Clearly, the sentinel value must be chosen so that it cannot be confused with an
acceptable input value. Because grades on a quiz are normally nonnegative integers, –1 is
an acceptable sentinel value for this problem. Thus, a run of the class-average program
might process a stream of inputs such as 95, 96, 75, 74, 89 and –1. The program would
then compute and print the class average for the grades 95, 96, 75, 74, and 89 (–1 is the
sentinel value, so it should not enter into the averaging calculation).

Top-Down, Stepwise Refinement
We approach the class-average program with a technique called top-down, stepwise re-
finement, a technique that’s essential to the development of well-structured programs. We
begin with a pseudocode representation of the top:

The top is a single statement that conveys the program’s overall function. As such, the top
is, in effect, a complete representation of a program. Unfortunately, the top rarely conveys
a sufficient amount of detail for writing the C program. So we now begin the refinement
process. We divide the top into a series of smaller tasks and list these in the order in which
they need to be performed. This results in the following first refinement.

Here, only the sequence structure has been used—the steps listed are to be executed in or-
der, one after the other.

Determine the class average for the quiz

Initialize variables
Input, sum, and count the quiz grades
Calculate and print the class average

Software Engineering Observation 3.2
Each refinement, as well as the top itself, is a complete specification of the algorithm; only
the level of detail varies.

3.9 Sentinel-Controlled Iteration 83

Second Refinement
To proceed to the next level of refinement, i.e., the second refinement, we commit to spe-
cific variables. We need a running total of the numbers, a count of how many numbers
have been processed, a variable to receive the value of each grade as it’s input and a variable
to hold the calculated average. The pseudocode statement

may be refined as follows:

Only the total and counter need to be initialized; the variables average and grade (for
the calculated average and the user input, respectively) need not be initialized because their
values will be calulated and input from the user, respectively. The pseudocode statement

requires an iteration structure that successively inputs each grade. Because we do not know
in advance how many grades are to be processed, we’ll use sentinel-controlled iteration.
The user will enter legitimate grades one at a time. After the last legitimate grade is typed,
the user will type the sentinel value. The program will test for this value after each grade
is input and will terminate the loop when the sentinel is entered. The refinement of the
preceding pseudocode statement is then

Notice that in pseudocode, we do not use braces around the set of statements that
form the body of the while statement. We simply indent all these statements under the
while to show that they all belong to the while. Again, pseudocode is an informal program-
development aid.

The pseudocode statement

may be refined as follows:

Notice that we’re being careful here to test for the possibility of division by zero—a fatal
error that if undetected would cause the program to fail (often called “crashing”). The
complete second refinement is shown in Fig. 3.7.

Initialize variables

Initialize total to zero
Initialize counter to zero

Input, sum, and count the quiz grades

Input the first grade (possibly the sentinel)
While the user has not as yet entered the sentinel

Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

Calculate and print the class average

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

else
Print “No grades were entered”

84 Chapter 3 Structured Program Development in C

In Fig. 3.5 and Fig. 3.7, we include some completely blank lines in the pseudocode
for readability. Actually, the blank lines separate these programs into their various phases.

The pseudocode algorithm in Fig. 3.7 solves the more general class-average problem.
This algorithm was developed after only two levels of refinement. Sometimes more levels
are necessary.

The C program and a sample execution are shown in Fig. 3.8. Although only integer
grades are entered, the averaging calculation is likely to produce a number with a decimal

Common Programming Error 3.5
An attempt to divide by zero causes a fatal error.

Good Programming Practice 3.3
When performing division by an expression whose value could be zero, explicitly test for
this case and handle it appropriately in your program (such as by printing an error mes-
sage) rather than allowing the fatal error to occur.

1 Initialize total to zero
2 Initialize counter to zero
3
4 Input the first grade (possibly the sentinel)
5 While the user has not as yet entered the sentinel
6 Add this grade into the running total
7 Add one to the grade counter
8 Input the next grade (possibly the sentinel)
9

10 If the counter is not equal to zero
11 Set the average to the total divided by the counter
12 Print the average
13 else
14 Print “No grades were entered”

Fig. 3.7 | Pseudocode algorithm that uses sentinel-controlled iteration to solve the class-average
problem.

Software Engineering Observation 3.3
Many programs can be divided logically into three phases: an initialization phase that
initializes the program variables; a processing phase that inputs data values and adjusts
program variables accordingly; and a termination phase that calculates and prints the
final results.

Software Engineering Observation 3.4
You terminate the top-down, stepwise refinement process when the pseudocode algorithm
is specified in sufficient detail for you to be able to convert the pseudocode to C.
Implementing the C program is then normally straightforward.

3.9 Sentinel-Controlled Iteration 85

point. The type int cannot represent such a number. The program introduces the data
type float to handle numbers with decimal points (called floating-point numbers) and
introduces a special operator called a cast operator to handle the averaging calculation.
These features are explained after the program is presented.

1 // Fig. 3.8: fig03_08.c

2 // Class-average program with sentinel-controlled iteration.

3 #include <stdio.h>
4
5 // function main begins program execution

6 int main(void)
7 {

8 unsigned int counter; // number of grades entered
9 int grade; // grade value

10 int total; // sum of grades
11
12 ; // number with decimal point for average

13
14 // initialization phase

15 total = 0; // initialize total
16 ; // initialize loop counter
17

18 // processing phase

19 // get first grade from user
20

21

22
23 // loop while sentinel value not yet read from user

24 while () {

25 total = total + grade; // add grade to total
26 counter = counter + 1; // increment counter
27

28 // get next grade from user
29

30

31 } // end while
32
33 // termination phase

34 // if user entered at least one grade
35 if () {
36
37 // calculate average of all grades entered
38 average = / counter; // avoid truncation

39
40 // display average with two digits of precision
41 printf("Class average is \n", average);
42 } // end if

43 else { // if no grades were entered, output message
44 puts("No grades were entered");
45 } // end else

46 } // end function main

Fig. 3.8 | Class-average program with sentinel-controlled iteration. (Part 1 of 2.)

float average

counter = 0

printf("%s", "Enter grade, -1 to end: "); // prompt for input
scanf("%d", &grade); // read grade from user

grade != -1

printf("%s", "Enter grade, -1 to end: "); // prompt for input
scanf("%d", &grade); // read next grade

counter != 0

(float) total

%.2f

86 Chapter 3 Structured Program Development in C

Notice the compound statement in the while loop (line 24) in Fig. 3.8. Once again,
the braces are necessary to ensure that all four statements are executed within the loop.
Without the braces, the last three statements in the body of the loop would fall outside the
loop, causing the computer to interpret this code incorrectly as follows:

This would cause an infinite loop if the user did not input -1 for the first grade.

Converting Between Types Explicitly and Implicitly
Averages do not always evaluate to integer values. Often, an average is a value such as 7.2
or –93.5 that contains a fractional part. These values are referred to as floating-point num-
bers and can be represented by the data type float. The variable average is defined to be
of type float (line 12) to capture the fractional result of our calculation. However, the
result of the calculation total / counter is an integer because total and counter are both
integer variables. Dividing two integers results in integer division in which any fractional
part of the calculation is truncated (i.e., lost). Because the calculation is performed first,
the fractional part is lost before the result is assigned to average. To produce a floating-
point calculation with integer values, we must create temporary values that are floating-
point numbers. C provides the unary cast operator to accomplish this task. Line 38

includes the cast operator (float), which creates a temporary floating-point copy of its op-
erand, total. The value stored in total is still an integer. Using a cast operator in this
manner is called explicit conversion. The calculation now consists of a floating-point val-

Enter grade, -1 to end: 75
Enter grade, -1 to end: 94
Enter grade, -1 to end: 97
Enter grade, -1 to end: 88
Enter grade, -1 to end: 70
Enter grade, -1 to end: 64
Enter grade, -1 to end: 83
Enter grade, -1 to end: 89
Enter grade, -1 to end: -1
Class average is 82.50

Enter grade, -1 to end: -1
No grades were entered

while (grade != -1)
 total = total + grade; // add grade to total
counter = counter + 1; // increment counter
printf("%s", "Enter grade, -1 to end: "); // prompt for input
scanf("%d", &grade); // read next grade

Error-Prevention Tip 3.5
In a sentinel-controlled loop, explicitly remind the user what the sentinel value is in
prompts requesting data entry.

average = (float) total / counter;

Fig. 3.8 | Class-average program with sentinel-controlled iteration. (Part 2 of 2.)

3.9 Sentinel-Controlled Iteration 87

ue (the temporary float version of total) divided by the unsigned int value stored in
counter. C evaluates arithmetic expressions only in which the data types of the operands
are identical. To ensure that the operands are of the same type, the compiler performs an
operation called implicit conversion on selected operands. For example, in an expression
containing the data types unsigned int and float, copies of unsigned int operands are
made and converted to float. In our example, after a copy of counter is made and con-
verted to float, the calculation is performed and the result of the floating-point division
is assigned to average. C provides a set of rules for conversion of operands of different
types. We discuss this further in Chapter 5.

Cast operators are available for most data types—they’re formed by placing paren-
theses around a type name. Each cast operator is a unary operator, i.e., an operator that
takes only one operand. In Chapter 2, we studied the binary arithmetic operators. C also
supports unary versions of the plus (+) and minus (-) operators, so you can write expres-
sions such as -7 or +5. Cast operators associate from right to left and have the same prece-
dence as other unary operators such as unary + and unary -. This precedence is one level
higher than that of the multiplicative operators *, / and %.

Formatting Floating-Point Numbers
Figure 3.8 uses the printf conversion specifier %.2f (line 41) to print the value of aver-
age. The f specifies that a floating-point value will be printed. The .2 is the precision with
which the value will be displayed—with 2 digits to the right of the decimal point. If the
%f conversion specifier is used (without specifying the precision), the default precision of
6 is used—exactly as if the conversion specifier %.6f had been used. When floating-point
values are printed with precision, the printed value is rounded to the indicated number of
decimal positions. The value in memory is unaltered. When the following statements are
executed, the values 3.45 and 3.4 are printed.

Notes on Floating-Point Numbers
Although floating-point numbers are not always “100% precise,” they have numerous ap-
plications. For example, when we speak of a “normal” body temperature of 98.6 Fahren-
heit, we do not need to be precise to a large number of digits. When we view the
temperature on a thermometer and read it as 98.6, it may actually be 98.5999473210643.
The point here is that calling this number simply 98.6 is fine for most applications. We’ll
say more about this issue later.

Another way floating-point numbers develop is through division. When we divide 10
by 3, the result is 3.3333333… with the sequence of 3s repeating infinitely. The computer
allocates only a fixed amount of space to hold such a value, so the stored floating-point
value can be only an approximation.

printf("%.2f\n", 3.446); // prints 3.45
printf("%.1f\n", 3.446); // prints 3.4

Common Programming Error 3.6
Using precision in a conversion specification in the format control string of a scanf state-
ment is an error. Precisions are used only in printf conversion specifications.

88 Chapter 3 Structured Program Development in C

3.10 Formulating Algorithms with Top-Down, Stepwise
Refinement Case Study 3: Nested Control Statements
Let’s work another complete problem. We’ll once again formulate the algorithm using
pseudocode and top-down, stepwise refinement, and write a corresponding C program.
We’ve seen that control statements may be stacked on top of one another (in sequence) just
as a child stacks building blocks. In this case study we’ll see the only other structured way
control statements may be connected in C, namely through nesting of one control state-
ment within another. Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real-
estate brokers. Last year, 10 of the students who completed this course took the licens-
ing examination. Naturally, the college wants to know how well its students did on the
exam. You’ve been asked to write a program to summarize the results. You’ve been
given a list of these 10 students. Next to each name a 1 is written if the student passed
the exam or a 2 if the student failed.

Your program should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the prompting message “Enter
result” each time the program requests another test result.

2. Count the number of test results of each type.

3. Display a summary of the test results indicating the number of students who
passed and the number who failed.

4. If more than eight students passed the exam, print the message “Bonus to instructor!”

After reading the problem statement carefully, we make the following observations:

1. The program must process 10 test results. A counter-controlled loop will be used.

2. Each test result is a number—either a 1 or a 2. Each time the program reads a test
result, the program must determine whether the number is a 1 or a 2. We test for
a 1 in our algorithm. If the number is not a 1, we assume that it’s a 2. (Exercise 3.27
asks you to ensure that every test result is a 1 or a 2.)

3. Two counters are used—one to count the number of students who passed the
exam and one to count the number of students who failed the exam.

4. After the program has processed all the results, it must decide whether more than
8 students passed the exam.

Let’s proceed with top-down, stepwise refinement. We begin with a pseudocode rep-
resentation of the top:

Common Programming Error 3.7
Using floating-point numbers in a manner that assumes they’re represented precisely can
lead to incorrect results. Floating-point numbers are represented only approximately by
most computers.

Error-Prevention Tip 3.6
Do not compare floating-point values for equality.

Analyze exam results and decide whether instructor should receive a bonus

3.10 Nested Control Statements 89

Once again, it’s important to emphasize that the top is a complete representation of the
program, but several refinements are likely to be needed before the pseudocode can be nat-
urally evolved into a C program. Our first refinement is

Here, too, even though we have a complete representation of the entire program, further
refinement is necessary. We now commit to specific variables. Counters are needed to re-
cord the passes and failures, a counter will be used to control the looping process, and a
variable is needed to store the user input. The pseudocode statement

may be refined as follows:

Notice that only the counter and totals are initialized. The pseudocode statement

requires a loop that successively inputs the result of each exam. Here it’s known in advance
that there are precisely ten exam results, so counter-controlled looping is appropriate. In-
side the loop (i.e., nested within the loop) a double-selection statement will determine
whether each exam result is a pass or a failure and will increment the appropriate counters
accordingly. The refinement of the preceding pseudocode statement is then

Notice the use of blank lines to set off the If…else to improve program readability.
The pseudocode statement

may be refined as follows:

Initialize variables
Input the ten quiz grades and count passes and failures
Print a summary of the exam results and decide whether instructor should receive a bonus

Initialize variables

Initialize passes to zero
Initialize failures to zero
Initialize student to one

Input the ten quiz grades and count passes and failures

While student counter is less than or equal to ten
Input the next exam result

If the student passed
Add one to passes

else
Add one to failures

Add one to student counter

Print a summary of the exam results and decide whether instructor should receive a
bonus

Print the number of passes
Print the number of failures
If more than eight students passed

Print “Bonus to instructor!”

90 Chapter 3 Structured Program Development in C

The complete second refinement appears in Fig. 3.9. We use blank lines to set off the
while statement for program readability.

This pseudocode is now sufficiently refined for conversion to C. The C program and
two sample executions are shown in Fig. 3.10. We’ve taken advantage of a feature of C
that allows initialization to be incorporated into definitions (lines 9–11). Such initializa-
tion occurs at compile time. Also, notice that when you output an unsigned int you use
the %u conversion specifier (lines 33–34).

1 Initialize passes to zero
2 Initialize failures to zero
3 Initialize student to one
4
5 While student counter is less than or equal to ten
6 Input the next exam result
7
8 If the student passed
9 Add one to passes

10 else
11 Add one to failures
12
13 Add one to student counter
14
15 Print the number of passes
16 Print the number of failures
17 If more than eight students passed
18 Print “Bonus to instructor!”

Fig. 3.9 | Pseudocode for examination-results problem.

Software Engineering Observation 3.5
Experience has shown that the most difficult part of solving a problem on a computer is
developing the algorithm for the solution. Once a correct algorithm has been specified, the
process of producing a working C program is normally straightforward.

Software Engineering Observation 3.6
Many programmers write programs without ever using program-development tools such
as pseudocode. They feel that their ultimate goal is to solve the problem on a computer and
that writing pseudocode merely delays the production of final outputs.

1 // Fig. 3.10: fig03_10.c
2 // Analysis of examination results.

3 #include <stdio.h>
4

Fig. 3.10 | Analysis of examination results. (Part 1 of 3.)

3.10 Nested Control Statements 91

5 // function main begins program execution

6 int main(void)
7 {
8 // initialize variables in definitions

9

10
11

12 int result; // one exam result
13
14 // process 10 students using counter-controlled loop

15 while (student <= 10) {
16
17 // prompt user for input and obtain value from user

18 printf("%s", "Enter result (1=pass,2=fail): ");
19 scanf("%d", &result);
20
21 // if result 1, increment passes

22

23 passes = passes + 1;
24 } // end if

25 // otherwise, increment failures

26 failures = failures + 1;
27 } // end else

28
29 student = student + 1; // increment student counter
30 } // end while

31
32 // termination phase; display number of passes and failures
33 printf("Passed %u\n", passes);
34 printf("Failed %u\n", failures);
35
36 // if more than eight students passed, print "Bonus to instructor!"

37 if (passes > 8) {
38 puts("Bonus to instructor!");
39 } // end if

40 } // end function main

Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 2
Enter Result (1=pass,2=fail): 2
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 2
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 2
Passed 6
Failed 4

Fig. 3.10 | Analysis of examination results. (Part 2 of 3.)

unsigned int passes = 0; // number of passes
unsigned int failures = 0; // number of failures
unsigned int student = 1; // student counter

if (result == 1) {

else {

92 Chapter 3 Structured Program Development in C

3.11 Assignment Operators
C provides several assignment operators for abbreviating assignment expressions. For ex-
ample, the statement

can be abbreviated with the addition assignment operator += as

The += operator adds the value of the expression on the right of the operator to the value
of the variable on the left of the operator and stores the result in the variable on the left of
the operator. Any statement of the form

where operator is one of the binary operators +, -, *, / or % (or others we’ll discuss in
Chapter 10), can be written in the form

Thus the assignment c += 3 adds 3 to c. Figure 3.11 shows the arithmetic assignment
operators, sample expressions using these operators and explanations.

Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 2
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Passed 9
Failed 1
Bonus to instructor!

c = c + 3;

c += 3;

variable = variable operator expression;

variable operator= expression;

Assignment operator Sample expression Explanation Assigns

Assume: int c = 3, d = 5, e = 4, f = 6, g = 12;
+= c += 7 c = c + 7 10 to c

-= d -= 4 d = d - 4 1 to d

*= e *= 5 e = e * 5 20 to e

/= f /= 3 f = f / 3 2 to f

%= g %= 9 g = g % 9 3 to g

Fig. 3.11 | Arithmetic assignment operators.

Fig. 3.10 | Analysis of examination results. (Part 3 of 3.)

3.12 Increment and Decrement Operators 93

3.12 Increment and Decrement Operators
C also provides the unary increment operator, ++, and the unary decrement operator, --,
which are summarized in Fig. 3.12. If a variable c is to be incremented by 1, the increment
operator ++ can be used rather than the expressions c = c + 1 or c += 1. If increment or dec-
rement operators are placed before a variable (i.e., prefixed), they’re referred to as the prein-
crement or predecrement operators, respectively. If increment or decrement operators are
placed after a variable (i.e., postfixed), they’re referred to as the postincrement or postdec-
rement operators, respectively. Preincrementing (predecrementing) a variable causes the
variable to be incremented (decremented) by 1, then its new value is used in the expression
in which it appears. Postincrementing (postdecrementing) the variable causes the current
value of the variable to be used in the expression in which it appears, then the variable value
is incremented (decremented) by 1.

Figure 3.13 demonstrates the difference between the preincrementing and the postin-
crementing versions of the ++ operator. Postincrementing the variable c causes it to be
incremented after it’s used in the printf statement. Preincrementing the variable c causes
it to be incremented before it’s used in the printf statement.

Operator Sample expression Explanation

++ ++a Increment a by 1, then use the new value of
a in the expression in which a resides.

++ a++ Use the current value of a in the expression
in which a resides, then increment a by 1.

-- --b Decrement b by 1, then use the new value
of b in the expression in which b resides.

-- b-- Use the current value of b in the expression
in which b resides, then decrement b by 1.

Fig. 3.12 | Increment and decrement operators

1 // Fig. 3.13: fig03_13.c
2 // Preincrementing and postincrementing.

3 #include <stdio.h>
4
5 // function main begins program execution

6 int main(void)
7 {
8 int c; // define variable
9

10 // demonstrate postincrement
11 c = 5; // assign 5 to c
12 printf("%d\n", c); // print 5
13
14

Fig. 3.13 | Preincrementing and postincrementing. (Part 1 of 2.)

printf("%d\n", c++); // print 5 then postincrement
printf("%d\n\n", c); // print 6

94 Chapter 3 Structured Program Development in C

The program displays the value of c before and after the ++ operator is used. The dec-
rement operator (--) works similarly.

The three assignment statements in Fig. 3.10

can be written more concisely with assignment operators as

with preincrement operators as

or with postincrement operators as

It’s important to note here that when incrementing or decrementing a variable in a
statement by itself, the preincrement and postincrement forms have the same effect. It’s
only when a variable appears in the context of a larger expression that preincrementing and
postincrementing have different effects (and similarly for predecrementing and post-
decrementing). Of the expressions we’ve studied thus far, only a simple variable name may
be used as the operand of an increment or decrement operator.

15

16 // demonstrate preincrement

17 c = 5; // assign 5 to c
18 printf("%d\n", c); // print 5
19

20
21 } // end function main

5
5
6

5
6
6

Good Programming Practice 3.4
Unary operators should be placed directly next to their operands with no intervening spac-
es.

passes = passes + 1;
failures = failures + 1;
student = student + 1;

passes += 1;
failures += 1;
student += 1;

++passes;

++failures;

++student;

passes++;
failures++;

student++;

Fig. 3.13 | Preincrementing and postincrementing. (Part 2 of 2.)

printf("%d\n", ++c); // preincrement then print 6
printf("%d\n", c); // print 6

3.13 Secure C Programming 95

Figure 3.14 lists the precedence and associativity of the operators introduced to this
point. The operators are shown top to bottom in decreasing order of precedence. The
second column indicates the associativity of the operators at each level of precedence.
Notice that the conditional operator (?:), the unary operators increment (++), decrement
(--), plus (+), minus (-) and casts, and the assignment operators =, +=, -=, *=, /= and %=
associate from right to left. The third column names the various groups of operators. All
other operators in Fig. 3.14 associate from left to right.

3.13 Secure C Programming
Arithmetic Overflow
Figure 2.5 presented an addition program which calculated the sum of two int values (line
18) with the statement

Even this simple statement has a potential problem—adding the integers could result in a
value that’s too large to store in an int variable. This is known as arithmetic overflow and
can cause undefined behavior, possibly leaving a system open to attack.

The platform-specific maximum and minimum values that can be stored in an int
variable are represented by the constants INT_MAX and INT_MIN, respectively, which are
defined in the header <limits.h>. There are similar constants for the other integral types
that we’ll be introducing in Chapter 4. You can see your platform’s values for these con-
stants by opening the header <limits.h> in a text editor.

Common Programming Error 3.8
Attempting to use the increment or decrement operator on an expression other than a sim-
ple variable name is a syntax error, e.g., writing ++(x + 1).

Error-Prevention Tip 3.7
C generally does not specify the order in which an operator’s operands will be evaluated
(although we’ll see exceptions to this for a few operators in Chapter 4). Therefore you
should use increment or decrement operators only in statements in which one variable is
incremented or decremented by itself.

Operators Associativity Type

++ (postfix) -- (postfix) right to left postfix

+ - (type) ++ (prefix) -- (prefix) right to left unary
* / % left to right multiplicative
+ - left to right additive
< <= > >= left to right relational
== != left to right equality
?: right to left conditional
= += -= *= /= %= right to left assignment

Fig. 3.14 | Precedence and associativity of the operators encountered so far in the text.

sum = integer1 + integer2; // assign total to sum

96 Chapter 3 Structured Program Development in C

It’s considered a good practice to ensure that before you perform arithmetic calculations
like the one in line 18 of Fig. 2.5, they will not overflow. The code for doing this is shown
on the CERT website www.securecoding.cert.org—just search for guideline “INT32-C.”
The code uses the && (logical AND) and || (logical OR) operators, which we discuss in
Chapter 4. In industrial-strength code, you should perform checks like these for all calcula-
tions. Later chapters show other programming techniques for handling such errors.

Unsigned Integers
In Fig. 3.6, line 8 declared as an unsigned int the variable counter because it’s used to
count only non-negative values. In general, counters that should store only non-negative
values should be declared with unsigned before the integer type. Variables of unsigned
types can represent values from 0 to approximately twice the positive range of the corre-
sponding signed integer types. You can determine your platform’s maximum unsigned
int value with the constant UINT_MAX from <limits.h>.

The class-averaging program in Fig. 3.6 could have declared as unsigned int the vari-
ables grade, total and average. Grades are normally values from 0 to 100, so the total
and average should each be greater than or equal to 0. We declared those variables as ints
because we can’t control what the user actually enters—the user could enter negative
values. Worse yet, the user could enter a value that’s not even a number. (We’ll show how
to deal with such inputs later in the book.)

Sometimes sentinel-controlled loops use invalid values to terminate a loop. For
example, the class-averaging program of Fig. 3.8 terminates the loop when the user enters
the sentinel -1 (an invalid grade), so it would be improper to declare variable grade as an
unsigned int. As you’ll see, the end-of-file (EOF) indicator—which is introduced in the
next chapter and is often used to terminate sentinel-controlled loops—is also a negative
number. For more information, see Chapter 5, “Integer Security,” of Robert Seacord’s
book Secure Coding in C and C++, 2/e.

scanf_s and printf_s
The C11 standard’s Annex K introduces more secure versions of printf and scanf called
printf_s and scanf_s—we discuss these functions and the corresponding security issues
Sections 6.13 and 7.13. Annex K is designated as optional, so not every C vendor will im-
plement it. Microsoft implemented its own versions of printf_s and scanf_s prior to the
publication of the C11 standard, and its compiler immediately began issuing warnings for
every scanf call. The warnings say that scanf is deprecated—it should no longer be used—
and that you should consider using scanf_s instead.

Many organizations have coding standards that require code to compile without
warning messages. There are two ways to eliminate Visual C++’s scanf warnings—you can
use scanf_s instead of scanf or you can disable these warnings. For the input statements
we’ve used so far, Visual C++ users can simply replace scanf with scanf_s. You can dis-
able the warning messages in Visual C++ as follows:

1. Type Alt F7 to display the Property Pages dialog for your project.

2. In the left column, expand Configuration Properties > C/C++ and select Preprocessor.

3. In the right column, at the end of the value for Preprocessor Definitions, insert

;_CRT_SECURE_NO_WARNINGS

 Summary 97

4. Click OK to save the changes.

You’ll no longer receive warnings on scanf (or any other functions that Microsoft has dep-
recated for similar reasons). For industrial-strength coding, disabling the warnings is dis-
couraged. We’ll say more about how to use scanf_s and printf_s in a later Secure C
Coding Guidelines section.

Summary
Section 3.1 Introduction
• Before writing a program to solve a particular problem, you must have a thorough understanding

of the problem and a carefully planned approach to solving the problem.

Section 3.2 Algorithms
• The solution to any computing problem involves executing a series of actions in a specific order

(, 70).

• A procedure (, 70) for solving a problem in terms of the actions (, 70) to be executed, and the
order in which these actions are to be executed, is called an algorithm (, 70).

• The order in which actions are to be executed is important.

Section 3.3 Pseudocode
• Pseudocode (, 70) is an artificial and informal language that helps you develop algorithms.

• Pseudocode is similar to everyday English; it’s not an actual computer programming language.

• Pseudocode programs help you “think out” a program.

• Pseudocode consists purely of characters; you may type pseudocode using a text editor.

• Carefully prepared pseudocode programs may be converted easily to corresponding C programs.

• Pseudocode consists only of action statements.

Section 3.4 Control Structures
• Normally, statements in a program execute one after the other in the order in which they’re writ-

ten. This is called sequential execution (, 71).

• Various C statements enable you to specify that the next statement to execute may be other than
the next one in sequence. This is called transfer of control (, 71).

• Structured programming has become almost synonymous with “goto elimination” (, 71).

• Structured programs are clearer, easier to debug and modify and more likely to be bug free.

• All programs can be written in terms of sequence, selection and iteration control structures (, 71).

• Unless directed otherwise, the computer automatically executes C statements in sequence.

• A flowchart (, 72) is a graphical representation of an algorithm. Flowcharts are drawn using rect-
angles, diamonds, rounded rectangles and small circles, connected by arrows called flowlines (,
72).

• The rectangle (action) symbol (, 72) indicates any type of action including a calculation or an
input/output operation.

• Flowlines indicate the order in which the actions are performed.

• When drawing a flowchart that represents a complete algorithm, we use as the first symbol a
rounded rectangle containing the word “Begin.” We use as the last symbol a rounded rectangle

98 Chapter 3 Structured Program Development in C

containing the word “End.” When drawing only a portion of an algorithm, we omit the rounded
rectangle symbols in favor of using small circle symbols, also called connector symbols (, 72).

• The diamond (decision) symbol (, 72) indicates that a decision is to be made.

• The if single-selection statement selects or ignores a single action.

• The if…else double-selection statement (, 72) selects between two different actions.

• The switch multiple-selection statement (, 72) selects among many different actions based on
the value of an expression.

• C provides three types of iteration statements (also called repetition statements), namely while,
do…while and for.

• Control-statement flowchart segments can be attached to one another with control-statement
stacking (, 73)—connecting the exit point of one control statement to the entry point of the next.

• There’s only one other way control statements may be connected—control-statement nesting.

Section 3.5 The if Selection Statement
• Selection structures are used to choose among alternative courses of action.

• The decision symbol contains an expression, such as a condition, that can be either true or false.
The decision symbol has two flowlines emerging from it. One indicates the direction to be taken
when the expression is true; the other indicates the direction when the expression is false.

• A decision can be based on any expression—if the expression evaluates to zero, it’s treated as false,
and if it evaluates to nonzero, it’s treated as true.

• The if statement is a single-entry/single-exit structure (, 73).

Section 3.6 The if…else Selection Statement
• C provides the conditional operator (?:, , 75) which is closely related to the if…else statement.

• The conditional operator is C’s only ternary operator—it takes three operands. The first operand
is a condition. The second operand is the value for the conditional expression (, 75) if the condition
is true, and the third operand is the value for the conditional expression if the condition is false.

• Nested if…else statements (, 76) test for multiple cases by placing if…else statements inside
if…else statements.

• The if selection statement expects only one statement in its body. To include several statements
in the body of an if, you must enclose the set of statements in braces ({ and }).

• A set of statements contained within a pair of braces is called a compound statement or a block
(, 77).

• A syntax error is caught by the compiler. A logic error has its effect at execution time. A fatal
logic error causes a program to fail and terminate prematurely. A nonfatal logic error allows a
program to continue executing but to produce incorrect results.

Section 3.7 The while Iteration Statement
• The while iteration statement (, 78) specifies that an action is to be repeated while a condition

is true. Eventually, the condition will become false. At this point, the iteration terminates, and
the first statement after the iteration statement executes.

Section 3.8 Formulating Algorithms Case Study 1: Counter-Controlled Iteration
• Counter-controlled iteration (, 80) uses a variable called a counter (, 80) to specify the number

of times a set of statements should execute.

• Counter-controlled iteration is often called definite iteration (, 80) because the number of iter-
ations is known before the loop begins executing.

 Summary 99

• A total is a variable used to accumulate the sum of a series of values. Variables used to store totals
should normally be initialized to zero before being used in a program; otherwise the sum would
include the previous value stored in the total’s memory location.

• A counter is a variable used to count. Counter variables are normally initialized to zero or one,
depending on their use.

• An uninitialized variable contains a “garbage” value (, 81)—the value last stored in the memory
location reserved for that variable.

Section 3.9 Formulating Algorithms with Top-Down, Stepwise Refinement Case
Study 2: Sentinel-Controlled Iteration
• A sentinel value (, 82; also called a signal value, a dummy value, or a flag value) is used in a

sentinel-controlled loop to indicate the “end of data entry.”

• Sentinel-controlled iteration is often called indefinite iteration (, 82) because the number of it-
erations is not known before the loop begins executing.

• The sentinel value must be chosen so that it cannot be confused with an acceptable input value.

• In top-down, stepwise refinement (, 82), the top is a statement that conveys the program’s over-
all function. It’s a complete representation of a program. In the refinement process, we divide
the top into smaller tasks and list these in execution order.

• The type float (, 85) represents numbers with decimal points (called floating-point numbers).

• When two integers are divided, any fractional part of the result is truncated (, 86).

• To produce a floating-point calculation with integer values, you must cast the integers to float-
ing-point numbers. C provides the unary cast operator (float) to accomplish this task.

• Cast operators (, 86) perform explicit conversions.

• Most computers can evaluate arithmetic expressions only in which the operands’ data types are
identical. To ensure this, the compiler performs an operation called implicit conversion (, 87)
on selected operands.

• A cast operator is formed by placing parentheses around a type name. The cast operator is a unary
operator—it takes only one operand.

• Cast operators associate from right to left and have the same precedence as other unary opera-
tors such as unary + and unary -. This precedence is one level higher than that of *, / and %.

• The printf conversion specifier %.2f specifies that a floating-point value will be displayed with
two digits to the right of the decimal point. If the %f conversion specifier is used (without spec-
ifying the precision), the default precision (, 87) of 6 is used.

• When floating-point values are printed with precision, the printed value is rounded (, 87) to the
indicated number of decimal positions for display purposes.

Section 3.11 Assignment Operators
• C provides several assignment operators for abbreviating assignment expressions (, 92).

• The += operator adds the value of the expression on the right of the operator to the value of the
variable on the left of the operator and stores the result in the variable on the left of the operator.

• Any statement of the form

variable = variable operator expression;

where operator is one of the binary operators +, -, *, / or % (or others we’ll discuss in Chapter 10),
can be written in the form

variable operator= expression;

100 Chapter 3 Structured Program Development in C

Section 3.12 Increment and Decrement Operators
• C provides the unary increment operator, ++ (, 93), and the unary decrement operator, -- (,

93), for use with integral types.

• If increment or decrement operators are placed before a variable, they’re referred to as the preincre-
ment or predecrement operators, respectively. If increment or decrement operators are placed after
a variable, they’re referred to as the postincrement or postdecrement operators, respectively.

• Preincrementing (predecrementing) a variable causes it to be incremented (decremented) by 1,
then the new value of the variable is used in the expression in which it appears.

• Postincrementing (postdecrementing) a variable uses the current value of the variable in the ex-
pression in which it appears, then the variable value is incremented (decremented) by 1.

• When incrementing or decrementing a variable in a statement by itself, the preincrement and
postincrement forms have the same effect. When a variable appears in the context of a larger ex-
pression, preincrementing and postincrementing have different effects (and similarly for predec-
rementing and postdecrementing).

Section 3.13 Secure C Programming
• Adding integers can result in a value that’s too large to store in an int variable. This is known as

arithmetic overflow and can cause unpredictable runtime behavior, possibly leaving a system
open to attack.

• The maximum and minimum values that can be stored in an int variable are represented by the
constants INT_MAX and INT_MIN, respectively, from the header <limits.h>.

• It’s considered a good practice to ensure that arithmetic calculations will not overflow before you
perform the calculation. In industrial-strength code, you should perform checks for all calcula-
tions that can result in overflow or underflow (, 95).

• In general, any integer variable that should store only non-negative values should be declared
with unsigned before the integer type. Variables of unsigned types can represent values from 0
to approximately double the positive range of the corresponding signed integer type.

• You can determine your platform’s maximum unsigned int value with the constant UINT_MAX
from <limits.h>.

• The C11 standard’s Annex K introduces more secure versions of printf and scanf called
printf_s and scanf_s. Annex K is designated as optional, so not every C compiler vendor will
implement it.

• Microsoft implemented its own versions of printf_s and scanf_s prior to the C11 standard’s pub-
lication and immediately began issuing warnings for every scanf call. The warnings say that scanf
is deprecated—it should no longer be used—and that you should consider using scanf_s instead.

• Many organizations have coding standards that require code to compile without warning mes-
sages. There are two ways to eliminate Visual C++’s scanf warnings. You can either start using
scanf_s immediately or disable this warning message.

Self-Review Exercises
3.1 Fill in the blanks in each of the following questions.

a) A procedure for solving a problem in terms of the actions to be executed and the order
in which the actions should be executed is called a(n) .

b) Specifying the execution order of statements by the computer is called .
c) All programs can be written in terms of three types of control statements: ,

 and .

 Self-Review Exercises 101

d) The selection statement is used to execute one action when a condition is true
and another action when that condition is false.

e) Several statements grouped together in braces ({ and }) are called a(n) .
f) The iteration statement specifies that a statement or group of statements is to

be executed repeatedly while some condition remains true.
g) Iteration of a set of instructions a specific number of times is called iteration.
h) When it’s not known in advance how many times a set of statements will be repeated,

a(n) value can be used to terminate the iteration.

3.2 Write four different C statements that each add 1 to integer variable x.

3.3 Write a single C statement to accomplish each of the following:
a) Multiply the variable product by 2 using the *= operator.
b) Multiply the variable product by 2 using the = and * operators.
c) Test whether the value of the variable count is greater than 10. If it is, print “Count is

greater than 10.”
d) Calculate the remainder after q is divided by divisor and assign the result to q. Write

this statement two different ways.
e) Print the value 123.4567 with two digits of precision. What value is printed?
f) Print the floating-point value 3.14159 with three digits to the right of the decimal point.

What value is printed?

3.4 Write a C statement to accomplish each of the following tasks.
a) Define variables sum and x to be of type int.
b) Set variable x to 1.
c) Set variable sum to 0.
d) Add variable x to variable sum and assign the result to variable sum.
e) Print "The sum is: " followed by the value of variable sum.

3.5 Combine the statements that you wrote in Exercise 3.4 into a program that calculates the
sum of the integers from 1 to 10. Use the while statement to loop through the calculation and in-
crement statements. The loop should terminate when the value of x becomes 11.

3.6 Write single C statements that
a) Input unsigned integer variable x with scanf. Use the conversion specifier %u.
b) Input unsigned integer variable y with scanf. Use the conversion specifier %u.
c) Set unsigned integer variable i to 1.
d) Set unsigned integer variable power to 1.
e) Multiply unsigned integer variable power by x and assign the result to power.
f) Increment variable i by 1.
g) Test i to see if it’s less than or equal to y in the condition of a while statement.
h) Output unsigned integer variable power with printf. Use the conversion specifier %u.

3.7 Write a C program that uses the statements in Exercise 3.6 to calculate x raised to the y
power. The program should have a while iteration control statement.

3.8 Identify and correct the errors in each of the following:
a) while (c <= 5) {

 product *= c;

 ++c;
b) scanf("%.4f", &value);
c) if (gender == 1)

 puts("Woman");
else;
 puts("Man");

102 Chapter 3 Structured Program Development in C

3.9 What’s wrong with the following while iteration statement (assume z has value 100), which
is supposed to calculate the sum of the integers from 100 down to 1?

while (z >= 0)
 sum += z;

Answers to Self-Review Exercises
3.1 a) Algorithm. b) Program control. c) Sequence, selection, iteration. d) if…else. e) Com-
pound statement or block. f) while. g) Counter-controlled or definite. h) Sentinel.

3.2 x = x + 1;
x += 1;
++x;
x++;

3.3 a) product *= 2;
b) product = product * 2;
c) if (count > 10)

 puts("Count is greater than 10.");
d) q %= divisor;

q = q % divisor;
e) printf("%.2f", 123.4567);

123.46 is displayed.
f) printf("%.3f\n", 3.14159);

3.142 is displayed.

3.4 a) int sum, x;
b) x = 1;
c) sum = 0;
d) sum += x; or sum = sum + x;
e) printf("The sum is: %d\n", sum);

3.5 See below.

3.6 a) scanf("%u", &x);
b) scanf("%u", &y);
c) i = 1;
d) power = 1;
e) power *= x;
f) ++i;

1 // Calculate the sum of the integers from 1 to 10

2 #include <stdio.h>
3
4 int main(void)
5 {

6 unsigned int x = 1; // set x
7 unsigned int sum = 0; // set sum
8

9 while (x <= 10) { // loop while x is less than or equal to 10
10 sum += x; // add x to sum

11 ++x; // increment x

12 } // end while

13
14 printf("The sum is: %u\n", sum); // display sum
15 } // end main function

 Exercises 103

g) while (i <= y)
h) printf("%d", power);

3.7 See below.

3.8 a) Error: Missing the closing right brace of the while body.
Correction: Add closing right brace after the statement ++c;.

b) Error: Precision used in a scanf conversion specification.
Correction: Remove .4 from the conversion specification.

c) Error: Semicolon after the else part of the if…else statement results in a logic error.
The second puts will always be executed.
Correction: Remove the semicolon after else.

3.9 The value of the variable z is never changed in the while statement. Therefore, an infinite
loop is created. To prevent the infinite loop, z must be decremented so that it eventually becomes 0.

Exercises
3.10 Identify and correct the errors in each of the following. [Note: There may be more than one
error in each piece of code.]

a) if (age >= 65);
 puts("Age is greater than or equal to 65");
else
 puts("Age is less than 65");

b) int x = 1, total;

while (x <= 10) {
 total += x;

 ++x;

}
c) While (x <= 100)

 total += x;

 ++x;

1 // raise x to the y power

2 #include <stdio.h>
3
4 int main(void)
5 {

6 printf("%s", "Enter first integer: ");
7 unsigned int x;
8 scanf("%u", &x); // read value for x from user
9 printf("%s", "Enter second integer: ");

10 unsigned int y;
11 scanf("%u", &y); // read value for y from user
12
13 unsigned int i = 1;
14 unsigned int power = 1; // set power
15
16 while (i <= y) { // loop while i is less than or equal to y
17 power *= x; // multiply power by x

18 ++i; // increment i

19 } // end while

20
21 printf("%u\n", power); // display power
22 } // end main function

104 Chapter 3 Structured Program Development in C

d) while (y > 0) {
 printf("%d\n", y);
 ++y;

}

3.11 Fill in the blanks in each of the following:
a) The solution to any problem involves performing a series of actions in a specific

.
b) A synonym for procedure is .
c) A variable that accumulates the sum of several numbers is a(n) .
d) A special value used to indicate “end of data entry” is called a(n) , a(n)

, a(n) or a(n) value.
e) A(n) is a graphical representation of an algorithm.
f) In a flowchart, the order in which the steps should be performed is indicated by

 symbols.
g) Rectangle symbols correspond to calculations that are normally performed by

statements and input/output operations that are normally performed by calls to the
 and Standard Library functions.

h) The item written inside a decision symbol is called a(n) .

3.12 What does the following program print?

3.13 Write a single pseudocode statement that indicates each of the following:
a) Display the message "Enter two numbers".
b) Assign the sum of variables x, y, and z to variable p.
c) The following condition is to be tested in an if…else selection statement: The current

value of variable m is greater than twice the current value of variable v.
d) Obtain values for variables s, r, and t from the keyboard.

3.14 Formulate a pseudocode algorithm for each of the following:
a) Obtain two numbers from the keyboard, compute their sum and display the result.
b) Obtain two numbers from the keyboard, and determine and display which (if either) is

the larger of the two numbers.
c) Obtain a series of positive numbers from the keyboard, and determine and display their

sum. Assume that the user types the sentinel value -1 to indicate “end of data entry.”

1 #include <stdio.h>
2
3 int main(void)
4 {

5 unsigned int x = 1;
6 unsigned int total = 0;
7 unsigned int y;
8
9 while (x <= 10) {

10 y = x * x;

11 printf("%d\n", y);
12 total += y;

13 ++x;

14 } // end while

15
16 printf("Total is %d\n", total);
17 } // end main

 Exercises 105

3.15 State which of the following are true and which are false. If a statement is false, explain why.
a) Experience has shown that the most difficult part of solving a problem on a computer

is producing a working C program.
b) A sentinel value must be a value that cannot be confused with a legitimate data value.
c) Flowlines indicate the actions to be performed.
d) Conditions written inside decision symbols always contain arithmetic operators (i.e., +,

-, *, /, and %).
e) In top-down, stepwise refinement, each refinement is a complete representation of the

algorithm.

For Exercises 3.16–3.20, perform each of these steps:
1. Read the problem statement.

2. Formulate the algorithm using pseudocode and top-down, stepwise refinement.

3. Write a C program.

4. Test, debug and execute the C program.

3.16 (Gas Mileage) Drivers are concerned with the mileage obtained by their automobiles. One
driver has kept track of several tankfuls of gasoline by recording miles driven and gallons used for
each tankful. Develop a program that will input the miles driven and gallons used for each tankful.
The program should calculate and display the miles per gallon obtained for each tankful. After pro-
cessing all input information, the program should calculate and print the combined miles per gallon
obtained for all tankfuls. Here is a sample input/output dialog:

3.17 (Credit-Limit Calculator) Develop a C program that will determine whether a department
store customer has exceeded the credit limit on a charge account. For each customer, the following
facts are available:

a) Account number
b) Balance at the beginning of the month
c) Total of all items charged by this customer this month
d) Total of all credits applied to this customer's account this month
e) Allowed credit limit

The program should input each fact, calculate the new balance (= beginning balance +
charges – credits), and determine whether the new balance exceeds the customer's credit limit. For
those customers whose credit limit is exceeded, the program should display the customer's account
number, credit limit, new balance and the message “Credit limit exceeded.” Here is a sample
input/output dialog:

Enter the gallons used (-1 to end): 12.8
Enter the miles driven: 287
The miles/gallon for this tank was 22.421875

Enter the gallons used (-1 to end): 10.3
Enter the miles driven: 200
The miles/gallon for this tank was 19.417475

Enter the gallons used (-1 to end): 5
Enter the miles driven: 120
The miles/gallon for this tank was 24.000000

Enter the gallons used (-1 to end): -1
The overall average miles/gallon was 21.601423

106 Chapter 3 Structured Program Development in C

3.18 (Sales-Commission Calculator) One large chemical company pays its salespeople on a com-
mission basis. The salespeople receive $200 per week plus 9% of their gross sales for that week. For
example, a salesperson who sells $5000 worth of chemicals in a week receives $200 plus 9% of
$5000, or a total of $650. Develop a program that will input each salesperson’s gross sales for last
week and will calculate and display that salesperson’s earnings. Process one salesperson's figures at a
time. Here is a sample input/output dialog:

3.19 (Interest Calculator) The simple interest on a loan is calculated by the formula

interest = principal * rate * days / 365;
The preceding formula assumes that rate is the annual interest rate, and therefore includes the
division by 365 (days). Develop a program that will input principal, rate and days for several
loans, and will calculate and display the simple interest for each loan, using the preceding formula.
Here is a sample input/output dialog:

Enter account number (-1 to end): 100
Enter beginning balance: 5394.78
Enter total charges: 1000.00
Enter total credits: 500.00
Enter credit limit: 5500.00
Account: 100
Credit limit: 5500.00
Balance: 5894.78
Credit Limit Exceeded.

Enter account number (-1 to end): 200
Enter beginning balance: 1000.00
Enter total charges: 123.45
Enter total credits: 321.00
Enter credit limit: 1500.00
Enter account number (-1 to end): 300
Enter beginning balance: 500.00
Enter total charges: 274.73
Enter total credits: 100.00
Enter credit limit: 800.00
Enter account number (-1 to end): -1

Enter sales in dollars (-1 to end): 5000.00
Salary is: $650.00

Enter sales in dollars (-1 to end): 1234.56
Salary is: $311.11

Enter sales in dollars (-1 to end): -1

Enter loan principal (-1 to end): 1000.00
Enter interest rate: .1
Enter term of the loan in days: 365
The interest charge is $100.00

Enter loan principal (-1 to end): 1000.00
Enter interest rate: .08375
Enter term of the loan in days: 224
The interest charge is $51.40

Enter loan principal (-1 to end): -1

 Exercises 107

3.20 (Salary Calculator) Develop a program that will determine the gross pay for each of several
employees. The company pays “straight time” for the first 40 hours worked by each employee and
pays “time-and-a-half” for all hours worked in excess of 40 hours. You’re given a list of the employ-
ees of the company, the number of hours each employee worked last week and the hourly rate of
each employee. Your program should input this information for each employee and should deter-
mine and display the employee's gross pay. Here is a sample input/output dialog:

3.21 (Predecrementing vs. Postdecrementing) Write a program that demonstrates the difference
between predecrementing and postdecrementing using the decrement operator --.

3.22 (Printing Numbers from a Loop) Write a program that utilizes looping to print the num-
bers from 1 to 10 side by side on the same line with three spaces between numbers.

3.23 (Find the Largest Number) The process of finding the largest number (i.e., the maximum
of a group of numbers) is used frequently in computer applications. For example, a program that
determines the winner of a sales contest would input the number of units sold by each salesperson.
The salesperson who sells the most units wins the contest. Write a pseudocode program and then a
program that inputs a series of 10 non-negative numbers and determines and prints the largest of
the numbers. [Hint: Your program should use three variables as shown below.]

counter: A counter to count to 10 (i.e., to keep track of how many numbers have
been input and to determine when all 10 numbers have been processed)

number: The current number input to the program
largest: The largest number found so far

3.24 (Tabular Output) Write a program that uses looping to print the following table of values.
Use the tab escape sequence, \t, in the printf statement to separate the columns with tabs.

Enter # of hours worked (-1 to end): 39
Enter hourly rate of the worker ($00.00): 10.00
Salary is $390.00

Enter # of hours worked (-1 to end): 40
Enter hourly rate of the worker ($00.00): 10.00
Salary is $400.00

Enter # of hours worked (-1 to end): 41
Enter hourly rate of the worker ($00.00): 10.00
Salary is $415.00

Enter # of hours worked (-1 to end): -1

N 10*N 100*N 1000*N

1 10 100 1000
2 20 200 2000
3 30 300 3000
4 40 400 4000
5 50 500 5000
6 60 600 6000
7 70 700 7000
8 80 800 8000
9 90 900 9000
10 100 1000 10000

108 Chapter 3 Structured Program Development in C

3.25 (Tabular Output) Write a program that utilizes looping to produce the following table of
values:

3.26 (Find the Two Largest Numbers) Using an approach similar to Exercise 3.23, find the two
largest values of the 10 numbers. [Note: You may input each number only once.]

3.27 (Validating User Input) Modify the program in Figure 3.10 to validate its inputs. On any
input, if the value entered is other than 1 or 2, keep looping until the user enters a correct value.

3.28 What does the following program print?

3.29 What does the following program print?

3.30 (Dangling-Else Problem) Determine the output for each of the following when x is 9 and y
is 11, and when x is 11 and y is 9. The compiler ignores the indentation in a C program. Also, the
compiler always associates an else with the previous if unless told to do otherwise by the placement

A A+2 A+4 A+6

3 5 7 9
6 8 10 12
9 11 13 15
12 14 16 18
15 17 19 21

1 #include <stdio.h>
2
3 int main(void)
4 {

5 unsigned int count = 1; // initialize count
6
7 while (count <= 10) { // loop 10 times
8
9 // output line of text

10 puts(count % 2 ? "****" : "++++++++");
11 ++count; // increment count

12 } // end while

13 } // end function main

1 #include <stdio.h>
2
3 int main(void)
4 {

5 unsigned int row = 10; // initialize row
6
7 while (row >= 1) { // loop until row < 1
8 unsigned int column = 1; // set column to 1 as iteration begins
9

10 while (column <= 10) { // loop 10 times
11 printf("%s", row % 2 ? "<": ">"); // output
12 ++column; // increment column

13 } // end inner while

14
15 --row; // decrement row

16 puts(""); // begin new output line
17 } // end outer while

18 } // end function main

 Exercises 109

of braces {}. Because, on first glance, you may not be sure which if an else matches, this is referred
to as the “dangling else” problem. We eliminated the indentation from the following code to make
the problem more challenging. [Hint: Apply indentation conventions you have learned.]

a) if (x < 10)
if (y > 10)
puts("*****");
else
puts("#####");
puts("$$$$$");

b) if (x < 10) {
if (y > 10)
puts("*****");
}

else {
puts("#####");
puts("$$$$$");
}

3.31 (Another Dangling-Else Problem) Modify the following code to produce the output shown.
Use proper indentation techniques. You may not make any changes other than inserting braces. The
compiler ignores the indentation in a program. We eliminated the indentation from the following
code to make the problem more challenging. [Note: It’s possible that no modification is necessary.]

if (y == 8)
if (x == 5)
puts("@@@@@");
else
puts("#####");
puts("$$$$$");
puts("&&&&&");
a) Assuming x = 5 and y = 8, the following output is produced.

b) Assuming x = 5 and y = 8, the following output is produced.

c) Assuming x = 5 and y = 8, the following output is produced.

d) Assuming x = 5 and y = 7, the following output is produced.

@@@@@
$$$$$
&&&&&

@@@@@

@@@@@
&&&&&

#####
$$$$$
&&&&&

110 Chapter 3 Structured Program Development in C

3.32 (Square of Asterisks) Write a program that reads in the side of a square and then prints that
square out of asterisks. Your program should work for squares of all side sizes between 1 and 20. For
example, if your program reads a size of 4, it should print

3.33 (Hollow Square of Asterisks) Modify the program you wrote in Exercise 3.32 so that it
prints a hollow square. For example, if your program reads a size of 5, it should print

3.34 (Palindrome Tester) A palindrome is a number or a text phrase that reads the same back-
ward as forward. For example, each of the following five-digit integers is a palindrome: 12321,
55555, 45554 and 11611. Write a program that reads in a five-digit integer and determines whether
or not it’s a palindrome. [Hint: Use the division and remainder operators to separate the number
into its individual digits.]

3.35 (Printing the Decimal Equivalent of a Binary Number) Input an integer (5 digits or fewer)
containing only 0s and 1s (i.e., a “binary” integer) and print its decimal equivalent. [Hint: Use the re-
mainder and division operators to pick off the “binary” number’s digits one at a time from right to left.
Just as in the decimal number system, in which the rightmost digit has a positional value of 1, and the
next digit left has a positional value of 10, then 100, then 1000, and so on, in the binary number sys-
tem the rightmost digit has a positional value of 1, the next digit left has a positional value of 2, then
4, then 8, and so on. Thus the decimal number 234 can be interpreted as 4 * 1 + 3 * 10 + 2 * 100.
The decimal equivalent of binary 1101 is 1 * 1 + 0 * 2 + 1 * 4 + 1 * 8 or 1 + 0 + 4 + 8 or 13.]

3.36 (How Fast Is Your Computer?) How can you determine how fast your own computer really
operates? Write a program with a while loop that counts from 1 to 1,000,000,000 by 1s. Every time
the count reaches a multiple of 100,000,000, print that number on the screen. Use your watch to
time how long each 100 million iterations of the loop takes.

3.37 (Detecting Multiples of 10) Write a program that prints 100 asterisks, one at a time. After
every tenth asterisk, your program should print a newline character. [Hint: Count from 1 to 100.
Use the remainder operator to recognize each time the counter reaches a multiple of 10.]

3.38 (Counting 7s) Write a program that reads an integer (5 digits or fewer) and determines and
prints how many digits in the integer are 7s.

3.39 (Checkerboard Pattern of Asterisks) Write a program that displays the following checker-
board pattern:

* *
* *
* *

* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *

 Making a Difference 111

Your program must use only three output statements, one of each of the following forms:

printf("%s", "* ");
printf("%s", " ");
puts(""); // outputs a newline

3.40 (Multiples of 2 with an Infinite Loop) Write a program that keeps printing the multiples of
the integer 2, namely 2, 4, 8, 16, 32, 64, and so on. Your loop should not terminate (i.e., you should
create an infinite loop). What happens when you run this program?

3.41 (Diameter, Circumference and Area of a Cirle) Write a program that reads the radius of a
circle (as a float value) and computes and prints the diameter, the circumference and the area. Use
the value 3.14159 for π.

3.42 What’s wrong with the following statement? Rewrite it to accomplish what the programmer
was probably trying to do.

printf("%d", ++(x + y));
3.43 (Sides of a Triangle) Write a program that reads three nonzero integer values and deter-
mines and prints whether they could represent the sides of a triangle.

3.44 (Sides of a Right Triangle) Write a program that reads three nonzero integers and deter-
mines and prints whether they could be the sides of a right triangle.

3.45 (Factorial) The factorial of a nonnegative integer n is written n! (pronounced “n factorial”)
and is defined as follows:

n! = n · (n - 1) · (n - 2) · … · 1 (for values of n greater than or equal to 1)
and

n! = 1 (for n = 0).
For example, 5! = 5 · 4 · 3 · 2 · 1, which is 120.

a) Write a program that reads a nonnegative integer and computes and prints its factorial.
b) Write a program that estimates the value of the mathematical constant e by using the

formula:

c) Write a program that computes the value of ex by using the formula

Making a Difference
3.46 (World-Population-Growth Calculator) Use the web to determine the current world pop-
ulation and the annual world population growth rate. Write an application that inputs these values,
then displays the estimated world population after one, two, three, four and five years.

3.47 (Target-Heart-Rate Calculator) While exercising, you can use a heart-rate monitor to see
that your heart rate stays within a safe range suggested by your trainers and doctors. According to
the American Heart Association (AHA), the formula for calculating your maximum heart rate in
beats per minute is 220 minus your age in years. Your target heart rate is a range that’s 50–85% of
your maximum heart rate. [Note: These formulas are estimates provided by the AHA. Maximum
and target heart rates may vary based on the health, fitness and gender of the individual. Always con-
sult a physician or qualified health-care professional before beginning or modifying an exercise program.]
Create a program that reads the user’s birthday and the current day (each consisting of the month,
day and year). Your program should calculate and display the person’s age (in years), the person’s
maximum heart rate and the person’s target-heart-rate range.

e 1
1
1!

1
2!

1
3!
----- …+ + + +=

ex 1
x
1!

x2

2!

x3

3!
----- …+ + + +=

112 Chapter 3 Structured Program Development in C

3.48 (Enforcing Privacy with Cryptography) The explosive growth of Internet communications
and data storage on Internet-connected computers has greatly increased privacy concerns. The field
of cryptography is concerned with coding data to make it difficult (and hopefully—with the most
advanced schemes—impossible) for unauthorized users to read. In this exercise you’ll investigate a
simple scheme for encrypting and decrypting data. A company that wants to send data over the In-
ternet has asked you to write a program that will encrypt it so that it may be transmitted more se-
curely. All the data is transmitted as four-digit integers. Your application should read a four-digit
integer entered by the user and encrypt it as follows: Replace each digit with the result of adding 7
to the digit and getting the remainder after dividing the new value by 10. Then swap the first digit
with the third, and swap the second digit with the fourth. Then print the encrypted integer. Write
a separate application that inputs an encrypted four-digit integer and decrypts it (by reversing the
encryption scheme) to form the original number. [Optional reading project: In industrial-strength
applications, you’ll want to use much stronger encryption techniques than presented in this exercise.
Research “public key cryptography” in general and the PGP (Pretty Good Privacy) specific public-
key scheme. You may also want to investigate the RSA scheme, which is widely used in industrial-
strength applications.]

4C Program Control

O b j e c t i v e s
In this chapter, you’ll learn:

■ The essentials of counter-
controlled iteration.

■ To use the for and
do…while iteration
statements to execute
statements repeatedly.

■ To understand multiple
selection using the switch
selection statement.

■ To use the break and
continue statements to
alter the flow of control.

■ To use the logical operators
to form complex conditional
expressions in control
statements.

■ To avoid the consequences of
confusing the equality and
assignment operators.

114 Chapter 4 C Program Control

4.1 Introduction
You should now be comfortable with writing simple, complete C programs. In this chap-
ter, iteration is considered in greater detail, and additional iteration control statements,
namely the for and the do…while, are presented. The switch multiple-selection state-
ment is introduced. We discuss the break statement for exiting immediately from certain
control statements, and the continue statement for skipping the remainder of the body of
an iteration statement, then proceeding with the next iteration of the loop. The chapter
discusses logical operators used for combining conditions, and summarizes the principles
of structured programming as presented in Chapter 3 and this chapter.

4.2 Iteration Essentials
Most programs involve iteration, or looping. A loop is a group of instructions the com-
puter executes repeatedly while some loop-continuation condition remains true. We’ve
discussed two means of iteration:

1. Counter-controlled iteration

2. Sentinel-controlled iteration

Counter-controlled iteration is sometimes called definite iteration because we know in ad-
vance exactly how many times the loop will be executed. Sentinel-controlled iteration is
sometimes called indefinite iteration because it’s not known in advance how many times the
loop will be executed.

In counter-controlled iteration, a control variable is used to count the number of iter-
ations. The control variable is incremented (usually by 1) each time the group of
instructions is performed. When the value of the control variable indicates that the correct
number of iterations has been performed, the loop terminates and execution continues
with the statement after the iteration statement.

Sentinel values are used to control iteration when:

1. The precise number of iterations isn’t known in advance, and

2. The loop includes statements that obtain data each time the loop is performed.

The sentinel value indicates “end of data.” The sentinel is entered after all regular data items
have been supplied to the program. Sentinels must be distinct from regular data items.

4.1 Introduction
4.2 Iteration Essentials
4.3 Counter-Controlled Iteration
4.4 for Iteration Statement
4.5 for Statement: Notes and

Observations
4.6 Examples Using the for Statement
4.7 switch Multiple-Selection Statement

4.8 do…while Iteration Statement
4.9 break and continue Statements

4.10 Logical Operators
4.11 Confusing Equality (==) and

Assignment (=) Operators
4.12 Structured Programming Summary
4.13 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

4.3 Counter-Controlled Iteration 115

4.3 Counter-Controlled Iteration
Counter-controlled iteration requires:

1. The name of a control variable (or loop counter).

2. The initial value of the control variable.

3. The increment (or decrement) by which the control variable is modified each
time through the loop.

4. The condition that tests for the final value of the control variable (i.e., whether
looping should continue).

Consider the simple program shown in Fig. 4.1, which prints the numbers from 1 to
10. The definition

names the control variable (counter), defines it to be an integer, reserves memory space
for it, and sets its initial value to 1.

The definition and initialization of counter also could have been written as

The definition is not executable, but the assignment is. We’ll use both methods of setting
the values of variables.

unsigned int counter = 1; // initialization

1 // Fig. 4.1: fig04_01.c
2 // Counter-controlled iteration.

3 #include <stdio.h>
4
5 int main(void)
6 {

7 // initialization
8

9 while () { // iteration condition

10 printf ("%u\n", counter);
11

12 }

13 }

1
2
3
4
5
6
7
8
9
10

Fig. 4.1 | Counter-controlled iteration.

unsigned int counter;
counter = 1;

unsigned int counter = 1;

counter <= 10

++counter; // increment

116 Chapter 4 C Program Control

The statement

increments the loop counter by 1 each time the loop is performed. The loop-continuation
condition in the while statement tests whether the value of the control variable is less than
or equal to 10 (the last value for which the condition is true). The body of this while is
performed even when the control variable is 10. The loop terminates when the control
variable exceeds 10 (i.e., counter becomes 11).

You could make the program in Fig. 4.1 more concise by initializing counter to 0 and
by replacing the while statement with

This code saves a statement because the incrementing is done directly in the while condi-
tion before the condition is tested. Coding in such a condensed fashion takes some prac-
tice. Some programmers feel that this makes the code too cryptic and error prone.

4.4 for Iteration Statement
The for iteration statement handles all the details of counter-controlled iteration. To illus-
trate its power, let’s rewrite the program of Fig. 4.1. The result is shown in Fig. 4.2. The
program operates as follows. When the for statement begins executing, the control variable
counter is defined and initialized to 1. Then, the loop-continuation condition counter <=
10 is checked. Because the initial value of counter is 1, the condition is satisfied, so the
printf statement (line 10) prints the value of counter, namely 1. The control variable
counter is then incremented by the expression ++counter, and the loop begins again with
the loop-continuation test. Because the control variable is now equal to 2, the final value is
not exceeded, so the program performs the printf statement again. This process continues
until the control variable counter is incremented to its final value of 11—this causes the
loop-continuation test to fail, and iteration terminates. The program continues by perform-
ing the first statement after the for statement (in this case, the program simply ends).

++counter; // increment

while (++counter <= 10) {
 printf("%u\n", counter);
}

Common Programming Error 4.1
Floating-point values may be approximate, so controlling counting loops with floating-
point variables may result in imprecise counter values and inaccurate termination tests.

Error-Prevention Tip 4.1
Control counting loops with integer values.

Good Programming Practice 4.1
Too many levels of nesting can make a program difficult to understand. As a rule, try to
avoid using more than three levels of nesting.

Good Programming Practice 4.2
The combination of vertical spacing before and after control statements and indentation
of the bodies of control statements within the control-statement headers gives programs a
two-dimensional appearance that greatly improves program readability.

4.4 for Iteration Statement 117

for Statement Header Components
Figure 4.3 takes a closer look at the for statement of Fig. 4.2. Notice that the for state-
ment “does it all”—it specifies each of the items needed for counter-controlled iteration
with a control variable. If there’s more than one statement in the body of the for, braces
are required to define the body of the loop—as we discussed in Section 3.6, you should
always place a control statement’s body in braces, even if it has only one statement.

Control Variables Defined in a for Header Exist Only Until the Loop Terminates
When you define the control variable in the for header before the first semicolon (;), as
in line 9 of Fig. 4.2:

the control variable exists only until the loop terminates.

Off-By-One Errors
Notice that Fig. 4.2 uses the loop-continuation condition counter <= 10. If you incorrect-
ly wrote counter < 10, then the loop would be executed only 9 times. This is a common
logic error called an off-by-one error.

1 // Fig. 4.2: fig04_02.c

2 // Counter-controlled iteration with the for statement.

3 #include <stdio.h>
4
5 int main(void)
6 {
7 // initialization, iteration condition, and increment

8 // are all included in the for statement header.

9 {
10 printf("%u\n", counter);
11 }

12 }

Fig. 4.2 | Counter-controlled iteration with the for statement.

Fig. 4.3 | for statement header components.

for (unsigned int counter = 1; counter <= 10; ++counter) {

Common Programming Error 4.2
For a control variable defined in a for statement’s header, attempting to access the control
variable after the for statement’s closing right brace (}) is a compilation error.

for (unsigned int counter = 1; counter <= 10; ++counter)

Initial value of
control variable Loop-continuation

condition

Increment of
control variable

for
keyword

Control
variable
name

Required
semicolon
separator

Required
semicolon
separator

Final value of control
variable for which
the condition is true

for (unsigned int counter = 1; counter <= 10; ++counter)

118 Chapter 4 C Program Control

General Format of a for Statement
The general format of the for statement is

where the initialization expression initializes the loop-control variable (and might define
it, as we did in Fig. 4.2), the condition expression is the loop-continuation condition and
the increment expression increments the control variable.

Comma-Separated Lists of Expressions
Often, the initialization expression and the increment expression are comma-separated lists
of expressions. The commas as used here are actually comma operators which guarantee
that lists of expressions evaluate from left to right. The value and type of a comma-separated
list of expressions are the value and type of the rightmost expression in the list. The comma
operator is most often used in the for statement. Its primary use is to enable you to use mul-
tiple initialization and/or multiple increment expressions. For example, there may be two
control variables in a single for statement that must be initialized and incremented.

Expressions in the for Statement’s Header Are Optional
The three expressions in the for statement are optional. If the condition expression is omit-
ted, C assumes that the loop-continuation condition is true, thus creating an infinite loop.
You may omit the initialization expression if the control variable is initialized before the
for statement. The increment expression may be omitted if the increment is calculated by
statements in the for statement’s body or if no increment is needed.

Increment Expression Acts Like a Standalone Statement
The increment expression in the for statement acts like a standalone C statement at the
end of the body of the for. Therefore, the expressions

Error-Prevention Tip 4.2
Using the final value in the condition of a while or for statement and using the <= re-
lational operator can help avoid off-by-one errors. For a loop used to print the values 1 to
10, for example, the loop-continuation condition should be counter <= 10 rather than
counter < 11 or counter < 10.

for (initialization; condition; increment) {
 statement
}

Software Engineering Observation 4.1
Place only expressions involving the control variables in the initialization and increment
sections of a for statement. Manipulations of other variables should appear either before
the loop (if they execute only once, like initialization statements) or in the loop body (if
they execute once per iteration, like incrementing or decrementing statements).

counter = counter + 1
counter += 1
++counter

counter++

4.5 for Statement: Notes and Observations 119

are all equivalent in the increment part of the for statement. Some C programmers prefer
the form counter++ because the incrementing occurs after the loop body executes, and the
postincrementing form seems more natural. Because the variable being preincremented or
postincremented here does not appear in a larger expression, both forms of incrementing
have the same effect. The two semicolons in the for statement are required.

4.5 for Statement: Notes and Observations
1. The initialization, loop-continuation condition and increment can contain arith-

metic expressions. For example, if x = 2 and y = 10, the statement

is equivalent to the statement

2. The “increment” may be negative (in which case it’s really a decrement and the
loop actually counts downward).

3. If the loop-continuation condition is initially false, the loop body does not exe-
cute. Instead, execution proceeds with the statement following the for statement.

4. The control variable is frequently printed or used in calculations in the body of a
loop, but it need not be. It’s common to use the control variable for controlling
iteration while never mentioning it in the body of the loop.

5. The for statement is flowcharted much like the while statement. For example,
Fig. 4.4 shows the flowchart of the for statement

This flowchart makes it clear that the initialization occurs only once and that in-
crementing occurs after the body statement each time it’s performed.

Common Programming Error 4.3
Using commas instead of semicolons in a for header is a syntax error.

Error-Prevention Tip 4.3
Infinite loops are caused when the loop-continuation condition in an iteration statement
never becomes false. To prevent infinite loops, ensure that you do not place a semicolon
immediately after a while statement’s header. In a counter-controlled loop, make sure the
control variable is incremented (or decremented) in the loop. In a sentinel-controlled loop,
make sure the sentinel value is eventually input.

for (j = x; j <= 4 * x * y; j += y / x)

for (j = 2; j <= 80; j += 5)

for (unsigned int counter = 1; counter <= 10; ++counter) {
 printf("%u", counter);

 }

Error-Prevention Tip 4.4
Although the value of the control variable can be changed in the body of a for loop, this
can lead to subtle errors. It’s best not to change it.

120 Chapter 4 C Program Control

4.6 Examples Using the for Statement
The following examples show methods of varying the control variable in a for statement.

1. Vary the control variable from 1 to 100 in increments of 1.

2. Vary the control variable from 100 to 1 in increments of -1 (i.e., decrements of 1).

3. Vary the control variable from 7 to 77 in increments of 7.

4. Vary the control variable from 20 to 2 in increments of -2.

5. Vary the control variable over the following sequence of values: 2, 5, 8, 11, 14, 17.

6. Vary the control variable over the following sequence of values: 44, 33, 22, 11, 0.

Application: Summing the Even Integers from 2 to 100
Figure 4.5 uses the for statement to sum all the even integers from 2 to 100. Each iteration
of the loop (lines 9–11) adds control variable number’s value to variable sum.

Fig. 4.4 | Flowcharting a typical for iteration statement.

for (unsigned int i = 1; i <= 100; ++i)

for (unsigned int i = 100; i >= 1; --i)

for (unsigned int i = 7; i <= 77; i += 7)

for (unsigned int i = 20; i >= 2; i -= 2)

for (unsigned int j = 2; j <= 17; j += 3)

for (unsigned int j = 44; j >= 0; j -= 11)

Good Programming Practice 4.3
Limit the size of control-statement headers to a single line if possible.

Determine if final
value of control
variable has been
reached

Increment
the control
variable

counter <= 10
true

false

printf("%u", counter); ++counter

unsigned int counter = 1

Body of loop
(this may be many
statements)

Establish initial
value of control
variable

4.6 Examples Using the for Statement 121

Application: Compound-Interest Calculations
The next example computes compound interest using the for statement. Consider the fol-
lowing problem statement:

A person invests $1000.00 in a savings account yielding 5% interest. Assuming that
all interest is left on deposit in the account, calculate and print the amount of money
in the account at the end of each year for 10 years. Use the following formula for
determining these amounts:

a = p(1 + r)n

where

p is the original amount invested (i.e., the principal)
r is the annual interest rate (for example, .05 for 5%)
n is the number of years
a is the amount on deposit at the end of the nth year.

This problem involves a loop that performs the indicated calculation for each of the
10 years the money remains on deposit. The solution is shown in Fig. 4.6.

1 // Fig. 4.5: fig04_05.c

2 // Summation with for.

3 #include <stdio.h>
4
5 int main(void)
6 {
7

8
9

10

11

12
13 printf("Sum is %u\n", sum);
14 }

Sum is 2550

Fig. 4.5 | Summation with for.

unsigned int sum = 0; // initialize sum

for (unsigned int number = 2; number <= 100; number += 2) {
 sum += number; // add number to sum
}

1 // Fig. 4.6: fig04_06.c

2 // Calculating compound interest.

3 #include <stdio.h>
4

5
6 int main(void)
7 {

8 double principal = 1000.0; // starting principal
9 double rate = .05; // annual interest rate

10
11 // output table column heads

12 printf("%4s%21s\n", "Year", "Amount on deposit");

Fig. 4.6 | Calculating compound interest. (Part 1 of 2.)

#include <math.h>

122 Chapter 4 C Program Control

The for statement executes the body of the loop 10 times, varying a control variable
from 1 to 10 in increments of 1. Although C does not include an exponentiation operator,
we can use the Standard Library function pow (line 18) for this purpose. The function
pow(x, y) calculates the value of x raised to the yth power. It takes two arguments of type
double and returns a double value.

The header <math.h> (line 4) should be included whenever a math function such as
pow is used. This program would malfunction without the inclusion of math.h, as the
linker would be unable to find the pow function.1 Function pow requires two double
arguments, but variable year is an integer. The math.h file includes information that tells
the compiler to convert the value of year to a temporary double representation before
calling the function. This information is contained in pow’s function prototype. These are

13
14 // calculate amount on deposit for each of ten years

15 for (unsigned int year = 1; year <= 10; ++year) {
16
17 // calculate new amount for specified year

18
19
20 // output one table row

21 printf("%4u%21.2f\n", year, amount);
22 }

23 }

Year Amount on deposit
 1 1050.00
 2 1102.50
 3 1157.63
 4 1215.51
 5 1276.28
 6 1340.10
 7 1407.10
 8 1477.46
 9 1551.33
 10 1628.89

Software Engineering Observation 4.2
Type double is a floating-point type like float, but typically a variable of type double
can store a value of much greater magnitude with greater precision than float. Variables
of type double occupy more memory than those of type float. For all but the most
memory-intensive applications, professional programmers generally prefer double to
float.

1. On many Linux/UNIX C compilers, you must include the -lm option (e.g., gcc -lm fig04_06.c)
when compiling Fig. 4.6. This links the math library to the program.

Fig. 4.6 | Calculating compound interest. (Part 2 of 2.)

double amount = principal * pow(1.0 + rate, year);

4.7 switch Multiple-Selection Statement 123

explained in Chapter 5, where we also provide a summary of the pow function and other
math library functions.

A Caution about Using Type float or double for Monetary Amounts
Notice that we defined the variables amount, principal and rate to be of type double.
We did this for simplicity because we’re dealing with fractional parts of dollars.

Here is a simple explanation of what can go wrong when using float or double to
represent dollar amounts. Two float dollar amounts stored in the machine could be
14.234 (which with %.2f prints as 14.23) and 18.673 (which with %.2f prints as 18.67).
When these amounts are added, they produce the sum 32.907, which with %.2f prints as
32.91. Thus your printout could appear as

Clearly the sum of the individual numbers as printed should be 32.90! You’ve been
warned!

Formatting Numeric Output
The conversion specifier %21.2f is used to print the value of the variable amount in the
program. The 21 in the conversion specifier denotes the field width in which the value will
be printed. A field width of 21 specifies that the value printed will appear in 21 print po-
sitions. The 2 specifies the precision (i.e., the number of decimal positions). If the number
of characters displayed is less than the field width, then the value will automatically be right
justified with leading spaces in the field. This is particularly useful for aligning floating-
point values with the same precision (so that their decimal points align vertically). To left
justify a value in a field, place a - (minus sign) between the % and the field width. The mi-
nus sign may also be used to left justify integers (such as in %-6d) and character strings
(such as in %-8s). We’ll discuss the powerful formatting capabilities of printf and scanf
in detail in Chapter 9.

4.7 switch Multiple-Selection Statement
In Chapter 3, we discussed the if single-selection statement and the if…else double-
selection statement. Occasionally, an algorithm will contain a series of decisions in which a
variable or expression is tested separately for each of the constant integral values it may as-
sume, and different actions are taken. This is called multiple selection. C provides the
switch multiple-selection statement to handle such decision making.

The switch statement consists of a series of case labels, an optional default case and
statements to execute for each case. Figure 4.7 uses switch to count the number of each
different letter grade students earned on an exam.

Error-Prevention Tip 4.5
Do not use variables of type float or double to perform monetary calculations. The im-
preciseness of floating-point numbers can cause errors that will result in incorrect mone-
tary values. [In Exercise 4.23, we explore the use of integer numbers of pennies to perform
precise monetary calculations.]

 14.23

+ 18.67
 32.91

124 Chapter 4 C Program Control

1 // Fig. 4.7: fig04_07.c

2 // Counting letter grades with switch.

3 #include <stdio.h>
4
5 int main(void)
6 {
7 unsigned int aCount = 0;
8 unsigned int bCount = 0;
9 unsigned int cCount = 0;

10 unsigned int dCount = 0;
11 unsigned int fCount = 0;
12
13 puts("Enter the letter grades.");
14 puts("Enter the EOF character to end input.");
15 int grade; // one grade
16
17 // loop until user types end-of-file key sequence

18 while (() !=) {

19
20 // determine which grade was input

21

22
23 // grade was uppercase A

24 // or lowercase a

25 ++aCount;
26 // necessary to exit switch

27
28 // grade was uppercase B
29 // or lowercase b

30 ++bCount;

31
32
33 // grade was uppercase C

34 // or lowercase c
35 ++cCount;

36

37
38 // grade was uppercase D

39 // or lowercase d

40 ++dCount;
41

42
43 // grade was uppercase F
44 // or lowercase f

45 ++fCount;

46
47
48 // ignore newlines,

49 // tabs,
50 // and spaces in input

51

Fig. 4.7 | Counting letter grades with switch. (Part 1 of 2.)

grade = getchar() EOF

switch (grade) { // switch nested in while

case 'A':
case 'a':

break;

case 'B':
case 'b':

break;

case 'C':
case 'c':

break;

case 'D':
case 'd':

break;

case 'F':
case 'f':

break;

case '\n':
case '\t':
case ' ':

break;

4.7 switch Multiple-Selection Statement 125

Reading Character Input
In the program, the user enters letter grades for a class. In the while header (line 18),

the parenthesized assignment (grade = getchar()) executes first. The getchar function
(from <stdio.h>) reads one character from the keyboard and stores that character in the
integer variable grade. Characters are normally stored in variables of type char. However,
an important feature of C is that characters can be stored in any integer data type because
they’re usually represented as one-byte integers in the computer. Function getchar re-

52
53 // catch all other characters

54 printf("%s", "Incorrect letter grade entered.");
55 puts(" Enter a new grade.");
56 // optional; will exit switch anyway

57 }
58 } // end while

59
60 // output summary of results
61 puts("\nTotals for each letter grade are:");
62 printf("A: %u\n", aCount);
63 printf("B: %u\n", bCount);
64 printf("C: %u\n", cCount);
65 printf("D: %u\n", dCount);
66 printf("F: %u\n", fCount);
67 }

Enter the letter grades.
Enter the EOF character to end input.
a
b
c
C
A
d
f
C
E
Incorrect letter grade entered. Enter a new grade.
D
A
b
^Z
Totals for each letter grade are:
A: 3
B: 2
C: 3
D: 2
F: 1

while ((grade = getchar()) != EOF)

Fig. 4.7 | Counting letter grades with switch. (Part 2 of 2.)

default:

break;

Not all systems display a representation of the EOF character

126 Chapter 4 C Program Control

turns as an int the character that the user entered. We can treat a character as either an
integer or a character, depending on its use. For example, the statement

uses the conversion specifiers %c and %d to print the character 'a' and its integer value, re-
spectively. The result is

ASCII
The integer 97 is the character’s numerical representation in the computer. Many com-
puters today use the ASCII (American Standard Code for Information Interchange)
character set in which 97 represents the lowercase letter 'a'. A list of the ASCII characters
and their decimal values is presented in Appendix B. Characters can be read with scanf
by using the conversion specifier %c.

Assignments Have Values
Assignments as a whole actually have a value. This value is assigned to the variable on the
left side of the =. The value of the assignment expression grade = getchar() is the charac-
ter that’s returned by getchar and assigned to the variable grade.

The fact that assignments have values can be useful for setting several variables to the
same value. For example,

first evaluates the assignment c = 0 (because the = operator associates from right to left).
The variable b is then assigned the value of the assignment c = 0 (which is 0). Then, the
variable a is assigned the value of the assignment b = (c = 0) (which is also 0). In the pro-
gram, the value of the assignment grade = getchar() is compared with the value of EOF
(a symbol whose acronym stands for “end of file”). We use EOF (which normally has the
value -1) as the sentinel value. The user types a system-dependent keystroke combination
to mean “end of file”—i.e., “I have no more data to enter.” EOF is a symbolic integer con-
stant defined in the <stdio.h> header (we’ll see in Chapter 6 how symbolic constants are
defined). If the value assigned to grade is equal to EOF, the program terminates. We’ve
chosen to represent characters in this program as ints because EOF has an integer value
(again, normally -1).

Entering the EOF Indicator
On Linux/UNIX/Mac OS X systems, the EOF indicator is entered by typing

printf("The character (%c) has the value %d.\n", 'a', 'a');

The character (a) has the value 97.

a = b = c = 0;

Portability Tip 4.1
The keystroke combinations for entering EOF (end of file) are system dependent.

Portability Tip 4.2
Testing for the symbolic constant EOF (rather than –1) makes programs more portable.
The C standard states that EOF is a negative integral value (but not necessarily –1). Thus,
EOF could have different values on different systems.

<Ctrl> d

4.7 switch Multiple-Selection Statement 127

on a line by itself. This notation <Ctrl> d means to simultaneously press both the Ctrl key
and the d key. On other systems, such as Microsoft Windows, the EOF indicator can be
entered by typing

You also need to press Enter on Windows.
The user enters grades at the keyboard. When the Enter key is pressed, the characters

are read by function getchar one at a time. If the character entered is not equal to EOF,
the switch statement (lines 21–57) is entered.

switch Statement Details
Keyword switch is followed by the variable name grade in parentheses. This is called the
controlling expression. The value of this expression is compared with each of the case
labels. Assume the user has entered the letter C as a grade. C is automatically compared to
each case in the switch. If a match occurs (case 'C':), the statements for that case are
executed. In the case of the letter C, cCount is incremented by 1 (line 35), and the switch
statement is exited immediately with the break statement.

The break statement causes program control to continue with the first statement after
the switch statement. The break statement is used because the cases in a switch state-
ment would otherwise run together. If break is not used anywhere in a switch statement,
then each time a match occurs in the statement, the statements for all the remaining cases
will be executed. (This feature—called fall-through—is rarely useful, although it’s perfect
for programming Exercise 4.38—the iterative song “The Twelve Days of Christmas”!) If
no match occurs, the default case is executed, and an error message is printed.

switch Statement Flowchart
Each case can have one or more actions. The switch statement is different from all other
control statements in that braces are not required around multiple actions in a case of a
switch. The general switch multiple-selection statement (using a break in each case) is
flowcharted in Fig. 4.8. The flowchart makes it clear that each break statement at the end
of a case causes control to immediately exit the switch statement.

<Ctrl> z

Common Programming Error 4.4
Forgetting a break statement when one is needed in a switch statement is a logic error.

Error-Prevention Tip 4.6
Provide a default case in switch statements. Values not explicitly tested in a switch
would normally be ignored. The default case helps prevent this by focusing you on the
need to process exceptional conditions. Sometimes no default processing is needed.

Good Programming Practice 4.4
Although the case clauses and the default case clause in a switch statement can occur
in any order, it’s common to place the default clause last.

Good Programming Practice 4.5
In a switch statement, when the default clause is last, the break statement isn’t re-
quired. You may prefer to include this break for clarity and symmetry with other cases.

128 Chapter 4 C Program Control

Ignoring Newline, Tab and Blank Characters in Input
In the switch statement of Fig. 4.7, the lines

cause the program to skip newline, tab and blank characters. Reading characters one at a time
can cause problems. To have the program read the characters, you must send them to the
computer by pressing Enter. This causes the newline character to be placed in the input after
the character we wish to process. Often, this newline must be specifically ignored to make
the program work correctly. The preceding cases in our switch statement prevent the error
message in the default case from being printed each time a newline, tab or space is encoun-
tered in the input. So each input causes two iterations of the loop—the first for the letter
grade and the second for '\n'. Listing several case labels together (such as case 'D': case
'd': in Fig. 4.7) simply means that the same set of actions is to occur for each of the cases.

Fig. 4.8 | switch multiple-selection statement with breaks.

case '\n': // ignore newlines,
case '\t': // tabs,
case ' ': // and spaces in input
 break;

Error-Prevention Tip 4.7
Remember to provide processing capabilities for newline (and possibly other white-space)
characters in the input when processing characters one at a time.

.
.
.

case a
true

false

case a actions(s) break

case b
true

false

case b actions(s) break

case z
true

false

case z actions(s) break

default actions(s)

4.8 do…while Iteration Statement 129

Constant Integral Expressions
When using the switch statement, remember that each individual case can test only a
constant integral expression—i.e., any combination of character constants and integer
constants that evaluates to a constant integer value. A character constant can be represent-
ed as the specific character in single quotes, such as 'A'. Characters must be enclosed with-
in single quotes to be recognized as character constants—characters in double quotes are
recognized as strings. Integer constants are simply integer values. In our example, we’ve
used character constants. Remember that characters are represented as small integer values.

Notes on Integral Types
Portable languages like C must have flexible data-type sizes. Different applications may
need integers of different sizes. C provides several data types to represent integers. In addi-
tion to int and char, C provides types short int (which can be abbreviated as short) and
long int (which can be abbreviated as long), as well as unsigned variations of all the inte-
gral types. In Section 5.14, we’ll see that C also provides type long long int. The C stan-
dard specifies the minimum range of values for each integer type, but the actual range may
be greater and depends on the implementation. For short ints the minimum range is –
32767 to +32767. For most integer calculations, long ints are sufficient. The minimum
range of values for long ints is –2147483647 to +2147483647. The range of values for an
int is greater than or equal to that of a short int and less than or equal to that of a long
int. On many of today’s platforms, ints and long ints represent the same range of values.
The data type signed char can be used to represent integers in the range –127 to +127 or
any of the characters in the computer’s character set. See Section 5.2.4.2 of the C standard
document for the complete list of signed and unsigned integer-type ranges.

4.8 do…while Iteration Statement
The do…while iteration statement is similar to the while statement. In the while state-
ment, the loop-continuation condition is tested at the beginning of the loop before the
body of the loop is performed. The do…while statement tests the loop-continuation con-
dition after the loop body is performed. Therefore, the loop body will always execute at
least once. When a do…while terminates, execution continues with the statement after the
while clause. The do…while statement is written as follows:

Figure 4.9 uses a do…while statement to print the numbers from 1 to 10. We chose
to preincrement the control variable counter in the loop-continuation test (line 11).

do {
 statements
} while (condition); // semicolon is required here

1 // Fig. 4.9: fig04_09.c

2 // Using the do...while iteration statement.

3 #include <stdio.h>
4
5 int main(void)
6 {

Fig. 4.9 | Using the do…while iteration statement. (Part 1 of 2.)

130 Chapter 4 C Program Control

do…while Statement Flowchart
Figure 4.10 shows the do…while statement flowchart, which makes it clear that the loop-
continuation condition does not execute until after the action is performed at least once.

4.9 break and continue Statements
The break and continue statements are used to alter the flow of control. Section 4.7
showed how break can be used to terminate a switch statement’s execution. This section
discusses how to use break in an iteration statement.

break Statement
The break statement, when executed in a while, for, do…while or switch statement,
causes an immediate exit from that statement. Program execution continues with the next
statement after that while, for, do…while or switch. Common uses of break are to es-
cape early from a loop or to skip the remainder of a switch (as in Fig. 4.7). Figure 4.11
demonstrates the break statement (line 14) in a for iteration statement. When the if
statement detects that x has become 5, break is executed. This terminates the for state-
ment, and the program continues with the printf after the for. The loop fully executes
only four times. We declared x before the loop in this example, so that we could use its
final value after the loop terminates. Recall that when you declare the control variable in
a for loop’s initialization expression, the variable no longer exists after the loop terminates.

7 unsigned int counter = 1; // initialize counter
8

9
10

11

12 }

1 2 3 4 5 6 7 8 9 10

Fig. 4.10 | Flowcharting the do…while iteration statement.

Fig. 4.9 | Using the do…while iteration statement. (Part 2 of 2.)

do {
 printf("%u ", counter);
} while (++counter <= 10);

condition
true

false

action(s)

4.9 break and continue Statements 131

continue Statement
The continue statement, when executed in a while, for or do…while statement, skips the
remaining statements in that control statement’s body and performs the next iteration of the
loop. In while and do…while statements, the loop-continuation test is evaluated immedi-
ately after the continue statement executes. In the for statement, the increment expression
executes, then the loop-continuation test is evaluated. Figure 4.12 uses continue (line 12)
in the for statement to skip the printf statement and begin the next iteration of the loop.

1 // Fig. 4.11: fig04_11.c
2 // Using the break statement in a for statement.

3 #include <stdio.h>
4
5 int main(void)
6 {

7 unsigned int x; // declared here so it can be used after loop
8

9 // loop 10 times

10 for (x = 1; x <= 10; ++x) {
11
12 // if x is 5, terminate loop

13 if (x == 5) {
14 // break loop only if x is 5

15 }

16
17 printf("%u ", x);
18 }

19

20 printf("\nBroke out of loop at x == %u\n", x);
21 }

1 2 3 4
Broke out of loop at x == 5

Fig. 4.11 | Using the break statement in a for statement.

1 // Fig. 4.12: fig04_12.c
2 // Using the continue statement in a for statement.

3 #include <stdio.h>
4
5 int main(void)
6 {

7 // loop 10 times
8 for (unsigned int x = 1; x <= 10; ++x) {
9

10 // if x is 5, continue with next iteration of loop
11 if (x == 5) {
12 // skip remaining code in loop body

13 }
14
15 printf("%u ", x);
16 }

Fig. 4.12 | Using the continue statement in a for statement. (Part 1 of 2.)

break;

continue;

132 Chapter 4 C Program Control

4.10 Logical Operators
So far we’ve studied only simple conditions, such as counter <= 10, total > 1000, and
number != sentinelValue. We’ve expressed these conditions in terms of the relational oper-
ators, >, <, >= and <=, and the equality operators, == and !=. Each decision tested precisely one
condition. To test multiple conditions in the process of making a decision, we had to per-
form these tests in separate statements or in nested if or if…else statements. C provides
logical operators that may be used to form more complex conditions by combining simple
conditions. The logical operators are && (logical AND), || (logical OR) and ! (logical
NOT, also called logical negation). We’ll consider examples of each of these operators.

Logical AND (&&) Operator
Suppose we wish to ensure that two conditions are both true before we choose a certain
path of execution. In this case, we can use the logical operator && as follows:

This if statement contains two simple conditions. The condition gender == 1 might be
evaluated, for example, to determine whether a person is a female. The condition age >=
65 is evaluated to determine whether a person is a senior citizen. The two simple condi-
tions are evaluated first because == and >= each have higher precedence than &&. The if
statement then considers the combined condition gender == 1 && age >= 65, which is true

17

18 puts("\nUsed continue to skip printing the value 5");
19 }

1 2 3 4 6 7 8 9 10
Used continue to skip printing the value 5

Software Engineering Observation 4.3
Some programmers feel that break and continue violate the norms of structured
programming. The effects of these statements can be achieved by structured programming
techniques we’ll soon discuss, so these programmers do not use break and continue.

Performance Tip 4.1
The break and continue statements, when used properly, perform faster than the cor-
responding structured techniques that we’ll soon learn.

Software Engineering Observation 4.4
There’s a tension between achieving quality software engineering and achieving the best-
performing software. Often one of these goals is achieved at the expense of the other. For
all but the most performance-intensive situations, apply the following guidelines: First,
make your code simple and correct; then make it fast and small, but only if necessary.

if (gender == 1 && age >= 65) {
++seniorFemales;

}

Fig. 4.12 | Using the continue statement in a for statement. (Part 2 of 2.)

4.10 Logical Operators 133

if and only if both of the simple conditions are true. Finally, if this combined condition is
true, then the count of seniorFemales is incremented by 1. If either or both of the simple
conditions are false, then the program skips the incrementing and proceeds to the state-
ment following the if.

Figure 4.13 summarizes the && operator. The table shows all four possible combi-
nations of zero (false) and nonzero (true) values for expression1 and expression2. Such
tables are often called truth tables. C evaluates all expressions that include relational opera-
tors, equality operators, and/or logical operators to 0 or 1. Although C sets a true value to 1,
it accepts any nonzero value as true.

Logical OR (||) Operator
Now let’s consider the || (logical OR) operator. Suppose we wish to ensure at some point
in a program that either or both of two conditions are true before we choose a certain path
of execution. In this case, we use the || operator, as in the following program segment:

This statement also contains two simple conditions. The condition semesterAverage >=
90 is evaluated to determine whether the student deserves an “A” in the course because of
a solid performance throughout the semester. The condition finalExam >= 90 is evaluated
to determine whether the student deserves an “A” in the course because of an outstanding
performance on the final exam. The if statement then considers the combined condition

and awards the student an “A” if either or both of the simple conditions are true. The mes-
sage “Student grade is A” is not printed only when both of the simple conditions are false
(zero). Figure 4.14 is a truth table for the logical OR operator (||).

expression1 expression2 expression1 && expression2

0 0 0
0 nonzero 0
nonzero 0 0
nonzero nonzero 1

Fig. 4.13 | Truth table for the logical AND (&&) operator.

if (semesterAverage >= 90 || finalExam >= 90) {
puts("Student grade is A");

}

semesterAverage >= 90 || finalExam >= 90

expression1 expression2 expression1 || expression2

0 0 0
0 nonzero 1
nonzero 0 1
nonzero nonzero 1

Fig. 4.14 | Truth table for the logical OR (||) operator.

134 Chapter 4 C Program Control

Short-Circuit Evaluation
The && operator has a higher precedence than ||. Both operators associate from left to
right. An expression containing && or || operators is evaluated only until truth or falsehood
is known. Thus, evaluation of the condition

will stop if gender is not equal to 1 (i.e., the entire expression is guaranteed to be false),
and continue if gender is equal to 1 (i.e., the entire expression could still be true if age >=
65). This performance feature for the evaluation of logical AND and logical OR expres-
sions is called short-circuit evaluation.

Logical Negation (!) Operator
C provides the ! (logical negation) operator to enable you to “reverse” the meaning of a
condition. Unlike operators && and ||, which combine two conditions (and are therefore
binary operators), the logical negation operator has only a single condition as an operand
(and is therefore a unary operator). The logical negation operator is placed before a con-
dition when we’re interested in choosing a path of execution if the original condition
(without the logical negation operator) is false, such as in the following program segment:

The parentheses around the condition grade == sentinelValue are needed because the
logical negation operator has a higher precedence than the equality operator. Figure 4.15
is a truth table for the logical negation operator.

In most cases, you can avoid using logical negation by expressing the condition dif-
ferently with an appropriate relational operator. For example, the preceding statement
may also be written as:

gender == 1 && age >= 65

Performance Tip 4.2
In expressions using operator &&, make the condition that’s most likely to be false the left-
most condition. In expressions using operator ||, make the condition that’s most likely to
be true the leftmost condition. This can reduce a program’s execution time.

if (!(grade == sentinelValue)) {
printf("The next grade is %f\n", grade);

}

expression !expression

0 1

nonzero 0

Fig. 4.15 | Truth table for operator ! (logical negation).

if (grade != sentinelValue) {
printf("The next grade is %f\n", grade);

}

4.11 Confusing Equality (==) and Assignment (=) Operators 135

Summary of Operator Precedence and Associativity
Figure 4.16 shows the precedence and associativity of the operators introduced to this
point. The operators are shown from top to bottom in decreasing order of precedence.

The _Bool Data Type
The C standard includes a boolean type—represented by the keyword _Bool—which can
hold only the values 0 or 1. Recall C’s convention of using zero and nonzero values to rep-
resent false and true—the value 0 in a condition evaluates to false, while any nonzero value
evaluates to true. Assigning any nonzero value to a _Bool sets it to 1. The standard also
includes the <stdbool.h> header, which defines bool as a shorthand for the type _Bool,
and true and false as named representations of 1 and 0, respectively. At preprocessor
time, bool, true and false are replaced with _Bool, 1 and 0. Section E.4 presents an ex-
ample that uses bool, true and false. The example uses a programmer-defined function,
a concept we introduce in Chapter 5. You can study the example now, but you might wish
to revisit it after reading Chapter 5.

4.11 Confusing Equality (==) and Assignment (=)
Operators
There’s one type of error that C programmers, no matter how experienced, tend to make
so frequently that we feel it is worth a separate section. That error is accidentally swapping
the operators == (equality) and = (assignment). What makes these swaps so damaging is
the fact that they do not ordinarily cause compilation errors. Rather, statements with these
errors ordinarily compile correctly, allowing programs to run to completion while likely
generating incorrect results through runtime logic errors.

Two aspects of C cause these problems. One is that any expression that produces a
value can be used in the decision portion of any control statement. If the value is 0, it’s
treated as false, and if the value is nonzero, it’s treated as true. The second is that assign-

Operators Associativity Type

++ (postfix) -- (postfix) right to left postfix

+ - ! ++ (prefix) -- (prefix) (type) right to left unary
* / % left to right multiplicative
+ - left to right additive
< <= > >= left to right relational
== != left to right equality
&& left to right logical AND
|| left to right logical OR
?: right to left conditional
= += -= *= /= %= right to left assignment
, left to right comma

Fig. 4.16 | Operator precedence and associativity.

136 Chapter 4 C Program Control

ments in C produce a value, namely the value that’s assigned to the variable on the left side
of the assignment operator.

For example, suppose we intend to write

but we accidentally write

The first if statement properly awards a bonus to the person whose paycode is equal to 4.
The second if statement—the one with the error—evaluates the assignment expression in
the if condition. This expression is a simple assignment whose value is the constant 4. Be-
cause any nonzero value is interpreted as “true,” the condition in this if statement is al-
ways true, and not only is the value of payCode inadvertently set to 4, but the person always
receives a bonus regardless of what the actual paycode is!

lvalues and rvalues
You’ll probably be inclined to write conditions such as x == 7 with the variable name on
the left and the constant on the right. By reversing these terms so that the constant is on
the left and the variable name is on the right, as in 7 == x, then if you accidentally replace
the == operator with =, you’ll be protected by the compiler. The compiler will treat this as
a syntax error, because only a variable name can be placed on the left-hand side of an as-
signment expression. This will prevent the potential devastation of a runtime logic error.

Variable names are said to be lvalues (for “left values”) because they can be used on
the left side of an assignment operator. Constants are said to be rvalues (for “right values”)
because they can be used only on the right side of an assignment operator. lvalues can also
be used as rvalues, but not vice versa.

Confusing == and = in Standalone Statements
The other side of the coin can be equally unpleasant. Suppose you want to assign a value
to a variable with a simple statement such as

but instead write

if (payCode == 4) {
 printf("%s", "You get a bonus!");
}

if (payCode = 4) {
 printf("%s", "You get a bonus!");
}

Common Programming Error 4.5
Using operator == for assignment or using operator = for equality is a logic error.

Error-Prevention Tip 4.8
When an equality expression has a variable and a constant, as in x == 1, you may prefer
to write it with the constant on the left and the variable name on the right (i.e., 1 == x)
as protection against the logic error that occurs when you accidentally replace operator ==
with =.

x = 1;

x == 1;

4.12 Structured Programming Summary 137

Here, too, this is not a syntax error. Rather the compiler simply evaluates the conditional
expression. If x is equal to 1, the condition is true and the expression returns the value 1.
If x is not equal to 1, the condition is false and the expression returns the value 0. Regard-
less of what value is returned, there’s no assignment operator, so the value is simply lost,
and the value of x remains unaltered, probably causing an execution-time logic error. Un-
fortunately, we do not have a handy trick available to help you with this problem! Many
compilers, however, will issue a warning on such a statement.

4.12 Structured Programming Summary
Just as architects design buildings by employing the collective wisdom of their profession,
so should programmers design programs. Our field is younger than architecture is, and our
collective wisdom is considerably sparser. We’ve learned a great deal in a mere eight de-
cades. Perhaps most important, we’ve learned that structured programming produces pro-
grams that are easier (than unstructured programs) to understand and therefore are easier
to test, debug, modify, and even prove correct in a mathematical sense.

Chapters 3 and 4 have concentrated on C’s control statements. Each statement has
been presented, flowcharted and discussed separately with examples. Now, we summarize
the results of Chapters 3 and 4 and introduce a simple set of rules for the formation and
properties of structured programs.

Figure 4.17 summarizes the control statements discussed in Chapters 3 and 4. Small
circles are used in the figure to indicate the single entry point and the single exit point of each
statement. Connecting individual flowchart symbols arbitrarily can lead to unstructured
programs. Therefore, the programming profession has chosen to combine flowchart sym-
bols to form a limited set of control statements, and to build only properly structured pro-
grams by combining control statements in two simple ways. For simplicity, only single-
entry/single-exit control statements are used—there’s only one way to enter and only one
way to exit each control statement. Connecting control statements in sequence to form
structured programs is simple—the exit point of one control statement is connected to the
entry point of the next—i.e., the control statements are simply placed one after another in
a program—we’ve called this “control-statement stacking.” Control statements also can be
nested.

Figure 4.18 shows the rules for forming structured programs. The rules assume that
the rectangle flowchart symbol may be used to indicate any action including input/output.
Figure 4.19 shows the simplest flowchart.

Applying the rules of Fig. 4.18 always results in a structured flowchart with a neat,
building-block appearance. Repeatedly applying Rule 2 to the simplest flowchart
(Fig. 4.19) results in a structured flowchart containing many rectangles in sequence
(Fig. 4.20). Rule 2 generates a stack of control statements; so we call Rule 2 the stacking
rule.

Error-Prevention Tip 4.9
After you write a program, text search it for every = and check that it’s used properly. This
can help you prevent subtle bugs.

138 Chapter 4 C Program Control

Fig. 4.17 | C’s single-entry/single-exit sequence, selection and iteration statements.

.
.
.

.
.
.

break

break

break

while statement

if statement
(single selection)

if...else statement
(double selection)

switch statement
(multiple selection)

do...while statement for statement

Repetition

Sequence Selection

T TF

F

T

F

T

F

T

F

T

F
T

F

T

F
body increment

4.12 Structured Programming Summary 139

Rule 3 is called the nesting rule. Repeatedly applying Rule 3 to the simplest flowchart
results in a flowchart with neatly nested control statements. For example, in Fig. 4.21, the
rectangle in the simplest flowchart is first replaced with a double-selection (if…else)

Rules for forming structured programs

1. Begin with the “simplest flowchart” (Fig. 4.19).

2. (“Stacking” rule) Any rectangle (action) can be replaced by two rectan-
gles (actions) in sequence.

3. (“Nesting” rule) Any rectangle (action) can be replaced by any control
statement (sequence, if, if…else, switch, while, do…while or for).

4. Rules 2 and 3 may be applied as often as you like and in any order.

Fig. 4.18 | Rules for forming structured programs.

Fig. 4.19 | Simplest flowchart.

Fig. 4.20 | Repeatedly applying Rule 2 of Fig. 4.18 to the simplest flowchart.

.
.
.

Rule 2 Rule 2 Rule 2

140 Chapter 4 C Program Control

statement. Then Rule 3 is applied again to both of the rectangles in the double-selection
statement, replacing each of these rectangles with double-selection statements. The dashed
box around each of the double-selection statements represents the rectangle that was
replaced in the original flowchart.

Rule 4 generates larger, more involved, and more deeply nested structures. The flow-
charts that emerge from applying the rules in Fig. 4.18 constitute the set of all possible
structured flowcharts and hence the set of all possible structured programs.

It’s because of the elimination of the goto statement that these building blocks never
overlap one another. The beauty of the structured approach is that we use only a small
number of simple single-entry/single-exit pieces, and we assemble them in only two simple
ways. Figure 4.22 shows the kinds of stacked building blocks that emerge from applying
Rule 2 and the kinds of nested building blocks that emerge from applying Rule 3. The
figure also shows the kind of overlapped building blocks that cannot appear in structured
flowcharts (because of the elimination of the goto statement).

Fig. 4.21 | Applying Rule 3 of Fig. 4.18 to the simplest flowchart.

Rule 3

Rule 3

Rule 3

4.12 Structured Programming Summary 141

If the rules in Fig. 4.18 are followed, an unstructured flowchart (such as that in
Fig. 4.23) cannot be created. If you’re uncertain whether a particular flowchart is struc-
tured, apply the rules of Fig. 4.18 in reverse to try to reduce the flowchart to the simplest
flowchart. If you succeed, the original flowchart is structured; otherwise, it’s not.

Structured programming promotes simplicity. Bohm and Jacopini showed that only
three forms of control are needed:

• Sequence

• Selection

• Iteration

Fig. 4.22 | Stacked, nested and overlapped building blocks.

Fig. 4.23 | An unstructured flowchart.

Stacked building blocks Nested building blocks

Overlapping building blocks
(Illegal in structured programs)

142 Chapter 4 C Program Control

Sequence is straightforward. Selection is implemented in one of three ways:

• if statement (single selection)

• if…else statement (double selection)

• switch statement (multiple selection)

It’s straightforward to prove that the simple if statement is sufficient to provide any form
of selection—everything that can be done with the if…else statement and the switch
statement can be implemented with one or more if statements.

Iteration is implemented in one of three ways:

• while statement

• do…while statement

• for statement

It’s also straightforward to prove that the while statement is sufficient to provide any
form of iteration. Everything that can be done with the do…while statement and the for
statement can be done with the while statement.

Combining these results illustrates that any form of control ever needed in a C pro-
gram can be expressed in terms of only three forms of control:

• sequence

• if statement (selection)

• while statement (iteration)

And these control statements can be combined in only two ways—stacking and
nesting. Indeed, structured programming promotes simplicity.

In Chapters 3 and 4, we’ve discussed how to compose programs from control state-
ments containing only actions and decisions. In Chapter 5, we introduce another pro-
gram-structuring unit called the function. We’ll learn to compose large programs by
combining functions, which, in turn, can be composed of control statements. We’ll also
discuss how using functions promotes software reusability.

4.13 Secure C Programming
Checking Function scanf’s Return Value
Figure 4.6 used the math library function pow, which calculates the value of its first argu-
ment raised to the power of its second argument and returns the result as a double value.
The calculation’s result was then used in the statement that called pow.

Many functions return values indicating whether they executed successfully. For
example, function scanf returns an int indicating whether the input operation was suc-
cessful. If an input failure occurs, scanf returns the value EOF (defined in <stdio.h>); oth-
erwise, it returns the number of items that were read. If this value does not match the
number you intended to read, then scanf was unable to complete the input operation.

Consider the following statement from Fig. 3.6:

which expects to read one int value. If the user enters an integer, scanf returns 1 indicat-
ing that one value was indeed read. If the user enters a string, such as "hello", scanf re-

scanf("%d", &grade); // read grade from user

 Summary 143

turns 0 indicating that it was unable to read the input as an integer. In this case, the
variable grade does not receive a value.

Function scanf can read multiple inputs, as in

If the input is successful, scanf will return 2, indicating that two values were read. If the
user enters a string for the first value, scanf will return 0 and neither number1 nor number2
will receive a value. If the user enters an integer followed by a string, scanf will return 1
and only number1 will receive a value.

Range Checking
Even if a scanf operates successfully, the values read might still be invalid. For example,
grades are typically integers in the range 0–100. In a program that inputs such grades, you
should validate the grades by using range checking to ensure that they are values from 0
to 100. You can then ask the user to reenter any value that’s out of range. If a program
requires inputs from a specific set of values (e.g., nonsequential product codes), you can
ensure that each input matches a value in the set. For more information, see Chapter 5,
“Integer Security,” of Robert Seacord’s book Secure Coding in C and C++, 2/e.

scanf("%d%d", &number1, &number2); // read two integers

Error-Prevention Tip 4.10
To make your input processing more robust, check scanf’s return value to ensure that the
number of inputs read matches the number of inputs expected. Otherwise, your program
will use the values of the variables as if scanf completed successfully. This could lead to
logic errors, program crashes or even attacks.

Summary
Section 4.2 Iteration Essentials
• Most programs involve iteration, or looping. A loop is a group of instructions the computer ex-

ecutes repeatedly while some loop-continuation condition (, 114) remains true.

• Counter-controlled iteration is sometimes called definite iteration (, 114) because we know in
advance exactly how many times the loop will execute.

• Sentinel-controlled iteration is sometimes called indefinite iteration (, 114) because it’s not
known in advance how many times the loop will execute; the loop includes statements that ob-
tain data each time the loop is performed.

• In counter-controlled iteration, a control variable (, 114) is used to count the number of itera-
tions. The control variable is incremented (or decremented) each time the group of instructions
is performed (, 115). When the correct number of iterations has been performed, the loop ter-
minates, and the program resumes execution with the statement after the iteration statement.

• The sentinel value indicates “end of data.” The sentinel is entered after all regular data items have
been supplied to the program. Sentinels must be distinct from regular data items.

Section 4.3 Counter-Controlled Iteration
• Counter-controlled iteration requires the name (, 115) of a control variable (or loop counter),

the initial value (, 115) of the control variable, the increment (or decrement) by which the con-
trol variable is modified each time through the loop, and the condition that tests for the final
value (, 115) of the control variable (i.e., whether looping should continue).

144 Chapter 4 C Program Control

Section 4.4 for Iteration Statement
• The for iteration statement handles all the details of counter-controlled iteration.

• When the for statement begins executing, its control variable is initialized. Then, the loop-con-
tinuation condition is checked. If the condition is true, the loop’s body executes. The control
variable is then incremented, and the loop begins again with the loop-continuation condition.
This process continues until the loop-continuation condition fails.

• The general format of the for statement is

for (initialization; condition; increment) {
 statements
}

where the initialization expression initializes (and possibly defines) the control variable, the con-
dition expression is the loop-continuation condition, and the increment expression increments
the control variable.

• The comma operator (, 118) guarantees that lists of expressions evaluate from left to right. The
value of the entire expression is that of the rightmost expression.

• The three expressions in the for statement are optional. If the condition expression is omitted, C
assumes that the condition is true, thus creating an infinite loop. One might omit the initializa-
tion expression if the control variable is initialized before the loop. The increment expression
might be omitted if the increment is calculated by statements in the for statement’s body or if
no increment is needed.

• The increment expression in the for statement acts like a standalone C statement at the end of
the body of the for.

• The two semicolons in the for statement are required.

Section 4.5 for Statement: Notes and Observations
• The initialization, loop-continuation condition and increment can contain arithmetic expressions.

• The “increment” may be negative (in which case it’s really a decrement and the loop actually
counts downward).

• If the loop-continuation condition is initially false, the body portion of the loop isn’t performed.
Instead, execution proceeds with the statement following the for statement.

Section 4.6 Examples Using the for Statement
• Function pow (, 122) performs exponentiation. The function pow(x, y) calculates the value of x

raised to the yth power. It takes two arguments of type double and returns a double value.

• Type double is a floating-point type much like float, but typically a variable of type double can
store a value of much greater magnitude with greater precision than float.

• The header <math.h> (, 122) should be included whenever a math function such as pow is used.

• The conversion specifier %21.2f denotes that a floating-point value will be displayed right justi-
fied in a field of 21 characters with two digits to the right of the decimal point.

• To left justify a value in a field, place a - (minus sign) between the % and the field width.

Section 4.7 switch Multiple-Selection Statement
• Occasionally, an algorithm will contain a series of decisions in which a variable or expression is

tested separately for each of the constant integral values it may assume, and different actions are
taken. This is called multiple selection. C provides the switch statement to handle this.

• The switch statement consists of a series of case labels (, 127), an optional default case and
statements to execute for each case.

 Summary 145

• The getchar function (from the standard input/output library) reads and returns as an int one
character from the keyboard.

• Characters are normally stored in variables of type char (, 125). Characters can be stored in any
integer data type because they’re usually represented as one-byte integers in the computer. Thus,
we can treat a character as either an integer or a character, depending on its use.

• Many computers today use the ASCII (American Standard Code for Information Interchange;
, 126) character set in which 97 represents the lowercase letter 'a'.

• Characters can be read with scanf by using the conversion specifier %c.

• Assignment expressions as a whole actually have a value. This value is assigned to the variable
on the left side of the =.

• The fact that assignment statements have values can be useful for setting several variables to the
same value, as in a = b = c = 0;.

• EOF is often used as a sentinel value. EOF is a symbolic integer constant defined in <stdio.h>.

• On Linux/UNIX systems and many others, the EOF indicator is entered by typing <Ctrl> d . On
other systems, such as Microsoft Windows, the EOF indicator can be entered by typing <Ctrl> z.

• Keyword switch is followed by the controlling expression (, 127) in parentheses. The value of
this expression is compared with each of the case labels. If a match occurs, the statements for
that case execute. If no match occurs, the default case executes.

• The break statement causes program control to continue with the statement after the switch.
The break statement prevents the cases in a switch statement from running together.

• Each case can have one or more actions. The switch statement is different from all other control
statements in that braces are not required around multiple actions in a case of a switch.

• Listing several case labels together simply means that the same set of actions is to occur for any
of these cases.

• Remember that the switch statement can be used only for testing a constant integral expression
(, 129)—i.e., any combination of character constants and integer constants that evaluates to a
constant integer value. A character constant can be represented as the specific character in single
quotes, such as 'A'. Characters must be enclosed within single quotes to be recognized as char-
acter constants. Integer constants are simply integer values.

• In addition to integer types int and char, C provides types short int (which can be abbreviated as
short) and long int (which can be abbreviated as long), as well as unsigned versions of all the in-
tegral types. The C standard specifies the minimum value range for each type, but the actual range
may be greater, depending on the implementation. For short ints the minimum range is –32767
to +32767. The minimum range of values for long ints is –2147483647 to +2147483647. The
range of values for an int is greater than or equal to that of a short int and less than or equal to
that of a long int. On many of today’s platforms, ints and long ints represent the same range of
values. The data type signed char can be used to represent integers in the range –127 to +127 or
any of the characters in the computer’s character set. See Section 5.2.4.2 of the C standard docu-
ment for the complete list of signed and unsigned integer-type ranges.

Section 4.8 do…while Iteration Statement
• The do…while statement tests the loop-continuation condition after the loop body is per-

formed. Therefore, the loop body executes at least once. When a do…while terminates, execu-
tion continues with the statement after the while clause.

Section 4.9 break and continue Statements
• The break statement, when executed in a while, for, do…while or switch statement, causes im-

mediate exit from that statement. Program execution continues with the next statement.

146 Chapter 4 C Program Control

• The continue statement, when executed in a while, for or do…while statement, skips the re-
maining statements in the body and performs the next loop iteration. In while and do…while,
the loop-continuation test is evaluated immediately after the continue statement is executed. In
a for, the increment expression is executed, then the loop-continuation test is evaluated.

Section 4.10 Logical Operators
• Logical operators may be used to form complex conditions by combining simple conditions. The

logical operators are && (logical AND), || (logical OR) and ! (logical NOT, or logical negation).

• A condition containing the && (logical AND; , 132) operator is true if and only if both of the
simple conditions are true.

• C evaluates all expressions that include relational operators, equality operators, and/or logical op-
erators to 0 or 1. Although C sets a true value to 1, it accepts any nonzero value as true.

• A condition containing the || (logical OR; , 132) operator is true if either or both of the simple
conditions are true.

• The && operator has a higher precedence than ||. Both operators associate from left to right.

• An expression containing && or || operators is evaluated only until truth or falsehood is known.

• C provides the ! (logical negation; , 132) operator to enable you to “reverse” the meaning of a
condition. Unlike the binary operators && and ||, which combine two conditions, the unary log-
ical negation operator has only a single condition as an operand.

• The logical negation operator is placed before a condition when we’re interested in choosing a
path of execution if the original condition (without the logical negation operator) is false.

• In most cases, you can avoid using logical negation by expressing the condition differently with
an appropriate relational operator.

Section 4.11 Confusing Equality (==) and Assignment (=) Operators
• Programmers often accidentally swap the operators == (equality) and = (assignment). What

makes these swaps so damaging is that they do not ordinarily cause syntax errors. Rather, state-
ments with these errors ordinarily compile correctly, allowing programs to run to completion
while likely generating incorrect results through runtime logic errors.

• You may be inclined to write conditions such as x == 7 with the variable name on the left and the
constant on the right. By reversing these terms so that the constant is on the left and the variable
name is on the right, as in 7 == x, then if you accidentally replace the == operator with =, you’ll
be protected by the compiler. The compiler will treat this as a syntax error, because only a vari-
able name can be placed on the left-hand side of an assignment statement.

• Variable names are said to be lvalues (for “left values”; , 136) because they can be used on the
left side of an assignment operator.

• Constants are said to be rvalues (for “right values”; , 136) because they can be used only on the
right side of an assignment operator. lvalues can also be used as rvalues, but not vice versa.

Self-Review Exercises
4.1 Fill in the blanks in each of the following statements.

a) Counter-controlled iteration is also known as iteration because it’s known in
advance how many times the loop will be executed.

b) Sentinel-controlled iteration is also known as iteration because it’s not known
in advance how many times the loop will be executed.

c) In counter-controlled iteration, a(n) is used to count the number of times a
group of instructions should be repeated.

 Answers to Self-Review Exercises 147

d) The statement, when executed in an iteration statement, causes the next it-
eration of the loop to be performed immediately.

e) The statement, when executed in an iteration statement or a switch, causes
an immediate exit from the statement.

f) The is used to test a particular variable or expression for each of the constant
integral values it may assume.

4.2 State whether the following are true or false. If the answer is false, explain why.
a) The default case is required in the switch selection statement.
b) The break statement is required in the default case of a switch selection statement.
c) The expression (x > y && a < b) is true if either x > y is true or a < b is true.
d) An expression containing the || operator is true if either or both of its operands is true.

4.3 Write a statement or a set of statements to accomplish each of the following tasks:
a) Sum the odd integers between 1 and 99 using a for statement. Use the unsigned integer

variables sum and count.
b) Print the value 333.546372 in a field width of 15 characters with precisions of 1, 2, 3, 4

and 5. Left justify the output. What are the five values that print?
c) Calculate the value of 2.5 raised to the power of 3 using the pow function. Print the re-

sult with a precision of 2 in a field width of 10 positions. What is the value that prints?
d) Print the integers from 1 to 20 using a while loop and the counter variable x. Print only

five integers per line. [Hint: Use the calculation x % 5. When the value of this is 0, print
a newline character, otherwise print a tab character.]

e) Repeat Exercise 4.3(d) using a for statement.

4.4 Find the error in each of the following code segments and explain how to correct it.
a) x = 1;

while (x <= 10);
 ++x;

}
b) for (double y = .1; y != 1.0; y += .1) {

 printf("%f\n", y);
}

c) switch (n) {
 case 1:
 puts("The number is 1");
 case 2:
 puts("The number is 2");
 break;
 default:
 puts("The number is not 1 or 2");
 break;
 }

d) The following code should print the values 1 to 10.

n = 1;
while (n < 10) {

 printf("%d ", n++);
}

Answers to Self-Review Exercises
4.1 a) definite. b) indefinite. c) control variable or counter. d) continue. e) break. f) switch
selection statement.

148 Chapter 4 C Program Control

4.2 a) False. The default case is optional. If no default action is needed, then there’s no need
for a default case.

b) False. The break statement is used to exit the switch statement. The break statement
is not required in any case.

c) False. Both of the relational expressions must be true in order for the entire expression
to be true when using the && operator.

d) True.

4.3 a) unsigned int sum = 0;
for (unsigned int count = 1; count <= 99; count += 2) {
 sum += count;
}

b) printf("%-15.1f\n", 333.546372); // prints 333.5
printf("%-15.2f\n", 333.546372); // prints 333.55
printf("%-15.3f\n", 333.546372); // prints 333.546
printf("%-15.4f\n", 333.546372); // prints 333.5464
printf("%-15.5f\n", 333.546372); // prints 333.54637

c) printf("%10.2f\n", pow(2.5, 3)); // prints 15.63
d) unsigned int x = 1;

while (x <= 20) {
 printf("%d", x);
 if (x % 5 == 0) {
 puts("");
 }

 else {
 printf("%s", "\t");
 }

 ++x;

}

or

unsigned int x = 1;
while (x <= 20) {
 if (x % 5 == 0) {
 printf("%u\n", x++);
 }

 else {
 printf("%u\t", x++);
 }

}

or

unsigned int x = 0;
while (++x <= 20) {
 if (x % 5 == 0) {
 printf("%u\n", x);
 }

 else {
 printf("%u\t", x);
 }

}

 Exercises 149

e) for (unsigned int x = 1; x <= 20; ++x) {
 printf("%u", x);
 if (x % 5 == 0) {
 puts("");
 }

 else {
 printf("%s", "\t");
 }

}

or

for (unsigned int x = 1; x <= 20; ++x) {
 if (x % 5 == 0) {
 printf("%u\n", x);
 }

 else {
 printf("%u\t", x);
 }

}

4.4 a) Error: The semicolon after the while header causes an infinite loop.
Correction: Replace the semicolon with a { or remove both the ; and the }.

b) Error: Using a floating-point number to control a for iteration statement.
Correction: Use an integer, and perform the proper calculation to get the values you de-
sire.

for (int y = 1; y != 10; ++y) {
 printf("%f\n", (float) y / 10);
}

c) Error: Missing break statement in the statements for the first case.
Correction: Add a break statement at the end of the statements for the first case. This
is not necessarily an error if you want the statement of case 2: to execute every time the
case 1: statement executes.

d) Error: Improper relational operator used in the while iteration-continuation condition.
Correction: Use <= rather than <.

Exercises
4.5 Find the error in each of the following. (Note: There may be more than one error.)

a) For (x = 100, x >= 1, ++x) {
 printf("%d\n", x);
}

b) The following code should print whether a given integer is odd or even:

switch (value % 2) {
 case 0:
 puts("Even integer");
 case 1:
 puts("Odd integer");

}

150 Chapter 4 C Program Control

c) The following code should input an integer and a character and print them. Assume the
user types as input 100 A.

scanf("%d", &intVal);
charVal = getchar();

printf("Integer: %d\nCharacter: %c\n", intVal, charVal);
d) for (x = .000001; x == .0001; x += .000001) {

 printf("%.7f\n", x);
}

e) The following code should output the odd integers from 999 to 1:

for (x = 999; x >= 1; x += 2) {
 printf("%d\n", x);
}

f) The following code should output the even integers from 2 to 100:

counter = 2;
Do {
 if (counter % 2 == 0) {
 printf("%u\n", counter);
 }

 counter += 2;
} While (counter < 100);

g) The following code should sum the integers from 100 to 150 (assume total is initial-
ized to 0):

for (x = 100; x <= 150; ++x); {
 total += x;

}

4.6 State which values of the control variable x are printed by each of the following for state-
ments:

a) for (x = 2; x <= 13; x += 2) {
 printf("%u\n", x);
}

b) for (x = 5; x <= 22; x += 7) {
 printf("%u\n", x);
}

c) for (x = 3; x <= 15; x += 3) {
 printf("%u\n", x);
}

d) for (x = 1; x <= 5; x += 7) {
 printf("%u\n", x);
}

e) for (x = 12; x >= 2; x -= 3) {
 printf("%d\n", x);
}

4.7 Write for statements that print the following sequences of values:
a) 1, 2, 3, 4, 5, 6, 7
b) 3, 8, 13, 18, 23
c) 20, 14, 8, 2, –4, –10
d) 19, 27, 35, 43, 51

 Exercises 151

4.8 What does the following program do?

4.9 (Sum a Sequence of Integers) Write a program that sums a sequence of integers. Assume that
the first integer read with scanf specifies the number of values remaining to be entered. Your pro-
gram should read only one value each time scanf is executed. A typical input sequence might be

5 100 200 300 400 500

where the 5 indicates that the subsequent five values are to be summed.

4.10 (Average a Sequence of Integers) Write a program that calculates and prints the average of
several integers. Assume the last value read with scanf is the sentinel 9999. A typical input sequence
might be

10 8 11 7 9 9999

indicating that the average of all the values preceding 9999 is to be calculated.

4.11 (Find the Smallest) Write a program that finds the smallest of several integers. Assume that
the first value read specifies the number of values remaining.

4.12 (Calculating the Sum of Even Integers) Write a program that calculates and prints the sum
of the even integers from 2 to 30.

4.13 (Calculating the Product of Odd Integers) Write a program that calculates and prints the
product of the odd integers from 1 to 15.

4.14 (Factorials) The factorial function is used frequently in probability problems. The factorial
of a positive integer n (written n! and pronounced “n factorial”) is equal to the product of the posi-
tive integers from 1 to n. Write a program that evaluates the factorials of the integers from 1 to 5.
Print the results in tabular format. What difficulty might prevent you from calculating the factorial
of 20?

4.15 (Modified Compound-Interest Program) Modify the compound-interest program of
Section 4.6 to repeat its steps for interest rates of 5%, 6%, 7%, 8%, 9%, and 10%. Use a for loop
to vary the interest rate.

4.16 (Triangle-Printing Program) Write a program that prints the following patterns separately,
one below the other. Use for loops to generate the patterns. All asterisks (*) should be printed by a

1 #include <stdio.h>
2
3 int main(void)
4 {

5 unsigned int x;
6 unsigned int y;
7
8 // prompt user for input

9 printf("%s", "Enter two unsigned integers in the range 1-20: ");
10 scanf("%u%u", &x, &y); // read values for x and y
11
12 for (unsigned int i = 1; i <= y; ++i) { // count from 1 to y
13
14 for (unsigned int j = 1; j <= x; ++j) { // count from 1 to x
15 printf("%s", "@");
16 }

17
18 puts(""); // begin new line
19 }

20 }

152 Chapter 4 C Program Control

single printf statement of the form printf("%s", "*"); (this causes the asterisks to print side by
side). [Hint: The last two patterns require that each line begin with an appropriate number of
blanks.]

4.17 (Calculating Credit Limits) Collecting money becomes increasingly difficult during peri-
ods of recession, so companies may tighten their credit limits to prevent their accounts receivable
(money owed to them) from becoming too large. In response to a prolonged recession, one company
has cut its customers’ credit limits in half. Thus, if a particular customer had a credit limit of $2000,
it’s now $1000. If a customer had a credit limit of $5000, it’s now $2500. Write a program that
analyzes the credit status of three customers of this company. For each customer you’re given:

a) The customer’s account number.
b) The customer’s credit limit before the recession.
c) The customer’s current balance (i.e., the amount the customer owes the company).

Your program should calculate and print the new credit limit for each customer and should
determine (and print) which customers have current balances that exceed their new credit limits.

4.18 (Bar-Chart Printing Program) One interesting application of computers is drawing graphs
and bar charts. Write a program that reads five numbers (each between 1 and 30). For each number
read, your program should print a line containing that number of adjacent asterisks. For example,
if your program reads the number seven, it should print *******.

4.19 (Calculating Sales) An online retailer sells five different products whose retail prices are
shown in the following table:

Write a program that reads a series of pairs of numbers as follows:
a) Product number
b) Quantity sold for one day

Your program should use a switch statement to help determine the retail price for each product.
Your program should calculate and display the total retail value of all products sold last week.

(A) (B) (C) (D)
* ********** ********** *
** ********* ********* **
*** ******** ******** ***
**** ******* ******* ****
***** ****** ****** *****
****** ***** ***** ******
******* **** **** *******
******** *** *** ********
********* ** ** *********
********** * * **********

Product number Retail price

1 $ 2.98

2 $ 4.50

3 $ 9.98

4 $ 4.49

5 $ 6.87

 Exercises 153

4.20 (Truth Tables) Complete the following truth tables by filling in each blank with 0 or 1.

4.21 Rewrite the program of Fig. 4.2 so that the definition and initialization of the variable coun-
ter is peformed before the for statement, the output the value of counter after the loop terminates.

4.22 (Average Grade) Modify the program of Fig. 4.7 so that it calculates the average grade for
the class.

4.23 (Calculating the Compound Interest with Integers) Modify the program of Fig. 4.6 so that
it uses only integers to calculate the compound interest. [Hint: Treat all monetary amounts as inte-
gral numbers of pennies. Then “break” the result into its dollar portion and cents portion by using
the division and remainder operations, respectively. Insert a period.]

4.24 Assume i = 1, j = 2, k = 3 and m = 2. What does each of the following statements print?
a) printf("%d", i == 1);
b) printf("%d", j == 3);
c) printf("%d", i >= 1 && j < 4);
d) printf("%d", m < = 99 && k < m);
e) printf("%d", j >= i || k == m);
f) printf("%d", k + m < j || 3 - j >= k);
g) printf("%d", !m);
h) printf("%d", !(j - m));
i) printf("%d", !(k > m));
j) printf("%d", !(j > k));

4.25 (Table of Decimal, Binary, Octal and Hexadecimal Equivalents) Write a program that
prints a table of the binary, octal and hexadecimal equivalents of the decimal numbers in the range

Condition1 Condition2 Condition1 && Condition2

0 0 0

0 nonzero 0

nonzero 0 _____

nonzero nonzero _____

Condition1 Condition2 Condition1 || Condition2

0 0 0

0 nonzero 1

nonzero 0 _____

nonzero nonzero _____

Condition1 !Condition1

0 1

nonzero _____

154 Chapter 4 C Program Control

1 through 256. If you’re not familiar with these number systems, read Appendix C before you at-
tempt this exercise. [Note: You can display an integer as an octal or hexadecimal value with the con-
version specifiers %o and %X, respectively.]

4.26 (Calculating the Value of π) Calculate the value of π from the infinite series

Print a table that shows the value of π approximated by one term of this series, by two terms, by
three terms, and so on. How many terms of this series do you have to use before you first get 3.14?
3.141? 3.1415? 3.14159?

4.27 (Pythagorean Triples) A right triangle can have sides that are all integers. The set of three
integer values for the sides of a right triangle is called a Pythagorean triple. These three sides must
satisfy the relationship that the sum of the squares of two of the sides is equal to the square of the
hypotenuse. Find all Pythagorean triples for side1, side2, and the hypotenuse all no larger than 500.
Use a triple-nested for loop that simply tries all possibilities. This is an example of “brute-force”
computing. It’s not aesthetically pleasing to many people. But there are many reasons why these
techniques are important. First, with computing power increasing at such a phenomenal pace, so-
lutions that would have taken years or even centuries of computer time to produce with the tech-
nology of just a few years ago can now be produced in hours, minutes or even seconds. Recent
microprocessor chips can process a billion instructions per second! Second, as you’ll learn in more
advanced computer science courses, there are large numbers of interesting problems for which
there’s no known algorithmic approach other than sheer brute force. We investigate many kinds of
problem-solving methodologies in this book. We’ll consider many brute-force approaches to vari-
ous interesting problems.

4.28 (Calculating Weekly Pay) A company pays its employees as managers (who receive a fixed
weekly salary), hourly workers (who receive a fixed hourly wage for up to the first 40 hours they
work and “time-and-a-half”—i.e., 1.5 times their hourly wage—for overtime hours worked), com-
mission workers (who receive $250 plus 5.7% of their gross weekly sales), or pieceworkers (who re-
ceive a fixed amount of money for each of the items they produce—each pieceworker in this
company works on only one type of item). Write a program to compute the weekly pay for each
employee. You do not know the number of employees in advance. Each type of employee has its
own pay code: Managers have paycode 1, hourly workers have code 2, commission workers have
code 3 and pieceworkers have code 4. Use a switch to compute each employee’s pay based on that
employee’s paycode. Within the switch, prompt the user (i.e., the payroll clerk) to enter the appro-
priate facts your program needs to calculate each employee’s pay based on that employee’s paycode.
[Note: You can input values of type double using the conversion specifier %lf with scanf.]

4.29 (De Morgan’s Laws) In this chapter, we discussed the logical operators &&, ||, and !. De
Morgan’s Laws can sometimes make it more convenient for us to express a logical expression. These
laws state that the expression !(condition1 && condition2) is logically equivalent to the expression
(!condition1 || !condition2). Also, the expression !(condition1 || condition2) is logically equivalent
to the expression (!condition1 && !condition2). Use De Morgan’s Laws to write equivalent expres-
sions for each of the following, and then write a program to show that both the original expression
and the new expression in each case are equivalent.

a) !(x < 5) && !(y >= 7)
b) !(a == b) || !(g != 5)
c) !((x <= 8) && (y > 4))
d) !((i > 4) || (j <= 6))

4.30 (Replacing switch with if…else) Rewrite the program of Fig. 4.7 by replacing the switch
statement with a nested if…else statement; be careful to deal with the default case properly. Then

π 4
4
3
---–

4
5

4
7
---–

4
9

4
11
------– …+ + +=

 Exercises 155

rewrite this new version by replacing the nested if…else statement with a series of if statements;
here, too, be careful to deal with the default case properly (this is more difficult than in the nested
if…else version). This exercise demonstrates that switch is a convenience and that any switch
statement can be written with only single-selection statements.

4.31 (Diamond-Printing Program) Write a program that prints the following diamond shape.
You may use printf statements that print either a single asterisk (*) or a single blank. Maximize
your use of iteration (with nested for statements) and minimize the number of printf statements.

4.32 (Modified Diamond-Printing Program) Modify the program you wrote in Exercise 4.31 to
read an odd number in the range 1 to 19 to specify the number of rows in the diamond. Your pro-
gram should then display a diamond of the appropriate size.

4.33 (Roman-Numeral Equivalent of Decimal Values) Write a program that prints a table of all
the Roman-numeral equivalents of the decimal numbers in the range 1 to 100.

4.34 Describe the process you would use to replace a do…while loop with an equivalent while
loop. What problem occurs when you try to replace a while loop with an equivalent do…while

loop? Suppose you’ve been told that you must remove a while loop and replace it with a do…while.
What additional control statement would you need to use and how would you use it to ensure that
the resulting program behaves exactly as the original?

4.35 A criticism of the break statement and the continue statement is that each is unstructured.
Actually, break statements and continue statements can always be replaced by structured state-
ments, although doing so can be awkward. Describe in general how you would remove any break
statement from a loop in a program and replace that statement with some structured equivalent.
[Hint: The break statement leaves a loop from within the body of the loop. The other way to leave
is by failing the loop-continuation test. Consider using in the loop-continuation test a second test
that indicates “early exit because of a ‘break’ condition.”] Use the technique you developed here to
remove the break statement from the program of Fig. 4.11.

4.36 What does the following program segment do?

4.37 Describe in general how you would remove any continue statement from a loop in a pro-
gram and replace that statement with some structured equivalent. Use the technique you developed
here to remove the continue statement from the program of Fig. 4.12.

 *

 *

1 for (unsigned int i = 1; i <= 5; ++i) {
2 for (unsigned int j = 1; j <= 3; ++j) {
3 for (unsigned int k = 1; k <= 4; ++k) {
4 printf("%s", "*");
5 }

6 puts("");
7 }

8 puts("");
9 }

156 Chapter 4 C Program Control

4.38 (“The Twelve Days of Christmas” Song) Write a program that uses iteration and switch
statements to print the song “The Twelve Days of Christmas.” One switch statement should be
used to print the day (i.e., “first,” “second,” etc.). A separate switch statement should be used to
print the remainder of each verse.

4.39 (Limitations of Floating-Point Numbers for Monetary Amounts) Section 4.6 cautioned
about using floating-point values for monetary calculations. Try this experiment: Create a float
variable with the value 1000000.00. Next add to that variable the literal float value 0.12f. Display
the result using printf and the conversion specifier "%.2f". What do you get?

Making a Difference
4.40 (World Population Growth) World population has grown considerably over the centuries.
Continued growth could eventually challenge the limits of breathable air, drinkable water, arable
cropland and other limited resources. There’s evidence that growth has been slowing in recent years
and that world population could peak some time this century, then start to decline.

For this exercise, research world population growth issues online. Be sure to investigate various
viewpoints. Get estimates for the current world population and its growth rate (the percentage by
which it’s likely to increase this year). Write a program that calculates world population growth
each year for the next 75 years, using the simplifying assumption that the current growth rate will stay
constant. Print the results in a table. The first column should display the year from year 1 to year
75. The second column should display the anticipated world population at the end of that year.
The third column should display the numerical increase in the world population that would occur
that year. Using your results, determine the year in which the population would be double what it
is today, if this year’s growth rate were to persist.

4.41 (Tax Plan Alternatives; The “FairTax”) There are many proposals to make taxation fairer.
Check out the FairTax initiative in the United States at

www.fairtax.org

Research how the proposed FairTax works. One suggestion is to eliminate income taxes and most
other taxes in favor of a 23% consumption tax on all products and services that you buy. Some
FairTax opponents question the 23% figure and say that because of the way the tax is calculated, it
would be more accurate to say the rate is 30%—check this carefully. Write a program that prompts
the user to enter expenses in various categories (e.g., housing, food, clothing, transportation, edu-
cation, health care, vacations), then prints the estimated FairTax that person would pay.

5C Functions

O b j e c t i v e s
In this chapter, you’ll:

■ Construct programs
modularly from small pieces
called functions.

■ Use common math functions
in the C standard library.

■ Create new functions.

■ Use the mechanisms that
pass information between
functions.

■ Learn how the function call/
return mechanism is
supported by the function
call stack and stack frames.

■ Use simulation techniques
based on random number
generation.

■ Write and use functions that
call themselves.

158 Chapter 5 C Functions

5.1 Introduction
Most computer programs that solve real-world problems are much larger than the pro-
grams presented in the first few chapters. Experience has shown that the best way to de-
velop and maintain a large program is to construct it from smaller pieces, each of which is
more manageable than the original program. This technique is called divide and conquer.
This chapter describes some key features of the C language that facilitate the design, im-
plementation, operation and maintenance of large programs.

5.2 Modularizing Programs in C
In C, functions are used to modularize programs. Programs are typically written by com-
bining new functions you write with prepackaged functions available in the C standard li-
brary. We discuss both kinds of functions in this chapter. The C standard library provides
a rich collection of functions for performing common mathematical calculations, string ma-
nipulations, character manipulations, input/output, and many other useful operations. This
makes your job easier, because these functions provide many of the capabilities you need.

5.1 Introduction
5.2 Modularizing Programs in C
5.3 Math Library Functions
5.4 Functions
5.5 Function Definitions

5.5.1 square Function
5.5.2 maximum Function

5.6 Function Prototypes: A Deeper Look
5.7 Function Call Stack and Stack Frames
5.8 Headers
5.9 Passing Arguments By Value and By

Reference

5.10 Random Number Generation
5.11 Example: A Game of Chance;

Introducing enum
5.12 Storage Classes
5.13 Scope Rules
5.14 Recursion
5.15 Example Using Recursion: Fibonacci

Series
5.16 Recursion vs. Iteration
5.17 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

Good Programming Practice 5.1
Familiarize yourself with the rich collection of functions in the C standard library.

Software Engineering Observation 5.1
Avoid reinventing the wheel. When possible, use C standard library functions instead of
writing new functions. This can reduce program development time. These functions are
written by experts, well-tested and efficient.

Portability Tip 5.1
Using the functions in the C standard library helps make programs more portable.

5.3 Math Library Functions 159

The C language and the standard library are both specified by the C standard, and
they’re both provided with standard C systems (with the exception that some of the
libraries are designated as optional). The functions printf, scanf and pow that we’ve used
in previous chapters are standard library functions.

You can write functions to define specific tasks that may be used at many points in a
program. These are sometimes referred to as programmer-defined functions. The actual
statements defining the function are written only once, and the statements are hidden
from other functions.

Functions are invoked by a function call, which specifies the function name and pro-
vides information (as arguments) that the function needs to perform its designated task. A
common analogy for this is the hierarchical form of management. A boss (the calling func-
tion or caller) asks a worker (the called function) to perform a task and report back when
the task is done (Fig. 5.1). For example, a function needing to display information on the
screen calls the worker function printf to perform that task, then printf displays the
information and reports back—or returns—to the calling function when its task is com-
pleted. The boss function does not know how the worker function performs its designated
tasks. The worker may call other worker functions, and the boss will be unaware of this.
We’ll soon see how this “hiding” of implementation details promotes good software engi-
neering. Figure 5.1 shows a boss function communicating with several worker functions
in a hierarchical manner. Note that Worker1 acts as a boss function to Worker4 and
Worker5. Relationships among functions may differ from the hierarchical structure shown
in this figure.

5.3 Math Library Functions
Math library functions allow you to perform certain common mathematical calculations.
We use some of them here to introduce the concept of functions. Later in the book, we’ll
discuss many of the other functions in the C standard library.

Functions are normally used in a program by writing the name of the function
followed by a left parenthesis followed by the argument (or a comma-separated list of
arguments) of the function followed by a right parenthesis. For example, to calculate and
print the square root of 900.0 you might write

Fig. 5.1 | Hierarchical boss-function/worker-function relationship.

printf("%.2f", sqrt(900.0));

Boss

Worker2 Worker3Worker1

Worker5Worker4

160 Chapter 5 C Functions

When this statement executes, the math library function sqrt is called to calculate the
square root of the number contained in the parentheses (900.0). The number 900.0 is the
argument of the sqrt function. The preceding statement would print 30.00. The sqrt
function takes an argument of type double and returns a result of type double. All func-
tions in the math library that return floating-point values return the data type double. Note
that double values, like float values, can be output using the %f conversion specification.
You may also store a function call’s result in a variable for later use as in:

Function arguments may be constants, variables, or expressions. If c1 = 13.0, d = 3.0
and f = 4.0, then the statement

calculates and prints the square root of 13.0 + 3.0 * 4.0 = 25.0, namely 5.00.
Figure 5.2 summarizes a small sample of the C math library functions. In the figure,

the variables x and y are of type double. The C11 standard adds a wide range of floating-
point and complex-number capabilities.

double result = sqrt(900.0);

Error-Prevention Tip 5.1
Include the math header by using the preprocessor directive #include <math.h> when
using functions in the math library.

printf("%.2f", sqrt(c1 + d * f));

Function Description Example

sqrt(x) square root of x sqrt(900.0) is 30.0
sqrt(9.0) is 3.0

cbrt(x) cube root of x (C99 and C11 only) cbrt(27.0) is 3.0

cbrt(-8.0) is -2.0

exp(x) exponential function ex exp(1.0) is 2.718282

exp(2.0) is 7.389056
log(x) natural logarithm of x (base e) log(2.718282) is 1.0

log(7.389056) is 2.0
log10(x) logarithm of x (base 10) log10(1.0) is 0.0

log10(10.0) is 1.0
log10(100.0) is 2.0

fabs(x) absolute value of x as a floating-point num-
ber

fabs(13.5) is 13.5
fabs(0.0) is 0.0
fabs(-13.5) is 13.5

ceil(x) rounds x to the smallest integer not less
than x

ceil(9.2) is 10.0
ceil(-9.8) is -9.0

floor(x) rounds x to the largest integer not greater
than x

floor(9.2) is 9.0
floor(-9.8) is -10.0

pow(x, y) x raised to power y (x y) pow(2, 7) is 128.0
pow(9, .5) is 3.0

Fig. 5.2 | Commonly used math library functions. (Part 1 of 2.)

5.4 Functions 161

5.4 Functions
Functions allow you to modularize a program. All variables defined in function definitions
are local variables—they can be accessed only in the function in which they’re defined.
Most functions have a list of parameters that provide the means for communicating infor-
mation between functions via arguments in function calls. A function’s parameters are also
local variables of that function.

There are several motivations for “functionalizing” a program. The divide-and-con-
quer approach makes program development more manageable. Another motivation is
software reusability—using existing functions as building blocks to create new programs.
Software reusability is a major factor in the object-oriented programming movement that
you’ll learn more about when you study languages derived from C, such as C++, Objec-
tive-C, Java, C# (pronounced “C sharp”) and Swift. With good function naming and def-
inition, programs can be created from standardized functions that accomplish specific
tasks, rather than being built by using customized code. This is known as abstraction. We
use abstraction each time we use standard library functions like printf, scanf and pow. A
third motivation is to avoid repeating code in a program. Packaging code as a function
allows it to be executed from other locations in a program simply by calling the function.

5.5 Function Definitions
Each program we’ve presented has consisted of a function called main that called standard
library functions to accomplish its tasks. We now consider how to write custom functions.

fmod(x, y) remainder of x/y as a floating-point number fmod(13.657, 2.333) is 1.992
sin(x) trigonometric sine of x (x in radians) sin(0.0) is 0.0
cos(x) trigonometric cosine of x (x in radians) cos(0.0) is 1.0
tan(x) trigonometric tangent of x (x in radians) tan(0.0) is 0.0

Software Engineering Observation 5.2
In programs containing many functions, main is often implemented as a group of calls to
functions that perform the bulk of the program’s work.

Software Engineering Observation 5.3
Each function should be limited to performing a single, well-defined task, and the function
name should express that task. This facilitates abstraction and promotes software reusability.

Software Engineering Observation 5.4
If you cannot choose a concise name that expresses what the function does, it’s possible that
your function is attempting to perform too many diverse tasks. It’s usually best to break
such a function into smaller functions—this is sometimes called decomposition.

Function Description Example

Fig. 5.2 | Commonly used math library functions. (Part 2 of 2.)

162 Chapter 5 C Functions

5.5.1 square Function
Consider a program that uses a function square to calculate and print the squares of the
integers from 1 to 10 (Fig. 5.3).

Calling Function square
Function square is invoked or called in main within the printf statement (line 11)

Function square receives a copy of the argument x’s value in the parameter y (line 18). Then
square calculates y * y and passes the result back to line 11 in main where square was in-
voked (line 11). Line 11 continues by passing the square result to function printf, which
displays the result on the screen. This process repeats 10 times—once for each iteration of
the for statement.

square Function Definition
The definition of function square (lines 18–21) shows that square expects an integer pa-
rameter y. The keyword int preceding the function name (line 18) indicates that square
returns an integer result. The return statement in square passes the value of the expres-
sion y * y (that is, the result of the calculation) back to the calling function.

square Function Prototype
Line 5

1 // Fig. 5.3: fig05_03.c

2 // Creating and using a programmer-defined function.
3 #include <stdio.h>
4
5
6
7 int main(void)
8 {
9 // loop 10 times and calculate and output square of x each time

10 for (int x = 1; x <= 10; ++x) {
11 printf("%d ",); // function call
12 }

13
14 puts("");
15 }
16
17
18
19
20
21

1 4 9 16 25 36 49 64 81 100

Fig. 5.3 | Creating and using a programmer-defined function.

printf("%d ", square(x)); // function call

int square(int y); // function prototype

int square(int y); // function prototype

square(x)

// square function definition returns the square of its parameter

int square(int y) // y is a copy of the argument to the function
{
 return y * y; // returns the square of y as an int
}

5.5 Function Definitions 163

is a function prototype (also called a function declaration). The int in parentheses in-
forms the compiler that square expects to receive an integer value from the caller. The int
to the left of the function name square informs the compiler that square returns an integer
result to the caller. The compiler compares the calls to square (line 11) to the function
prototype to ensure that:

• the number of arguments is correct,

• the arguments are of the correct type,

• the argument types are in the correct order, and

• the return type is consistent with the context in which the function is called.

Function prototypes are discussed in detail in Section 5.6.

Format of a Function Definition
The format of a function definition is

The function-name is any valid identifier. The return-value-type is the data type of the re-
sult returned to the caller. The return-value-type void indicates that a function does not
return a value. Together, the return-value-type, function-name and parameter-list are some-
times referred to as the function header.

The parameter-list is a comma-separated list that specifies the parameters received by
the function when it’s called. If a function does not receive any values, parameter-list is
void. A type must be listed explicitly for each parameter.

return-value-type function-name(parameter-list)
{

 statements
}

Error-Prevention Tip 5.2
Check that your functions that are supposed to return values do so. Check that your func-
tions that are not supposed to return values do not.

Common Programming Error 5.1
Specifying function parameters of the same type as double x, y instead of double x, dou-
ble y results in a compilation error.

Common Programming Error 5.2
Placing a semicolon after the right parenthesis enclosing the parameter list of a function
definition is a syntax error.

Common Programming Error 5.3
Redefining a parameter as a local variable in a function is a compilation error.

Good Programming Practice 5.2
Although it’s not incorrect to do so, do not use the same names for a function’s arguments
and the corresponding parameters in the function definition. This helps avoid ambiguity.

164 Chapter 5 C Functions

Function Body
The statements within braces form the function body, which is also a block. Variables can
be declared in any block, and blocks can be nested (but functions connot be nested).

Returning Control from a Function
There are three ways to return control from a called function to the point at which a func-
tion was invoked. If the function does not return a result, control is returned simply when
the function-ending right brace is reached, or by executing the statement

If the function does return a result, the statement

returns the value of expression to the caller.

main’s Return Type
Notice that main has an int return type. The return value of main is used to indicate
whether the program executed correctly. In earlier versions of C, we’d explicitly place

at the end of main—0 indicates that a program ran successfully. The C standard indicates
that main implicitly returns 0 if you to omit the preceding statement—as we’ve done
throughout this book. You can explicitly return non-zero values from main to indicate that

Common Programming Error 5.4
Defining a function inside another function is a syntax error.

Good Programming Practice 5.3
Choosing meaningful function names and meaningful parameter names makes programs
more readable and helps avoid excessive use of comments.

Software Engineering Observation 5.5
Small functions promote software reusability.

Software Engineering Observation 5.6
Programs should be written as collections of small functions. This makes programs easier
to write, debug, maintain and modify.

Software Engineering Observation 5.7
A function requiring a large number of parameters may be performing too many tasks.
Consider dividing the function into smaller functions that perform the separate tasks. The
function header should fit on one line if possible.

Software Engineering Observation 5.8
The function prototype, function header and function calls should all agree in the number,
type, and order of arguments and parameters, and in the type of return value.

return;

return expression;

return 0;

5.5 Function Definitions 165

a problem occured during your program’s execution. For information on how to report a
program failure, see the documentation for your particular operating-system environment.

5.5.2 maximum Function
Our second example uses a programmer-defined function maximum to determine and re-
turn the largest of three integers (Fig. 5.4). The integers are input with scanf (line 14).
Next, they’re passed to maximum (line 18), which determines the largest integer. This value
is returned to main by the return statement in maximum (line 35). The printf statement
in line 18 then prints the value returned by maximum.

1 // Fig. 5.4: fig05_04.c

2 // Finding the maximum of three integers.
3 #include <stdio.h>
4
5
6
7 int main(void)
8 {

9 int number1; // first integer entered by the user
10 int number2; // second integer entered by the user
11 int number3; // third integer entered by the user
12
13 printf("%s", "Enter three integers: ");
14 scanf("%d%d%d", &number1, &number2, &number3);
15
16 // number1, number2 and number3 are arguments

17 // to the maximum function call

18 printf("Maximum is: %d\n",);
19 }

20
21 // Function maximum definition
22

23

24
25

26

27
28

29

30
31

32

33
34

35

36

Enter three integers: 22 85 17
Maximum is: 85

Fig. 5.4 | Finding the maximum of three integers. (Part 1 of 2.)

int maximum(int x, int y, int z); // function prototype

maximum(number1, number2, number3)

// x, y and z are parameters
int maximum(int x, int y, int z)
{

 int max = x; // assume x is largest

 if (y > max) { // if y is larger than max,
 max = y; // assign y to max
 }

 if (z > max) { // if z is larger than max,
 max = z; // assign z to max

 }

 return max; // max is largest value
}

166 Chapter 5 C Functions

The function initially assumes that its first argument (stored in the parameter x) is the
largest and assigns it to max (line 25). Next, the if statement at lines 27–29 determines
whether y is greater than max and, if so, assigns y to max. Then, the if statement at lines
31–33 determines whether z is greater than max and, if so, assigns z to max. Finally, line
35 returns max to the caller.

5.6 Function Prototypes: A Deeper Look
An important C feature is the function prototype, which was borrowed from C++. The com-
piler uses function prototypes to validate function calls. Pre-standard C did not perform this
kind of checking, so it was possible to call functions improperly without the compiler detect-
ing the errors. Such calls could result in fatal execution-time errors or nonfatal errors that
caused subtle, difficult-to-detect problems. Function prototypes correct this deficiency.

The function prototype for maximum in Fig. 5.4 (line 5) is

It states that maximum takes three arguments of type int and returns a result of type int.
Notice that the function prototype is the same as the first line of maximum’s definition.

Compilation Errors
A function call that does not match the function prototype is a compilation error. An error
is also generated if the function prototype and the function definition disagree. For exam-
ple, in Fig. 5.4, if the function prototype had been written

Enter three integers: 47 32 14
Maximum is: 47

Enter three integers: 35 8 79
Maximum is: 79

Good Programming Practice 5.4
Include function prototypes for all functions to take advantage of C’s type-checking ca-
pabilities. Use #include preprocessor directives to obtain function prototypes for the stan-
dard library functions from the headers for the appropriate libraries, or to obtain headers
containing function prototypes for functions developed by you and/or your group members.

int maximum(int x, int y, int z); // function prototype

Good Programming Practice 5.5
Include parameter names in function prototypes for documentation purposes. The compil-
er ignores these names, so the prototype int maximum(int, int, int); is valid.

Common Programming Error 5.5
Forgetting the semicolon at the end of a function prototype is a syntax error.

void maximum(int x, int y, int z);

Fig. 5.4 | Finding the maximum of three integers. (Part 2 of 2.)

5.6 Function Prototypes: A Deeper Look 167

the compiler would generate an error because the void return type in the function proto-
type would differ from the int return type in the function header.

Argument Coercion and “Usual Arithmetic Conversion Rules”
Another important feature of function prototypes is the coercion of arguments, i.e., the
forcing of arguments to the appropriate type. For example, the math library function sqrt
can be called with an integer argument even though the function prototype in <math.h>
specifies a double parameter, and the function will still work correctly. The statement

correctly evaluates sqrt(4) and prints the 2.000. The function prototype causes the compil-
er to convert a copy of the int value 4 to the double value 4.0 before the copy is passed to
sqrt. In general, argument values that do not correspond precisely to the parameter types in the
function prototype are converted to the proper type before the function is called. These conversions
can lead to incorrect results if C’s usual arithmetic conversion rules are not followed. These
specify how values can be converted to other types without losing data. In our sqrt example,
an int is automatically converted to a double without changing its value (because double
can represent a much larger range of values than int). However, a double converted to an
int truncates the double’s fractional part, thus changing the original value. Converting large
integer types to small integer types (e.g., long to short) can also result in changed values.

The usual arithmetic conversion rules automatically apply to expressions containing
values of two data types (also referred to as mixed-type expressions), and are handled by
the compiler. In a mixed-type expression, the compiler makes a temporary copy of the
value that needs to be converted, then converts the copy to the “highest” type in the expres-
sion—this is known as promotion. The usual arithmetic conversion rules for a mixed-type
expression containing at least one floating-point value are:

• If one of the values is a long double, the other is converted to a long double.

• If one of the values is a double, the other is converted to a double.

• If one of the values is a float, the other is converted to a float.

If the mixed-type expression contains only integer types, then the usual arithmetic conver-
sions specify a set of integer promotion rules. In most cases, the integer types lower in
Fig. 5.5 are converted to types higher in the figure. Section 6.3.1 of the C standard doc-
ument specifies the complete details of arithmetic operands and the usual arithmetic con-
version rules. Figure 5.5 lists the floating-point and integer data types with each type’s
printf and scanf conversion specifications.

printf("%.3f\n", sqrt(4));

Data type
printf conversion
specification

scanf conversion
specification

Floating-point types
long double %Lf %Lf

double %f %lf

float %f %f

Fig. 5.5 | Arithmetic data types and their conversion specifications. (Part 1 of 2.)

168 Chapter 5 C Functions

A value can be converted to a lower type only by explicitly assigning the value to a vari-
able of lower type or by using a cast operator. Arguments in a function call are converted
to the parameter types specified in a function prototype as if the arguments were being
assigned directly to variables of those types. If our square function that uses an int param-
eter (Fig. 5.3) is called with a floating-point argument, the argument is converted to int
(a lower type), and square usually returns an incorrect value. For example, square(4.5)
returns 16, not 20.25.

If there’s no function prototype for a function, the compiler forms its own function
prototype using the first occurrence of the function—either the function definition or a
call to the function. This typically leads to warnings or errors, depending on the compiler.

5.7 Function Call Stack and Stack Frames
To understand how C performs function calls, we first need to consider a data structure
(i.e., collection of related data items) known as a stack. Think of a stack as analogous to a
pile of dishes. When a dish is placed on the pile, it’s normally placed at the top (referred to
as pushing the dish onto the stack). Similarly, when a dish is removed from the pile, it’s

Integer types
unsigned long long int %llu %llu

long long int %lld %lld

unsigned long int %lu %lu

long int %ld %ld

unsigned int %u %u

int %d %d

unsigned short %hu %hu

short %hd %hd

char %c %c

Common Programming Error 5.6
Converting from a higher data type in the promotion hierarchy to a lower type can change
the data value. Many compilers issue warnings in such cases.

Error-Prevention Tip 5.3
Always include function prototypes for the functions you define or use in your program to
help prevent compilation errors and warnings.

Software Engineering Observation 5.9
A function prototype placed outside any function definition applies to all calls to the
function appearing after the function prototype in the file. A function prototype placed in
a function body applies only to calls made in that function.

Data type
printf conversion
specification

scanf conversion
specification

Fig. 5.5 | Arithmetic data types and their conversion specifications. (Part 2 of 2.)

5.7 Function Call Stack and Stack Frames 169

normally removed from the top (referred to as popping the dish off the stack). Stacks are
known as last-in, first-out (LIFO) data structures—the last item pushed (inserted) on the
stack is the first item popped (removed) from the stack.

An important mechanism for computer science students to understand is the function
call stack (sometimes referred to as the program execution stack). This data structure—
working “behind the scenes”—supports the function call/return mechanism. It also sup-
ports the creation, maintenance and destruction of each called function’s local variables
(also called automatic variables). We explained the last-in, first-out (LIFO) behavior of
stacks with our dish-stacking example. As we’ll see in Figs. 5.7–5.9, this LIFO behavior is
exactly what a function does when returning to the function that called it.

As each function is called, it may call other functions, which may call other func-
tions—all before any function returns. Each function eventually must return control to the
function that called it. So, we must keep track of the return addresses that each function
needs to return control to the function that called it. The function call stack is the perfect
data structure for handling this information. Each time a function calls another function,
an entry is pushed onto the stack. This entry, called a stack frame, contains the return
address that the called function needs in order to return to the calling function. It also con-
tains some additional information we’ll soon discuss. If the called function returns, instead
of calling another function before returning, the stack frame for the function call is popped,
and control transfers to the return address in the popped stack frame.

Each called function always finds the information it needs to return to its caller at the
top of the call stack. And, if a function makes a call to another function, a stack frame for
the new function call is simply pushed onto the call stack. Thus, the return address
required by the newly called function to return to its caller is now located at the top of the
stack.

The stack frames have another important responsibility. Most functions have local
(automatic) variables—parameters and some or all of their local variables. Automatic vari-
ables need to exist while a function is executing. They need to remain active if the function
makes calls to other functions. But when a called function returns to its caller, the called
function’s automatic variables need to “go away.” The called function’s stack frame is a
perfect place to reserve the memory for automatic variables. That stack frame exists only
as long as the called function is active. When that function returns—and no longer needs
its local automatic variables—its stack frame is popped from the stack, and those local auto-
matic variables are no longer known to the program.

Of course, the amount of memory in a computer is finite, so only a certain amount
of memory can be used to store stack frames on the function call stack. If more function
calls occur than can have their stack frames stored on the function call stack, a fatal error
known as stack overflow occurs.

Function Call Stack in Action
Now let’s consider how the call stack supports the operation of a square function called
by main (lines 8–13 of Fig. 5.6). First the operating system calls main—this pushes a stack
frame onto the stack (shown in Fig. 5.7). The stack frame tells main how to return to the

170 Chapter 5 C Functions

operating system (i.e., transfer to return address R1) and contains the space for main’s au-
tomatic variable (i.e., a, which is initialized to 10).

1 // Fig. 5.6: fig05_06.c

2 // Demonstrating the function call stack

3 // and stack frames using a function square.
4 #include <stdio.h>
5
6 int square(int); // prototype for function square
7
8 int main()
9 {

10 int a = 10; // value to square (local automatic variable in main)
11
12 printf("%d squared: %d\n", a,); // display a squared
13 }

14
15 // returns the square of an integer

16 int square(int x) // x is a local variable
17 {

18 return x * x; // calculate square and return result
19 }

10 squared: 100

Fig. 5.6 | Demonstrating the function call stack and stack frames using a function square.

Fig. 5.7 | Function call stack after the operating system invokes main to execute the program.

square(a)

Function call stack after Step 1

Stack frame
for function main

Top of stack
Return location: R1

Automatic variables:

a 10

Lines that represent the operating
system executing instructions

Key

Step 1: Operating system invokes main to execute application

Operating system {
 int a = 10;
 printf("%d squared: %d\n",
 a, square(a));
}Return location R1

int main()

5.7 Function Call Stack and Stack Frames 171

Function main—before returning to the operating system—now calls function
square in line 12 of Fig. 5.6. This causes a stack frame for square (lines 16–19) to be
pushed onto the function call stack (Fig. 5.8). This stack frame contains the return address
that square needs to return to main (i.e., R2) and the memory for square’s automatic vari-
able (i.e., x).

After square calculates the square of its argument, it needs to return to main—and no
longer needs the memory for its automatic variable x. So the stack is popped—giving
square the return location in main (i.e., R2) and losing square’s automatic variable.
Figure 5.9 shows the function call stack after square’s stack frame has been popped.

Function main now displays the result of calling square (line 12 in Fig. 5.6). Reaching
the closing right brace of main causes its stack frame to be popped from the stack, gives
main the address it needs to return to the operating system (i.e., R1 in Fig. 5.7) and causes
the memory for main’s automatic variable (i.e., a) to become unavailable.

You’ve now seen how valuable the stack data structure is in implementing a key mech-
anism that supports program execution. Data structures have many important applica-
tions in computer science. We discuss stacks, queues, lists, trees and other data structures
in Chapter 12.

Fig. 5.8 | Function call stack after main invokes square to perform the calculation.

Return location R2

Stack frame for
function square

Stack frame
for function main

Step 2: main invokes function square to perform calculation

Return location: R1

Automatic variables:

a 10

Return location: R2

Automatic variables:

x 10

Top of stack

{
 int a = 10;
 printf("%d squared: %d\n",
 a, square(a));
}

int main()

{
 return x * x;
}

int square(int x)

Function call stack after Step 2

172 Chapter 5 C Functions

5.8 Headers
Each standard library has a corresponding header containing the function prototypes for
all the functions in that library and definitions of various data types and constants needed
by those functions. Figure 5.10 lists alphabetically some of the standard library headers
that may be included in programs. The C standard includes additional headers. The term
“macros” that’s used several times in Fig. 5.10 is discussed in detail in Chapter 13.

Fig. 5.9 | Function call stack after function square returns to main.

Header Explanation

<assert.h> Contains information for adding diagnostics that aid program debugging.
<ctype.h> Contains function prototypes for functions that test characters for certain

properties, and function prototypes for functions that can be used to convert
lowercase letters to uppercase letters and vice versa.

<errno.h> Defines macros that are useful for reporting error conditions.
<float.h> Contains the floating-point size limits of the system.
<limits.h> Contains the integral size limits of the system.
<locale.h> Contains function prototypes and other information that enables a program to

be modified for the current locale on which it’s running. The notion of locale
enables the computer system to handle different conventions for expressing data
such as dates, times, currency amounts and large numbers throughout the world.

Fig. 5.10 | Some of the standard library headers. (Part 1 of 2.)

Function call stack after Step 3

Return location R2

Stack frame
for function main

Step 3: square returns its result to main

Return location: R1

Automatic variables:

a 10

Top of stack

{
 int a = 10;
 printf("%d squared: %d\n",
 a, square(a));
}

int main()

{
 return x * x;
}

int square(int x)

5.9 Passing Arguments By Value and By Reference 173

You can create custom headers. Programmer-defined headers should also use the .h
filename extension. A programmer-defined header can be included by using the #include
preprocessor directive. For example, if the prototype for our square function was located
in the header square.h, we’d include that header in our program by using the following
directive at the top of the program:

Section 13.2 presents additional information on including headers, such as why program-
mer-defined headers are enclosed in quotes ("") rather than angle brackets (<>).

5.9 Passing Arguments By Value and By Reference
In many programming languages, there are two ways to pass arguments—pass-by-value
and pass-by-reference. When arguments are passed by value, a copy of the argument’s value
is made and passed to the called function. Changes to the copy do not affect an original
variable’s value in the caller. When an argument is passed by reference, the caller allows the
called function to modify the original variable’s value.

Pass-by-value should be used whenever the called function does not need to modify
the value of the caller’s original variable. This prevents the accidental side effects (variable
modifications) that so greatly hinder the development of correct and reliable software sys-
tems. Pass-by-reference should be used only with trusted called functions that need to
modify the original variable.

In C, all arguments are passed by value. As we’ll see in Chapter 7, C Pointers, it’s pos-
sible to achieve pass-by-reference by using the address operator and the indirection operator.
In Chapter 6, we’ll see that array arguments are automatically passed by reference for per-
formance reasons. We’ll see in Chapter 7 that this is not a contradiction. For now, we
concentrate on pass-by-value.

<math.h> Contains function prototypes for math library functions.
<setjmp.h> Contains function prototypes for functions that allow bypassing of the usual

function call and return sequence.
<signal.h> Contains function prototypes and macros to handle various conditions that

may arise during program execution.
<stdarg.h> Defines macros for dealing with a list of arguments to a function whose num-

ber and types are unknown.
<stddef.h> Contains common type definitions used by C for performing calculations.
<stdio.h> Contains function prototypes for the standard input/output library functions,

and information used by them.
<stdlib.h> Contains function prototypes for conversions of numbers to text and text to

numbers, memory allocation, random numbers and other utility functions.
<string.h> Contains function prototypes for string-processing functions.
<time.h> Contains function prototypes and types for manipulating the time and date.

#include "square.h"

Header Explanation

Fig. 5.10 | Some of the standard library headers. (Part 2 of 2.)

174 Chapter 5 C Functions

5.10 Random Number Generation
We now take a brief and, hopefully, entertaining diversion into simulation and game play-
ing. In this and the next section, we’ll develop a nicely structured game-playing program
that includes multiple functions. The program uses functions and several of the control
statements we’ve studied. The element of chance can be introduced into computer applica-
tions by using the C standard library function rand from the <stdlib.h> header.

Obtaining a Random Integer Value
Consider the following statement:

The rand function generates an integer between 0 and RAND_MAX (a symbolic constant de-
fined in the <stdlib.h> header). Standard C states that the value of RAND_MAX must be at
least 32767, which is the maximum value for a two-byte (i.e., 16-bit) integer. The pro-
grams in this section were tested on Microsoft Visual C++ with a maximum RAND_MAX val-
ue of 32767, and on GNU gcc and Xcode LLVM with a maximum RAND_MAX value of
2147483647. If rand truly produces integers at random, every number between 0 and
RAND_MAX has an equal chance (or probability) of being chosen each time rand is called.

The range of values produced directly by rand is often different from what’s needed
in a specific application. For example, a program that simulates coin tossing might require
only 0 for “heads” and 1 for “tails.” A dice-rolling program that simulates a six-sided die
would require random integers from 1 to 6.

Rolling a Six-Sided Die
To demonstrate rand, let’s develop a program (Fig. 5.11) to simulate 20 rolls of a six-sided
die and print the value of each roll.

i = rand();

1 // Fig. 5.11: fig05_11.c

2 // Shifted, scaled random integers produced by 1 + rand() % 6.

3 #include <stdio.h>
4 #include <stdlib.h>
5
6 int main(void)
7 {

8 // loop 20 times

9 for (unsigned int i = 1; i <= 20; ++i) {
10

11 // pick random number from 1 to 6 and output it

12 printf("%10d", 1 +);
13
14 // if counter is divisible by 5, begin new line of output

15 if (i % 5 == 0) {
16 puts("");
17 }

18 }
19 }

Fig. 5.11 | Shifted, scaled random integers produced by 1 + rand() % 6. (Part 1 of 2.)

(rand() % 6)

5.10 Random Number Generation 175

The function prototype for function rand is in <stdlib.h>. We use the remainder
operator (%) in conjunction with rand as follows

to produce integers in the range 0 to 5. This is called scaling. The number 6 is called the
scaling factor. We then shift the range of numbers produced by adding 1 to our previous
result. The output confirms that the results are in the range 1 to 6—the actual random
values chosen might vary by compiler.

Rolling a Six-Sided Die 60,000,000 Times
To show that these numbers occur approximately with equal likelihood, let’s simulate
60,000,000 rolls of a die with the program of Fig. 5.12. Each integer from 1 to 6 should
appear approximately 10,000,000 times.

 6 6 5 5 6
 5 1 1 5 3
 6 6 2 4 2
 6 2 3 4 1

rand() % 6

1 // Fig. 5.12: fig05_12.c
2 // Rolling a six-sided die 60,000,000 times.

3 #include <stdio.h>
4 #include <stdlib.h>
5
6 int main(void)
7 {
8 unsigned int frequency1 = 0; // rolled 1 counter
9 unsigned int frequency2 = 0; // rolled 2 counter

10 unsigned int frequency3 = 0; // rolled 3 counter
11 unsigned int frequency4 = 0; // rolled 4 counter
12 unsigned int frequency5 = 0; // rolled 5 counter
13 unsigned int frequency6 = 0; // rolled 6 counter
14
15 // loop 60000000 times and summarize results

16 for (unsigned int roll = 1; roll <= 60000000; ++roll) {
17 int face = 1 + rand() % 6; // random number from 1 to 6
18
19 // determine face value and increment appropriate counter
20 switch (face) {
21
22 case 1: // rolled 1
23 ++frequency1;

24 break;
25
26 case 2: // rolled 2
27 ++frequency2;

28 break;

Fig. 5.12 | Rolling a six-sided die 60,000,000 times. (Part 1 of 2.)

Fig. 5.11 | Shifted, scaled random integers produced by 1 + rand() % 6. (Part 2 of 2.)

176 Chapter 5 C Functions

As the program output shows, by scaling and shifting we’ve used the rand function to
realistically simulate the rolling of a six-sided die. Note the use of the %s conversion speci-
fier to print the character strings "Face" and "Frequency" as column headers (line 49).
After we study arrays in Chapter 6, we’ll show how to replace this 26-line switch state-
ment elegantly with a single-line statement.

Randomizing the Random Number Generator
Executing the program of Fig. 5.11 again produces

29

30 case 3: // rolled 3
31 ++frequency3;
32 break;
33

34 case 4: // rolled 4
35 ++frequency4;

36 break;
37
38 case 5: // rolled 5
39 ++frequency5;

40 break;
41

42 case 6: // rolled 6
43 ++frequency6;
44 break; // optional
45 }

46 }

47
48 // display results in tabular format

49 printf(" \n", "Face", "Frequency");
50 printf(" 1%13u\n", frequency1);
51 printf(" 2%13u\n", frequency2);
52 printf(" 3%13u\n", frequency3);
53 printf(" 4%13u\n", frequency4);
54 printf(" 5%13u\n", frequency5);
55 printf(" 6%13u\n", frequency6);
56 }

Face Frequency
 1 9999294
 2 10002929
 3 9995360
 4 10000409
 5 10005206
 6 9996802

 6 6 5 5 6
 5 1 1 5 3
 6 6 2 4 2
 6 2 3 4 1

Fig. 5.12 | Rolling a six-sided die 60,000,000 times. (Part 2 of 2.)

%s%13s

5.10 Random Number Generation 177

Notice that exactly the same sequence of values was printed. How can these be random num-
bers? Ironically, this repeatability is an important characteristic of function rand. When de-
bugging a program, this repeatability is essential for proving that corrections to a program
work properly.

Function rand actually generates pseudorandom numbers. Calling rand repeatedly
produces a sequence of numbers that appears to be random. However, the sequence repeats
itself each time the program is executed. Once a program has been thoroughly debugged,
it can be conditioned to produce a different sequence of random numbers for each execu-
tion. This is called randomizing and is accomplished with the standard library function
srand. Function srand takes an unsigned int argument and seeds function rand to pro-
duce a different sequence of random numbers for each execution of the program.

We demonstrate function srand in Fig. 5.13. The conversion specifier %u is used to
read an unsigned int value with scanf. The function prototype for srand is found in
<stdlib.h>.

1 // Fig. 5.13: fig05_13.c
2 // Randomizing the die-rolling program.

3 #include <stdlib.h>
4 #include <stdio.h>
5
6 int main(void)
7 {
8

9
10 printf("%s", "Enter seed: ");
11 scanf("%u", &seed); // note %u for unsigned int
12
13
14

15 // loop 10 times

16 for (unsigned int i = 1; i <= 10; ++i) {
17
18 // pick a random number from 1 to 6 and output it

19 printf("%10d", 1 + (rand() % 6));
20

21 // if counter is divisible by 5, begin a new line of output

22 if (i % 5 == 0) {
23 puts("");
24 }

25 }
26 }

Enter seed: 67
 6 1 4 6 2
 1 6 1 6 4

Enter seed: 867
 2 4 6 1 6
 1 1 3 6 2

Fig. 5.13 | Randomizing the die-rolling program. (Part 1 of 2.)

unsigned int seed; // number used to seed the random number generator

srand(seed); // seed the random number generator

178 Chapter 5 C Functions

Let’s run the program several times and observe the results. Notice that a different
sequence of random numbers is obtained each time the program is run, provided that a
different seed is supplied. The first and last outputs use the same seed value, so they show
the same results.

To randomize without entering a seed each time, use a statement like

This causes the computer to read its clock to obtain the value for the seed automatically.
Function time returns the number of seconds that have passed since midnight on January
1, 1970. This value is converted to an unsigned integer and used as the seed to the random
number generator. The function prototype for time is in <time.h>. We’ll say more about
NULL in Chapter 7.

Generalized Scaling and Shifting of Random Numbers
The values produced directly by rand are always in the range:

As you know, the following statement simulates rolling a six-sided die:

This statement always assigns an integer value (at random) to the variable face in the
range 1 ≤ face ≤ 6. The width of this range (i.e., the number of consecutive integers in
the range) is 6 and the starting number in the range is 1. Referring to the preceding state-
ment, we see that the width of the range is determined by the number used to scale rand
with the remainder operator (i.e., 6), and the starting number of the range is equal to the
number (i.e., 1) that’s added to rand % 6. We can generalize this result as follows:

where a is the shifting value (which is equal to the first number in the desired range of
consecutive integers) and b is the scaling factor (which is equal to the width of the desired
range of consecutive integers). In the exercises, we’ll see that it’s possible to choose integers
at random from sets of values other than ranges of consecutive integers.

5.11 Example: A Game of Chance; Introducing enum
One of the most popular games of chance is a dice game known as “craps,” which is played
in casinos and back alleys throughout the world. The rules of the game are straightforward:

A player rolls two dice. Each die has six faces. These faces contain 1, 2, 3, 4, 5, and 6
spots. After the dice have come to rest, the sum of the spots on the two upward faces is

Enter seed: 67
 6 1 4 6 2
 1 6 1 6 4

srand(time(NULL));

0 ≤ rand() ≤ RAND_MAX

face = 1 + rand() % 6;

n = a + rand() % b;

Fig. 5.13 | Randomizing the die-rolling program. (Part 2 of 2.)

5.11 Example: A Game of Chance; Introducing enum 179

calculated. If the sum is 7 or 11 on the first throw, the player wins. If the sum is 2, 3,
or 12 on the first throw (called “craps”), the player loses (i.e., the “house” wins). If the
sum is 4, 5, 6, 8, 9, or 10 on the first throw, then that sum becomes the player’s
“point.” To win, you must continue rolling the dice until you “make your point.” The
player loses by rolling a 7 before making the point.

Figure 5.14 simulates the game of craps and Fig. 5.15 shows several sample executions.

1 // Fig. 5.14: fig05_14.c
2 // Simulating the game of craps.

3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <time.h> // contains prototype for function time
6
7 // enumeration constants represent game status
8
9

10
11
12 int main(void)
13 {

14 // randomize random number generator using current time
15

16
17 int myPoint; // player must make this point to win
18 // can contain CONTINUE, WON, or LOST

19 int sum = rollDice(); // first roll of the dice
20
21 // determine game status based on sum of dice

22 switch(sum) {
23
24 // win on first roll

25 case 7: // 7 is a winner
26 case 11: // 11 is a winner
27 gameStatus = WON;
28 break;
29
30 // lose on first roll

31 case 2: // 2 is a loser
32 case 3: // 3 is a loser
33 case 12: // 12 is a loser
34 gameStatus = LOST;
35 break;
36
37 // remember point

38 default:
39 gameStatus = CONTINUE; // player should keep rolling
40 myPoint = sum; // remember the point

41 printf("Point is %d\n", myPoint);
42 break; // optional
43 }

44

Fig. 5.14 | Simulating the game of craps. (Part 1 of 2.)

enum Status { CONTINUE, WON, LOST };

int rollDice(void); // function prototype

srand(time(NULL));

enum Status gameStatus;

180 Chapter 5 C Functions

45 // while game not complete

46 while (CONTINUE == gameStatus) { // player should keep rolling
47
48
49 // determine game status

50 if (sum == myPoint) { // win by making point
51 gameStatus = WON;
52 }

53 else {
54 if (7 == sum) { // lose by rolling 7
55 gameStatus = LOST;
56 }
57 }

58 }

59
60 // display won or lost message

61 if (WON == gameStatus) { // did player win?
62 puts("Player wins");
63 }
64 else { // player lost
65 puts("Player loses");
66 }
67 }

68
69 // roll dice, calculate sum and display results
70
71 {

72 int die1 = 1 + (rand() % 6); // pick random die1 value
73 int die2 = 1 + (rand() % 6); // pick random die2 value
74
75 // display results of this roll
76 printf("Player rolled %d + %d = %d\n", die1, die2, die1 + die2);
77 return die1 + die2; // return sum of dice
78 }

Player wins on the first roll

Player rolled 5 + 6 = 11
Player wins

Player wins on a subsequent roll

Player rolled 4 + 1 = 5
Point is 5
Player rolled 6 + 2 = 8
Player rolled 2 + 1 = 3
Player rolled 3 + 2 = 5
Player wins

Fig. 5.15 | Sample runs for the game of craps. (Part 1 of 2.)

Fig. 5.14 | Simulating the game of craps. (Part 2 of 2.)

sum = rollDice(); // roll dice again

int rollDice(void)

5.11 Example: A Game of Chance; Introducing enum 181

In the rules of the game, notice that the player must roll two dice on the first roll, and
must do so later on all subsequent rolls. We define a function rollDice to roll the dice and
compute and print their sum. Function rollDice is defined once, but it’s called from two
places in the program (lines 19 and 47). The function takes no arguments, so we’ve indicated
void in the parameter list (line 70) and in the function prototype. Function rollDice does
return the sum of the two dice, so a return type of int is indicated in its function header and
in its function prototype.

Enumerations
The game is reasonably involved. The player may win or lose on the first roll, or may win
or lose on any subsequent roll. Variable gameStatus, defined to be of a new type—enum

Status—stores the current status. Line 8 creates a programmer-defined type called an
enumeration. An enumeration, introduced by the keyword enum, is a set of integer con-
stants represented by identifiers. Enumeration constants help make programs more read-
able and easier to maintain. Values in an enum start with 0 and are incremented by 1. In
line 8, the constant CONTINUE has the value 0, WON has the value 1 and LOST has the value
2. It’s also possible to assign an integer value to each identifier in an enum (see Chapter 10).
The identifiers in an enumeration must be unique, but the values may be duplicated.

When the game is won, either on the first roll or on a subsequent roll, gameStatus is
set to WON. When the game is lost, either on the first roll or on a subsequent roll, game-
Status is set to LOST. Otherwise gameStatus is set to CONTINUE and the game continues.

Game Ends on First Roll
After the first roll, if the game is over, the while statement (lines 46–58) is skipped because
gameStatus is not CONTINUE. The program proceeds to the if…else statement at lines
61–66, which prints "Player wins" if gameStatus is WON and "Player loses" otherwise.

Player loses on the first roll

Player rolled 1 + 1 = 2
Player loses

Player loses on a subsequent roll

Player rolled 6 + 4 = 10
Point is 10
Player rolled 3 + 4 = 7
Player loses

Common Programming Error 5.7
Assigning a value to an enumeration constant after it has been defined is a syntax error.

Good Programming Practice 5.6
Use only uppercase letters in the names of enumeration constants to make these constants
stand out in a program and to indicate that enumeration constants are not variables.

Fig. 5.15 | Sample runs for the game of craps. (Part 2 of 2.)

182 Chapter 5 C Functions

Game Ends on a Subsequent Roll
After the first roll, if the game is not over, then sum is saved in myPoint. Execution proceeds
with the while statement because gameStatus is CONTINUE. Each time through the while,
rollDice is called to produce a new sum. If sum matches myPoint, gameStatus is set to WON
to indicate that the player won, the while-test fails, the if…else statement prints "Play-
er wins" and execution terminates. If sum is equal to 7 (line 54), gameStatus is set to LOST
to indicate that the player lost, the while-test fails, the if…else statement prints "Player
loses" and execution terminates.

Control Architecture
Note the program’s interesting control architecture. We’ve used two functions—main and
rollDice—and the switch, while, nested if…else and nested if statements. In this
chapter’s exercises, we’ll investigate various interesting characteristics of the game of craps.

5.12 Storage Classes
In Chapters 2–4, we used identifiers for variable names. The attributes of variables include
name, type, size and value. In this chapter, we also use identifiers as names for user-defined
functions. Actually, each identifier in a program has other attributes, including storage
class, storage duration, scope and linkage.

C provides the storage class specifiers auto, register,1 extern and static.2 An
identifier’s storage class determines its storage duration, scope and linkage. An identifier’s
storage duration is the period during which the identifier exists in memory. Some exist
briefly, some are repeatedly created and destroyed, and others exist for the program’s entire
execution. An identifier’s scope is where the identifier can be referenced in a program.
Some can be referenced throughout a program, others from only portions of a program.
An identifier’s linkage determines for a multiple-source-file program whether the identi-
fier is known only in the current source file or in any source file with proper declarations.
This section discusses storage classes and storage duration. Section 5.13 discusses scope.
Chapter 14 discusses identifier linkage and programming with multiple source files.

The storage-class specifiers can be split between automatic storage duration and
static storage duration. Keyword auto is used to declare variables of automatic storage
duration. Variables with automatic storage duration are created when program control
enters the block in which they’re defined; they exist while the block is active, and they’re
destroyed when program control exits the block.

Local Variables
Only variables can have automatic storage duration. A function’s local variables (those de-
clared in the parameter list or function body) normally have automatic storage duration.
Keyword auto explicitly declares variables of automatic storage duration. Local variables
have automatic storage duration by default, so keyword auto is rarely used. For the remain-
der of the text, we’ll refer to variables with automatic storage duration simply as automatic
variables.

1. Keyword register is archaic and should not be used.
2. The C11 standard adds the storage class specifier _Thread_local, which is beyond this book’s scope.

5.12 Storage Classes 183

Static Storage Class
Keywords extern and static are used in the declarations of identifiers for variables and
functions of static storage duration. Identifiers of static storage duration exist from the time
at which the program begins execution until the program terminates. For static variables,
storage is allocated and initialized only once, before the program begins execution. For func-
tions, the name of the function exists when the program begins execution. However, even
though the variables and the function names exist from the start of program execution, this
does not mean that these identifiers can be accessed throughout the program. Storage du-
ration and scope (where a name can be used) are separate issues, as we’ll see in Section 5.13.

There are several types of identifiers with static storage duration: external identifiers
(such as global variables and function names) and local variables declared with the storage-
class specifier static. Global variables and function names are of storage class extern by
default. Global variables are created by placing variable declarations outside any function
definition, and they retain their values throughout the execution of the program. Global
variables and functions can be referenced by any function that follows their declarations
or definitions in the file. This is one reason for using function prototypes—when we
include stdio.h in a program that calls printf, the function prototype is placed at the
start of our file to make the name printf known to the rest of the file.

Local variables declared with the keyword static are still known only in the function
in which they’re defined, but unlike automatic variables, static local variables retain their
value when the function is exited. The next time the function is called, the static local
variable contains the value it had when the function last exited. The following statement
declares local variable count to be static and initializes it to 1.

All numeric variables of static storage duration are initialized to zero by default if you do
not explicitly initialize them.

Keywords extern and static have special meaning when explicitly applied to
external identifiers. In Chapter 14 we discuss the explicit use of extern and static with
external identifiers and multiple-source-file programs.

Performance Tip 5.1
Automatic storage is a means of conserving memory, because automatic variables exist
only when they’re needed. They’re created when a function is entered and destroyed when
the function is exited.

Software Engineering Observation 5.10
Defining a variable as global rather than local allows unintended side effects to occur
when a function that does not need access to the variable accidentally or maliciously
modifies it. In general, global variables should be avoided except in certain situations
with unique performance requirements (as discussed in Chapter 14).

Software Engineering Observation 5.11
Variables used only in a particular function should be defined as local variables in that
function rather than as external variables.

static int count = 1;

184 Chapter 5 C Functions

5.13 Scope Rules
The scope of an identifier is the portion of the program in which the identifier can be ref-
erenced. For example, when we define a local variable in a block, it can be referenced only
following its definition in that block or in blocks nested within that block. The four iden-
tifier scopes are function scope, file scope, block scope, and function-prototype scope.

Labels (identifiers followed by a colon such as start:) are the only identifiers with
function scope. Labels can be used anywhere in the function in which they appear, but
cannot be referenced outside the function body. Labels are used in switch statements (as
case labels) and in goto statements (see Chapter 14). Labels are hidden in the function in
which they’re defined. This hiding—more formally called information hiding—is a
means of implementing the principle of least privilege—a fundamental principle of good
software engineering. In the context of an application, the principle states that code should
be granted only the amount of privilege and access that it needs to accomplish its desig-
nated task, but no more.

An identifier declared outside any function has file scope. Such an identifier is
“known” (i.e., accessible) in all functions from the point at which the identifier is declared
until the end of the file. Global variables, function definitions, and function prototypes
placed outside a function all have file scope.

Identifiers defined inside a block have block scope. Block scope ends at the termi-
nating right brace (}) of the block. Local variables defined at the beginning of a function
have block scope, as do function parameters, which are considered local variables by the
function. Any block may contain variable definitions. When blocks are nested, and an iden-
tifier in an outer block has the same name as an identifier in an inner block, the identifier
in the outer block is hidden until the inner block terminates. This means that while exe-
cuting in the inner block, the inner block sees the value of its own local identifier and not
the value of the identically named identifier in the enclosing block. Local variables
declared static still have block scope, even though they exist from before program
startup. Thus, storage duration does not affect the scope of an identifier.

The only identifiers with function-prototype scope are those used in the parameter
list of a function prototype. As mentioned previously, function prototypes do not require
names in the parameter list—only types are required. If a name is used in the parameter list
of a function prototype, the compiler ignores the name. Identifiers used in a function pro-
totype can be reused elsewhere in the program without ambiguity.

Figure 5.16 demonstrates scoping issues with global variables, automatic local vari-
ables and static local variables. A global variable x is defined and initialized to 1 (line 9).
This global variable is hidden in any block (or function) in which a variable named x is

Common Programming Error 5.8
Accidentally using the same name for an identifier in an inner block as is used for an iden-
tifier in an outer block, when in fact you want the identifier in the outer block to be active
for the duration of the inner block.

Error-Prevention Tip 5.4
Avoid variable names that hide names in outer scopes.

5.13 Scope Rules 185

defined. In main, a local variable x is defined and initialized to 5 (line 13). This variable is
then printed to show that the global x is hidden in main. Next, a new block is defined in
main with another local variable x initialized to 7 (line 18). This variable is printed to show
that it hides x in the outer block of main. The variable x with value 7 is automatically
destroyed when the block is exited, and the local variable x in the outer block of main is
printed again to show that it’s no longer hidden.

1 // Fig. 5.16: fig05_16.c

2 // Scoping.

3 #include <stdio.h>
4
5 void useLocal(void); // function prototype
6 void useStaticLocal(void); // function prototype
7 void useGlobal(void); // function prototype
8
9

10
11 int main(void)
12 {

13 int x = 5; // local variable to main
14
15 printf("local x in outer scope of main is %d\n", x);
16
17

18

19
20

21

22
23 printf("local x in outer scope of main is %d\n", x);
24
25 useLocal(); // useLocal has automatic local x
26 useStaticLocal(); // useStaticLocal has static local x

27 useGlobal(); // useGlobal uses global x

28 useLocal(); // useLocal reinitializes automatic local x
29 useStaticLocal(); // static local x retains its prior value

30 useGlobal(); // global x also retains its value

31
32 printf("\nlocal x in main is %d\n", x);
33 }

34
35 // useLocal reinitializes local variable x during each call

36 void useLocal(void)
37 {
38

39
40 printf("\nlocal x in useLocal is %d after entering useLocal\n", x);
41 ++x;

42 printf("local x in useLocal is %d before exiting useLocal\n", x);
43 }
44

Fig. 5.16 | Scoping. (Part 1 of 2.)

int x = 1; // global variable

{ // start new scope
 int x = 7; // local variable to new scope

 printf("local x in inner scope of main is %d\n", x);
} // end new scope

int x = 25; // initialized each time useLocal is called

186 Chapter 5 C Functions

The program defines three functions that each take no arguments and return nothing.
Function useLocal defines an automatic variable x and initializes it to 25 (line 38). When
useLocal is called, the variable is printed, incremented, and printed again before exiting the
function. Each time this function is called, the automatic variable x is reinitialized to 25.

Function useStaticLocal defines a static variable x and initializes it to 50 in line
51 (recall that the storage for static variables is allocated and initialized only once, before
the program begins execution). Local variables declared as static retain their values even

45 // useStaticLocal initializes static local variable x only the first time

46 // the function is called; value of x is saved between calls to this

47 // function
48 void useStaticLocal(void)
49 {

50
51

52
53 printf("\nlocal static x is %d on entering useStaticLocal\n", x);
54 ++x;

55 printf("local static x is %d on exiting useStaticLocal\n", x);
56 }
57
58 // function useGlobal modifies global variable x during each call

59 void useGlobal(void)
60 {

61 printf("\nglobal x is %d on entering useGlobal\n", x);
62 x *= 10;
63 printf("global x is %d on exiting useGlobal\n", x);
64 }

local x in outer scope of main is 5
local x in inner scope of main is 7
local x in outer scope of main is 5

local x in useLocal is 25 after entering useLocal
local x in useLocal is 26 before exiting useLocal

local static x is 50 on entering useStaticLocal
local static x is 51 on exiting useStaticLocal

global x is 1 on entering useGlobal
global x is 10 on exiting useGlobal

local x in useLocal is 25 after entering useLocal
local x in useLocal is 26 before exiting useLocal

local static x is 51 on entering useStaticLocal
local static x is 52 on exiting useStaticLocal

global x is 10 on entering useGlobal
global x is 100 on exiting useGlobal

local x in main is 5

Fig. 5.16 | Scoping. (Part 2 of 2.)

// initialized once
static int x = 50;

5.14 Recursion 187

when they’re out of scope. When useStaticLocal is called, x is printed, incremented, and
printed again before exiting the function. In the next call to this function, the static local
variable x will contain the previously incremented value 51.

Function useGlobal does not define any variables. Therefore, when it refers to variable
x, the global x (line 9) is used. When useGlobal is called, the global variable is printed,
multiplied by 10, and printed again before exiting the function. The next time function
useGlobal is called, the global variable still has its modified value, 10. Finally, the program
prints the local variable x in main again (line 32) to show that none of the function calls
modified the value of x because the functions all referred to variables in other scopes.

5.14 Recursion
For some types of problems, it’s useful to have functions call themselves. A recursive func-
tion is one that calls itself either directly or indirectly through another function. Recursion is
a complex topic discussed at length in upper-level computer science courses. In this section
and the next, we present simple examples of recursion. This book contains an extensive treat-
ment of recursion, which is spread throughout Chapters 4–8 and 12 and Appendices D–
and E. Figure 5.21, in Section 5.16, summarizes the book’s recursion examples and exercises.

We consider recursion conceptually first, then examine several programs containing
recursive functions. Recursive problem-solving approaches have a number of elements in
common. A recursive function is called to solve a problem. The function actually knows
how to solve only the simplest case(s), or so-called base case(s). If the function is called with
a base case, the function simply returns a result. If the function is called with a more com-
plex problem, the function typically divides the problem into two conceptual pieces: a
piece that the function knows how to do and a piece that it does not know how to do. To
make recursion feasible, the latter piece must resemble the original problem, but be a
slightly simpler or smaller version. Because this new problem looks like the original
problem, the function launches (calls) a fresh copy of itself to work on the smaller
problem—this is referred to as a recursive call or the recursion step. The recursion step
also includes a return statement, because its result will be combined with the portion of
the problem the function knew how to solve to form a result that will be passed back to
the original caller.

The recursion step executes while the original call to the function is paused, waiting
for the result from the recursion step. The recursion step can result in many more such
recursive calls, as the function keeps dividing each problem with which it’s called into two
conceptual pieces. For the recursion to terminate, each time the function calls itself with
a slightly simpler version of the original problem, this sequence of smaller problems must
eventually converge on the base case. When the function recognizes the base case, it returns
a result to the previous copy of the function, and a sequence of returns ensues all the way
up the line until the original call of the function eventually returns the final result to its
caller. As an example of these concepts at work, let’s write a recursive program to perform
a popular mathematical calculation.

Recursively Calculating Factorials
The factorial of a nonnegative integer n, written n! (pronounced “n factorial”), is the product

n · (n – 1) · (n – 2) · … · 1

188 Chapter 5 C Functions

with 1! equal to 1, and 0! defined to be 1. For example, 5! is the product 5 * 4 * 3 * 2 * 1,
which is equal to 120.

The factorial of an integer, number, greater than or equal to 0 can be calculated
iteratively (nonrecursively) using a for statement as follows:

A recursive definition of the factorial function is arrived at by observing the following
relationship:

For example, 5! is clearly equal to 5 * 4! as shown by the following:

The evaluation of 5! would proceed as shown in Fig. 5.17. Figure 5.17(a) shows how
the succession of recursive calls proceeds until 1! is evaluated to be 1 (i.e., the base case),
which terminates the recursion. Figure 5.17(b) shows the values returned from each recur-
sive call to its caller until the final value is calculated and returned.

Figure 5.18 uses recursion to calculate and print the factorials of the integers 0–21
(the choice of the type unsigned long long int will be explained momentarily).

factorial = 1;
for (counter = number; counter >= 1; --counter)

factorial *= counter;

n! = n · (n – 1)!

5! = 5 · 4 · 3 · 2 · 1
5! = 5 · (4 · 3 · 2 · 1)
5! = 5 · (4!)

Fig. 5.17 | Recursive evaluation of 5!.

a) Sequence of recursive calls

5 * 4!

4 * 3!

3 * 2!

2 * 1!

5!

1

b) Values returned from each recursive call

Final value = 120

5! = 5 * 24 = 120 is returned

4! = 4 * 6 = 24 is returned

3! = 3 * 2 = 6 is returned

2! = 2 * 1 = 2 is returned

1 is returned

5 * 4!

4 * 3!

3 * 2!

2 * 1!

5!

1

5.14 Recursion 189

1 // Fig. 5.18: fig05_18.c

2 // Recursive factorial function.

3 #include <stdio.h>
4
5
6
7 int main(void)
8 {

9 // during each iteration, calculate
10 // factorial(i) and display result

11 for (unsigned int i = 0; i <= 21; ++i) {
12 printf("%u! = %llu\n", i, factorial(i));
13 }

14 }

15
16 // recursive definition of function factorial

17
18
19
20
21
22
23
24
25
26

0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800
11! = 39916800
12! = 479001600
13! = 6227020800
14! = 87178291200
15! = 1307674368000
16! = 20922789888000
17! = 355687428096000
18! = 6402373705728000
19! = 121645100408832000
20! = 2432902008176640000
21! = 14197454024290336768

Fig. 5.18 | Recursive factorial function.

unsigned long long int factorial(unsigned int number);

unsigned long long int factorial(unsigned int number)
{

 // base case
 if (number <= 1) {
 return 1;
 }
 else { // recursive step
 return (number * factorial(number - 1));
 }

}

190 Chapter 5 C Functions

The recursive factorial function first tests whether a terminating condition is true,
i.e., whether number is less than or equal to 1. If number is indeed less than or equal to 1,
factorial returns 1, no further recursion is necessary, and the program terminates. If
number is greater than 1, the statement

expresses the problem as the product of number and a recursive call to factorial evaluat-
ing the factorial of number - 1. The call factorial(number - 1) is a slightly simpler prob-
lem than the original calculation factorial(number).

Function factorial (lines 17–26) receives an unsigned int and returns a result of
type unsigned long long int. The C standard specifies that a variable of type unsigned
long long int can hold a value at least as large as 18,446,744,073,709,551,615. As can
be seen in Fig. 5.18, factorial values become large quickly. We’ve chosen the data type
unsigned long long int so the program can calculate larger factorial values. The conver-
sion specifier %llu is used to print unsigned long long int values. Unfortunately, the
factorial function produces large values so quickly that even unsigned long long int
does not help us print very many factorial values before the maximum value of a unsigned
long long int variable is exceeded.

Even when we use unsigned long long int, we still can’t calculate factorials beyond
21! This points to a weakness in C (and most other procedural programming languages)—
namely that the language is not easily extended to handle the unique requirements of var-
ious applications. As we’ll see later in the book, C++ is an extensible language that, through
“classes,” allows us to create new data types, including ones that could hold arbitrarily large
integers if we wish.

5.15 Example Using Recursion: Fibonacci Series
The Fibonacci series

begins with 0 and 1 and has the property that each subsequent Fibonacci number is the
sum of the previous two Fibonacci numbers.

The series occurs in nature and, in particular, describes a form of spiral. The ratio of
successive Fibonacci numbers converges to a constant value of 1.618…. This number, too,
repeatedly occurs in nature and has been called the golden ratio or the golden mean.
Humans tend to find the golden mean aesthetically pleasing. Architects often design win-
dows, rooms, and buildings whose length and width are in the ratio of the golden mean.
Postcards are often designed with a golden mean length/width ratio.

return number * factorial(number - 1);

Common Programming Error 5.9
Forgetting to return a value from a recursive function when one is needed.

Common Programming Error 5.10
Either omitting the base case, or writing the recursion step incorrectly so that it does not
converge on the base case, will cause infinite recursion, eventually exhausting memory.
This is analogous to the problem of an infinite loop in an iterative (nonrecursive) solution.

0, 1, 1, 2, 3, 5, 8, 13, 21, …

5.15 Example Using Recursion: Fibonacci Series 191

The Fibonacci series may be defined recursively as follows:

Figure 5.19 calculates the nth Fibonacci number recursively using function fibonacci.
Notice that Fibonacci numbers tend to become large quickly. Therefore, we’ve chosen the
data type unsigned int for the parameter type and the data type unsigned long long int
for the return type in function fibonacci. In Fig. 5.19, each pair of output lines shows a
separate run of the program.

fibonacci(0) = 0
fibonacci(1) = 1
fibonacci(n) = fibonacci(n – 1) + fibonacci(n – 2)

1 // Fig. 5.19: fig05_19.c
2 // Recursive fibonacci function

3 #include <stdio.h>
4
5 unsigned long long int fibonacci(unsigned int n); // function prototype
6
7 int main(void)
8 {
9 unsigned int number; // number input by user

10
11 // obtain integer from user
12 printf("%s", "Enter an integer: ");
13 scanf("%u", &number);
14
15 // calculate fibonacci value for number input by user

16 unsigned long long int result = fibonacci(number);
17
18 // display result

19 printf("Fibonacci(%u) = %llu\n", number, result);
20 }
21
22

23
24

25

26
27

28

29
30

31

32

Enter an integer: 0
Fibonacci(0) = 0

Enter an integer: 1
Fibonacci(1) = 1

Fig. 5.19 | Recursive fibonacci function. (Part 1 of 2.)

// Recursive definition of function fibonacci

unsigned long long int fibonacci(unsigned int n)
{
 // base case

 if (0 == n || 1 == n) {
 return n;
 }

 else { // recursive step
 return fibonacci(n - 1) + fibonacci(n - 2);
 }

}

192 Chapter 5 C Functions

The call to fibonacci from main is not a recursive call (line 16), but all subsequent
calls to fibonacci are recursive (line 30). Each time fibonacci is invoked, it immediately
tests for the base case—n is equal to 0 or 1. If this is true, n is returned. Interestingly, if n
is greater than 1, the recursion step generates two recursive calls, each a slightly simpler
problem than the original call to fibonacci. Figure 5.20 shows how function fibonacci
would evaluate fibonacci(3).

Enter an integer: 2
Fibonacci(2) = 1

Enter an integer: 3
Fibonacci(3) = 2

Enter an integer: 10
Fibonacci(10) = 55

Enter an integer: 20
Fibonacci(20) = 6765

Enter an integer: 30
Fibonacci(30) = 832040

Enter an integer: 40
Fibonacci(40) = 102334155

Fig. 5.20 | Set of recursive calls for fibonacci(3).

Fig. 5.19 | Recursive fibonacci function. (Part 2 of 2.)

+

fibonacci(3)

fibonacci(2) fibonacci(1)return +

fibonacci(1) fibonacci(0) return 1

return 0return 1

return

5.15 Example Using Recursion: Fibonacci Series 193

Order of Evaluation of Operands
This figure raises some interesting issues about the order in which C compilers will evaluate
the operands of operators. This is a different issue from the order in which operators are
applied to their operands, namely the order dictated by the rules of operator precedence
abd associativity. Figure 5.20 shows that while evaluating fibonacci(3), two recursive
calls will be made, namely fibonacci(2) and fibonacci(1). But in what order will these
calls be made? You might simply assume the operands will be evaluated left to right. For
optimization reasons, C does not specify the order in which the operands of most operators
(including +) are to be evaluated. Therefore, you should make no assumption about the
order in which these calls will execute. The calls could execute fibonacci(2) first and then
fibonacci(1), or the calls could execute in the reverse order, fibonacci(1) then fibo-
nacci(2). In this and most other programs, the final result would be the same. But in
some programs the evaluation of an operand may have side effects that could affect the final
result of the expression.

C specifies the order of evaluation of the operands of only four operators—&&, ||, the
comma (,) operator and ?:. The first three of these are binary operators whose operands
are guaranteed to be evaluated left to right. [Note: The commas used to separate the argu-
ments in a function call are not comma operators.] The last operator is C’s only ternary
operator. Its leftmost operand is always evaluated first; if the leftmost operand evaluates to
nonzero (true), the middle operand is evaluated next and the last operand is ignored; if the
leftmost operand evaluates to zero (false), the third operand is evaluated next and the
middle operand is ignored.

Exponential Complexity
A word of caution is in order about recursive programs like the one we use here to generate
Fibonacci numbers. Each level of recursion in the fibonacci function has a doubling effect
on the number of calls—the number of recursive calls that will be executed to calculate the
nth Fibonacci number is on the order of 2n. This rapidly gets out of hand. Calculating only
the 20th Fibonacci number would require on the order of 220 or about a million calls, cal-
culating the 30th Fibonacci number would require on the order of 230 or about a billion
calls, and so on. Computer scientists refer to this as exponential complexity. Problems of this
nature humble even the world’s most powerful computers! Complexity issues in general,
and exponential complexity in particular, are discussed in detail in the upper-level com-
puter science course generally called “Algorithms.”

The example we showed in this section used an intuitively appealing solution to cal-
culate Fibonacci numbers, but there are better approaches. Exercise 5.48 asks you to inves-
tigate recursion in more depth and propose alternate approaches to implementing the
recursive Fibonacci algorithm.

Common Programming Error 5.11
Writing programs that depend on the order of evaluation of the operands of operators oth-
er than &&, ||, ?:, and the comma (,) operator can lead to errors because compilers may
not necessarily evaluate the operands in the order you expect.

Portability Tip 5.2
Programs that depend on the order of evaluation of the operands of operators other than
&&, ||, ?:, and the comma (,) operator can function differently on different compilers.

194 Chapter 5 C Functions

5.16 Recursion vs. Iteration
In the previous sections, we studied two functions that can easily be implemented either
recursively or iteratively. In this section, we compare the two approaches and discuss why
you might choose one approach over the other in a particular situation.

• Both iteration and recursion are based on a control statement: Iteration uses an it-
eration statement; recursion uses a selection statement.

• Both iteration and recursion involve repetition: Iteration uses an iteration state-
ment; recursion achieves repetition through repeated function calls.

• Iteration and recursion each involve a termination test: Iteration terminates when
the loop-continuation condition fails; recursion when a base case is recognized.

• Iteration with counter-controlled iteration and recursion each gradually approach
termination: Iteration keeps modifying a counter until the counter assumes a val-
ue that makes the loop-continuation condition fail; recursion keeps producing sim-
pler versions of the original problem until the base case is reached.

• Both iteration and recursion can occur infinitely: An infinite loop occurs with it-
eration if the loop-continuation test never becomes false; infinite recursion occurs
if the recursion step does not reduce the problem each time in a manner that con-
verges on the base case. Infinite iteration and recursion typically occur as a result of
errors in a program’s logic.

Recursion has many negatives. It repeatedly invokes the mechanism, and consequently
the overhead, of function calls. This can be expensive in both processor time and memory
space. Each recursive call causes another copy of the function (actually only the function’s
variables) to be created; this can consume considerable memory. Iteration normally occurs
within a function, so the overhead of repeated function calls and extra memory assignment
is omitted. So why choose recursion?

Most programming textbooks introduce recursion much later than we’ve done here.
We feel that recursion is a sufficiently rich and complex topic that it’s better to introduce
it earlier and spread the examples over the remainder of the text. Figure 5.21 summarizes
by chapter the 30 recursion examples and exercises in the text.

Let’s close this chapter with some observations that we make repeatedly throughout
the book. Good software engineering is important. High performance is important.
Unfortunately, these goals are often at odds with one another. Good software engineering
is key to making more manageable the task of developing the larger and more complex
software systems we need. High performance is key to realizing the systems of the future
that will place ever greater computing demands on hardware. Where do functions fit in
here?

Software Engineering Observation 5.12
Any problem that can be solved recursively can also be solved iteratively (nonrecursively).
A recursive approach is normally chosen in preference to an iterative approach when the
recursive approach more naturally mirrors the problem and results in a program that’s
easier to understand and debug. Another reason to choose a recursive solution is that an
iterative solution may not be apparent.

5.17 Secure C Programming 195

5.17 Secure C Programming

Secure Random Numbers
In Section 5.10, we introduced the rand function for generating pseudorandom numbers.
The C standard library does not provide a secure random-number generator. According to
the C standard document’s description of function rand, “There are no guarantees as to the
quality of the random sequence produced and some implementations are known to produce

Recursion examples and exercises

Chapter 4
Factorial function
Fibonacci function
Greatest common divisor
Multiply two integers
Raising an integer to an integer power
Towers of Hanoi
Recursive main
Visualizing recursion

Chapter 6
Sum the elements of an array
Print an array
Print an array backward
Print a string backward
Check whether a string is a palindrome
Minimum value in an array
Linear search
Binary search
Eight Queens

Chapter 7
Maze traversal

Chapter 8
Printing a string input at the keyboard backward

Chapter 12
Search a linked list
Print a linked list backward
Binary tree insert
Preorder traversal of a binary tree
Inorder traversal of a binary tree
Postorder traversal of a binary tree
Printing trees

Appendix D
Selection sort
Quicksort

Appendix E
Fibonacci function

Fig. 5.21 | Recursion examples and exercises in the text.

Performance Tip 5.2
Dividing a large program into functions promotes good software engineering. But it has a
price. A heavily functionalized program—as compared to a monolithic (i.e., one-piece)
program without functions—makes potentially large numbers of function calls, and these
consume execution time on a computer’s processor(s). Although monolithic programs may
perform better, they’re more difficult to program, test, debug, maintain, and evolve.

Performance Tip 5.3
Today’s hardware architectures are tuned to make function calls efficient, C compilers
help optimize your code and today’s hardware processors are incredibly fast. For the vast
majority of applications and software systems you’ll build, concentrating on good software
engineering will be more important than programming for high performance. Neverthe-
less, in many C applications and systems, such as game programming, real-time systems,
operating systems and embedded systems, performance is crucial, so we include perfor-
mance tips throughout the book.

196 Chapter 5 C Functions

sequences with distressingly non-random low-order bits.” The CERT guideline MSC30-C
indicates that implementation-specific random-number generation functions must be used
to ensure that the random numbers produced are not predictable—this is extremely impor-
tant, for example, in cryptography and other security applications. The guideline presents
several platform-specific random-number generators that are considered to be secure. For ex-
ample, Microsoft Windows provides the CryptGenRandom function, and POSIX based sys-
tems (such as Linux) provide a random function that produces more secure results. For more
information, see guideline MSC30-C at https://www.securecoding.cert.org. If you’re
building industrial-strength applications that require random numbers, you should investi-
gate for your platform the recommended function(s) to use.

Summary
Section 5.1 Introduction
• The best way to develop and maintain a large program is to divide (, 158) it into several smaller

pieces, each more manageable than the original program.

Section 5.2 Modularizing Programs in C
• A function (, 158) is invoked by a function call (, 159). The function call specifies the function by

name and provides information (as arguments) that the called function needs to perform its task.

• The purpose of information hiding is to give functions access only to the information they need
to complete their tasks. This is a means of implementing the principle of least privilege, one of
the most important principles of good software engineering.

Section 5.3 Math Library Functions
• A function is normally invoked in a program by writing the function’s name followed by a left

parenthesis followed by the argument (or a comma-separated list of arguments) of the function
followed by a right parenthesis.

• Each argument of a function may be a constant, a variable, or an expression.

Section 5.4 Functions
• A local variable (, 161) is known only in a function definition. Other functions are not allowed

to know the names of a function’s local variables, nor is any function allowed to know the im-
plementation details of any other function.

Section 5.5 Function Definitions
• The general format for a function definition is

return-value-type function-name(parameter-list)
{

statements
}

The return-value-type states the type of the value returned to the calling function. If a function
does not return a value, the return-value-type is declared as void. The function-name is any valid
identifier. The parameter-list (, 163) is a comma-separated list containing the definitions of the
variables that will be passed to the function. If a function does not receive any values, parameter-
list is declared as void.

 Summary 197

• The arguments passed to a function should match in number, type and order with the parame-
ters (, 161) in the function definition.

• When a program encounters a function call, control transfers from the point of invocation to the
called function, the statements of that function execute then control returns to the caller.

• A called function can return control to the caller in one of three ways. If the function does not
return a value, control is returned when the function-ending right brace is reached, or by execut-
ing the statement

return;
If the function does return a value, the statement

return expression;

returns the value of expression.

Section 5.6 Function Prototypes: A Deeper Look
• A function prototype (, 163) declares the function’s name, return type and declares the number,

types, and order of the parameters the function expects to receive.

• Function prototypes enable the compiler to verify that functions are called correctly.

• The compiler ignores variable names mentioned in the function prototype.

• Arguments in a mixed-type expression (, 167) are converted to the same type via the C standard’s
usual arithmetic conversion rules (, 167).

Section 5.7 Function Call Stack and Stack Frames
• Stacks (, 169) are known as last-in, first-out (LIFO; , 168) data structures—the last item pushed

(inserted) on the stack is the first item popped (removed) from the stack.

• A called function must know how to return to its caller, so the return address of the calling func-
tion is pushed onto the program execution stack (, 168) when the function is called. If a series
of function calls occurs, the successive return addresses are pushed onto the stack in last-in, first-
out order so that the last function to execute will be the first to return to its caller.

• The program execution stack contains the memory for the local variables used in each invoca-
tion of a function during a program’s execution. This data is known as the stack frame (, 169)
of the function call. When a function call is made, the stack frame for that function call is pushed
onto the program execution stack. When the function returns to its caller, the stack frame for
this function call is popped off the stack and those local variables are no longer known to the
program.

• The amount of memory in a computer is finite, so only a certain amount of memory can be used
to store stack frames on the program execution stack. If there are more function calls than can
have their stack frames stored on the program execution stack, an error known as a stack overflow
occurs. The application will compile correctly, but its execution will fail with a stack overflow.

Section 5.8 Headers
• Each standard library has a corresponding header (, 172) containing the function prototypes for

all of that library’s functions, and definitions of various symbolic constants needed by those func-
tions.

• You can create and include your own headers.

Section 5.9 Passing Arguments By Value and By Reference
• When an argument is passed by value (, 173), a copy of its value is made and passed to the called

function. Changes to the copy in the called function do not affect the original variable’s value.

198 Chapter 5 C Functions

• When an argument is passed by reference (, 173), the caller allows the called function to modify
the original variable’s value.

• All calls in C are call-by-value.

• It’s possible to achieve call-by-reference by using address operators and indirection operators.

Section 5.10 Random Number Generation
• Function rand generates an integer between 0 and RAND_MAX which is defined by the C standard

to be at least 32767.

• Values produced by rand can be scaled and shifted to produce values in a specific range (, 175).

• To randomize a program, use the C standard library function srand.

• The srand function seeds (, 177) the random number generator. An srand call is ordinarily in-
serted in a program only after it has been thoroughly debugged. While debugging, it’s better to
omit srand. This ensures repeatability, which is essential to proving that corrections to a random
number generation program work properly.

• The function prototypes for rand and srand are contained in <stdlib.h>.

• To randomize without the need for entering a seed each time, we use srand(time(NULL)).

• The general equation for scaling and shifting a random number is

n = a + rand() % b;

where a is the shifting value (i.e., the first number in the desired range of consecutive integers)
and b is the scaling factor (i.e,. the width of the desired range of consecutive integers).

Section 5.11 Example: A Game of Chance; Introducing enum
• An enumeration (, 181), introduced by the keyword enum, is a set of integer constants represent-

ed by identifiers. Values in an enum start with 0 and are incremented by 1. It’s also possible to
assign an integer value to each identifier in an enum. The identifiers in an enumeration must be
unique, but the values may be duplicated.

Section 5.12 Storage Classes
• Each identifier in a program has the attributes storage class, storage duration, scope and linkage

(, 182).

• C provides four storage classes indicated by the storage class specifiers: auto, register, extern
and static (, 182).

• An identifier’s storage duration is when that identifier exists in memory.

• An identifier’s linkage (, 182) determines for a multiple-source-file program whether an iden-
tifier is known only in the current source file or in any source file with proper declarations.

• Variables with automatic storage duration (, 182) are created when the block in which they’re
defined is entered, exist while the block is active and are destroyed when the block is exited. A
function’s local variables normally have automatic storage duration.

• Keywords extern and static are used to declare identifiers for variables and functions of static
storage duration.

• Static storage duration (, 182) variables are allocated and initialized once, before the program
begins execution.

• There are two types of identifiers with static storage duration: external identifiers (such as global
variables and function names) and local variables declared with the storage-class specifier static.

• Global variables are created by placing variable definitions outside any function definition.
Global variables retain their values throughout the execution of the program.

 Summary 199

• Local static variables retain their value between calls to the function in which they’re defined.

• All numeric variables of static storage duration are initialized to zero if you do not explicitly ini-
tialize them.

Section 5.13 Scope Rules
• An identifier’s scope (, 184) is where the identifier can be referenced in a program.

• An identifier can have function scope, file scope, block scope or function-prototype scope (,
184).

• Labels are the only identifiers with function scope. Labels can be used anywhere in the function
in which they appear but cannot be referenced outside the function body.

• An identifier declared outside any function has file scope. Such an identifier is “known” in all
functions from the point at which it’s declared until the end of the file.

• Identifiers defined inside a block have block scope. Block scope ends at the terminating right
brace (}) of the block.

• Local variables defined at the beginning of a function have block scope, as do function parame-
ters, which are considered local variables by the function.

• Any block may contain variable definitions. When blocks are nested, and an identifier in an outer
block has the same name as an identifier in an inner block, the identifier in the outer block is
“hidden” until the inner block terminates.

• The only identifiers with function-prototype scope are those used in the parameter list of a func-
tion prototype. Identifiers used in a function prototype can be reused elsewhere in the program
without ambiguity.

Section 5.14 Recursion
• A recursive function (, 187) is a function that calls itself either directly or indirectly.

• If a recursive function is called with a base case (, 187), the function simply returns a result. If
it’s called with a more complex problem, the function divides the problem into two conceptual
pieces: a piece that the function knows how to do and a slightly smaller version of the original
problem. Because this new problem looks like the original problem, the function launches a re-
cursive call to work on the smaller problem.

• For recursion to terminate, each time the recursive function calls itself with a slightly simpler ver-
sion of the original problem, the sequence of smaller and smaller problems must converge on the
base case. When the function recognizes the base case, the result is returned to the previous func-
tion call, and a sequence of returns ensues all the way up the line until the original call of the
function eventually returns the final result.

• Standard C does not specify the order in which the operands of most operators (including +) are
to be evaluated. Of C’s many operators, the standard specifies the order of evaluation of the op-
erands of only the operators &&, ||, the comma (,) operator and ?:. The first three of these are
binary operators whose two operands are evaluated left to right. The last operator is C’s only ter-
nary operator. Its leftmost operand is evaluated first; if it evaluates to nonzero, the middle oper-
and is evaluated next and the last operand is ignored; if the leftmost operand evaluates to zero,
the third operand is evaluated next and the middle operand is ignored.

Section 5.16 Recursion vs. Iteration
• Both iteration and recursion are based on a control structure: Iteration uses an iteration state-

ment; recursion uses a selection statement.

200 Chapter 5 C Functions

• Both iteration and recursion involve repetition: Iteration uses an iteration statement; recursion
achieves repetition through repeated function calls.

• Iteration and recursion each involve a termination test: Iteration terminates when the loop-con-
tinuation condition fails; recursion terminates when a base case is recognized.

• Iteration and recursion can occur infinitely: An infinite loop occurs with iteration if the loop-
continuation test never becomes false; infinite recursion occurs if the recursion step does not re-
duce the problem in a manner that converges on the base case.

• Recursion repeatedly invokes the mechanism, and consequently the overhead, of function calls.
This can be expensive in both processor time and memory space.

Self-Review Exercises
5.1 Answer each of the following:

a) are used to modularize programs.
b) A function is invoked with a(n) .
c) A variable known only within the function in which it’s defined is called a(n) .
d) The statement in a called function is used to pass the value of an expression

back to the calling function.
e) Keyword is used in a function header to indicate that a function does not re-

turn a value or to indicate that a function contains no parameters.
f) The of an identifier is the portion of the program in which the identifier can

be used.
g) The three ways to return control from a called function to a caller are ,

 and .
h) A(n) allows the compiler to check the number, types, and order of the argu-

ments passed to a function.
i) The function is used to produce random numbers.
j) The function is used to set the random number seed to randomize a program.
k) The storage-class specifiers are , , and .
l) Variables declared in a block or in the parameter list of a function are assumed to be of

storage class unless specified otherwise.
m) A non-static variable defined outside any block or function is a(n) variable.
n) For a local variable in a function to retain its value between calls to the function, it must

be declared with the storage-class specifier.
o) The four possible scopes of an identifier are , , and .
p) A function that calls itself either directly or indirectly is a(n) function.
q) A recursive function typically has two components: one that provides a means for the

recursion to terminate by testing for a(n) case, and one that expresses the
problem as a recursive call for a slightly simpler problem than the original call.

5.2 For the following program, state the scope (either function scope, file scope, block scope or
function-prototype scope) of each of the following elements.

a) The variable x in main.
b) The variable y in cube.
c) The function cube.
d) The function main.
e) The function prototype for cube.
f) The identifier y in the function prototype for cube.

 Self-Review Exercises 201

5.3 Write a program that tests whether the examples of the math library function calls shown
in Fig. 5.2 actually produce the indicated results.

5.4 Give the function header for each of the following functions.
a) Function hypotenuse that takes two double-precision floating-point arguments, side1

and side2, and returns a double-precision floating-point result.
b) Function smallest that takes three integers, x, y, z, and returns an integer.
c) Function instructions that does not receive any arguments and does not return a val-

ue. [Note: Such functions are commonly used to display instructions to a user.]
d) Function intToFloat that takes an integer argument, number, and returns a floating-

point result.

5.5 Give the function prototype for each of the following:
a) The function described in Exercise 5.4(a).
b) The function described in Exercise 5.4(b).
c) The function described in Exercise 5.4(c).
d) The function described in Exercise 5.4(d).

5.6 Write a declaration for floating-point variable lastVal that’s to retain its value between calls
to the function in which it’s defined.

5.7 Find the error in each of the following program segments and explain how the error can be
corrected (see also Exercise 5.46):

a) int g(void)
{

 printf("%s", Inside function g\n");
 int h(void)
 {

 printf("%s", Inside function h\n");
 }

}
b) int sum(int x, int y)

{

 int result = x + y;
}

c) void f(float a);
{

 float a;
 printf("%f", a);
}

1 #include <stdio.h>
2 int cube(int y);
3
4 int main(void)
5 {

6 for (int x = 1; x <= 10; ++x)
7 printf("%u\n", cube(x));
8 }

9
10 int cube(int y)
11 {

12 return y * y * y;
13 }

202 Chapter 5 C Functions

d) int sum(int n)
{

 if (0 == n) {
 return 0; //
 }

 else {
 n + sum(n - 1);
 }

}
e) void product(void)

{

 printf("%s", "Enter three integers: ")
 int a, b, c;
 scanf("%d%d%d", &a, &b, &c);
 int result = a * b * c;
 printf("Result is %d", result);
 return result;
}

Answers to Self-Review Exercises
5.1 a) functions. b) function call. c) local variable. d) return. e) void. f) ccope. g) return; or
return expression; or encountering the closing right brace of a function. h) function prototype.
i) rand. j) srand. k) auto, register, extern, static. l) auto. m) external, global. n) static.
o) function scope, file scope, block scope, function-prototype scope. p) recursive. q) base.

5.2 a) Block scope. b) Block scope. c) File scope. d) File scope. e) File scope. f) Function-
prototyp scope.

5.3 See below. [Note: On most Linux systems, you must use the -lm option when compiling
this program.]

1 // ex05_03.c

2 // Testing the math library functions

3 #include <stdio.h>
4 #include <math.h>
5
6 int main(void)
7 {

8 // calculates and outputs the square root

9 printf("sqrt(%.1f) = %.1f\n", 900.0, sqrt(900.0));
10 printf("sqrt(%.1f) = %.1f\n", 9.0, sqrt(9.0));
11

12 // calculates and outputs the cube root

13 printf("cbrt(%.1f) = %.1f\n", 27.0, cbrt(27.0));
14 printf("cbrt(%.1f) = %.1f\n", -8.0, cbrt(-8.0));
15

16 // calculates and outputs the exponential function e to the x

17 printf("exp(%.1f) = %f\n", 1.0, exp(1.0));
18 printf("exp(%.1f) = %f\n", 2.0, exp(2.0));
19

20 // calculates and outputs the logarithm (base e)

21 printf("log(%f) = %.1f\n", 2.718282, log(2.718282));
22 printf("log(%f) = %.1f\n", 7.389056, log(7.389056));
23

 Answers to Self-Review Exercises 203

24 // calculates and outputs the logarithm (base 10)

25 printf("log10(%.1f) = %.1f\n", 1.0, log10(1.0));
26 printf("log10(%.1f) = %.1f\n", 10.0, log10(10.0));
27 printf("log10(%.1f) = %.1f\n", 100.0, log10(100.0));
28

29 // calculates and outputs the absolute value

30 printf("fabs(%.1f) = %.1f\n", 13.5, fabs(13.5));
31 printf("fabs(%.1f) = %.1f\n", 0.0, fabs(0.0));
32 printf("fabs(%.1f) = %.1f\n", -13.5, fabs(-13.5));
33

34 // calculates and outputs ceil(x)

35 printf("ceil(%.1f) = %.1f\n", 9.2, ceil(9.2));
36 printf("ceil(%.1f) = %.1f\n", -9.8, ceil(-9.8));
37
38 // calculates and outputs floor(x)

39 printf("floor(%.1f) = %.1f\n", 9.2, floor(9.2));
40 printf("floor(%.1f) = %.1f\n", -9.8, floor(-9.8));
41

42 // calculates and outputs pow(x, y)

43 printf("pow(%.1f, %.1f) = %.1f\n", 2.0, 7.0, pow(2.0, 7.0));
44 printf("pow(%.1f, %.1f) = %.1f\n", 9.0, 0.5, pow(9.0, 0.5));
45

46 // calculates and outputs fmod(x, y)

47 printf("fmod(%.3f/%.3f) = %.3f\n", 13.657, 2.333,
48 fmod(13.657, 2.333));
49
50 // calculates and outputs sin(x)

51 printf("sin(%.1f) = %.1f\n", 0.0, sin(0.0));
52

53 // calculates and outputs cos(x)

54 printf("cos(%.1f) = %.1f\n", 0.0, cos(0.0));
55

56 // calculates and outputs tan(x)

57 printf("tan(%.1f) = %.1f\n", 0.0, tan(0.0));
58 }

sqrt(900.0) = 30.0
sqrt(9.0) = 3.0
cbrt(27.0) = 3.0
cbrt(-8.0) = -2.0
exp(1.0) = 2.718282
exp(2.0) = 7.389056
log(2.718282) = 1.0
log(7.389056) = 2.0
log10(1.0) = 0.0
log10(10.0) = 1.0
log10(100.0) = 2.0
fabs(13.5) = 13.5
fabs(0.0) = 0.0
fabs(-13.5) = 13.5
ceil(9.2) = 10.0
ceil(-9.8) = -9.0
floor(9.2) = 9.0
floor(-9.8) = -10.0
pow(2.0, 7.0) = 128.0
pow(9.0, 0.5) = 3.0
fmod(13.657/2.333) = 1.992
sin(0.0) = 0.0
cos(0.0) = 1.0
tan(0.0) = 0.0

204 Chapter 5 C Functions

5.4 a) double hypotenuse(double side1, double side2)
b) int smallest(int x, int y, int z)
c) void instructions(void)
d) float intToFloat(int number)

5.5 a) double hypotenuse(double side1, double side2);
b) int smallest(int x, int y, int z);
c) void instructions(void);
d) float intToFloat(int number);

5.6 static float lastVal;

5.7 a) Error: Function h is defined in function g.
Correction: Move the definition of h out of the definition of g.

b) Error: The body of the function is supposed to return an integer, but does not.
Correction: Replace the statement in the function body with:

return x + y;
c) Error: Semicolon after the right parenthesis that encloses the parameter list, and re-

defining the parameter a in the function definition.
Correction: Delete the semicolon after the right parenthesis of the parameter list, and
delete the declaration float a; in the function body.

d) Error: The result of n + sum(n - 1) is not returned; sum returns an improper result.
Correction: Rewrite the statement in the else clause as

return n + sum(n - 1);
e) Error: The function returns a value when it’s not supposed to.

Correction: Eliminate the return statement.

Exercises
5.8 Show the value of x after each of the following statements is performed:

a) x = fabs(7.5);
b) x = floor(7.5);
c) x = fabs(0.0);
d) x = ceil(0.0);
e) x = fabs(-6.4);
f) x = ceil(-6.4);
g) x = ceil(-fabs(-8 + floor(-5.5)));

5.9 (Parking Charges) A parking garage charges a $2.00 minimum fee to park for up to three
hours and an additional $0.50 per hour for each hour or part thereof over three hours. The maximum
charge for any given 24-hour period is $10.00. Assume that no car parks for longer than 24 hours
at a time. Write a program that will calculate and print the parking charges for each of three cus-
tomers who parked their cars in this garage yesterday. You should enter the hours parked for each
customer. Your program should print the results in a tabular format, and should calculate and print
the total of yesterday's receipts. The program should use the function calculateCharges to deter-
mine the charge for each customer. Your outputs should appear in the following format:

Car Hours Charge
1 1.5 2.00
2 4.0 2.50
3 24.0 10.00
TOTAL 29.5 14.50

 Exercises 205

5.10 (Rounding Numbers) An application of function floor is rounding a value to the nearest
integer. The statement

y = floor(x + .5);
will round the number x to the nearest integer and assign the result to y. Write a program that reads
several numbers and uses the preceding statement to round each of these numbers to the nearest
integer. For each number processed, print both the original number and the rounded number.

5.11 (Rounding Numbers) Function floor may be used to round a number to a specific decimal
place. The statement

y = floor(x * 10 + .5) / 10;
rounds x to the tenths position (the first position to the right of the decimal point). The statement

y = floor(x * 100 + .5) / 100;
rounds x to the hundredths position (the second position to the right of the decimal point). Write
a program that defines four functions to round a number x in various ways

a) roundToInteger(number)
b) roundToTenths(number)
c) roundToHundreths(number)
d) roundToThousandths(number)

For each value read, your program should print the original value, the number rounded to the
nearest integer, the number rounded to the nearest tenth, the number rounded to the nearest hun-
dredth, and the number rounded to the nearest thousandth.

5.12 Answer each of the following questions.
a) What does it mean to choose numbers “at random”?
b) Why is the rand function useful for simulating games of chance?
c) Why would you randomize a program by using srand? Under what circumstances is it

desirable not to randomize?
d) Why is it often necessary to scale and/or shift the values produced by rand?

5.13 Write statements that assign random integers to the variable n in the following ranges:
a) 1 ≤ n ≤ 2
b) 1 ≤ n ≤ 100
c) 0 ≤ n ≤ 9
d) 1000 ≤ n ≤ 1112
e) –1 ≤ n ≤ 1
f) –3 ≤ n ≤ 11

5.14 For each of the following sets of integers, write a single statement that will print a number
at random from the set.

a) 2, 4, 6, 8, 10.
b) 3, 5, 7, 9, 11.
c) 6, 10, 14, 18, 22.

5.15 (Hypotenuse Calculations) Define a function called hypotenuse that calculates the length
of the hypotenuse of a right triangle when the other two sides are given. The function should take
two arguments of type double and return the hypotenuse as a double. Test your program with the
side values specified in Fig. 5.22.

5.16 (Exponentiation) Write a function integerPower(base, exponent) that returns the value of

baseexponent

For example, integerPower(3, 4) = 3 * 3 * 3 * 3. Assume that exponent is a positive, nonzero inte-
ger, and base is an integer. Function integerPower should use for to control the calculation. Do
not use any math library functions.

206 Chapter 5 C Functions

5.17 (Multiples) Write a function isMultiple that determines for a pair of integers whether the
second integer is a multiple of the first. The function should take two integer arguments and return
1 (true) if the second is a multiple of the first, and 0 (false) otherwise. Use this function in a program
that inputs a series of pairs of integers.

5.18 (Even or Odd) Write a program that inputs a series of integers and passes them one at a time
to function isEven, which uses the remainder operator to determine whether an integer is even. The
function should take an integer argument and return 1 if the integer is even and 0 otherwise.

5.19 (Square of Asterisks) Write a function that displays a solid square of asterisks whose side is
specified in integer parameter side. For example, if side is 4, the function displays:

5.20 (Displaying a Square of Any Character) Modify the function created in Exercise 5.19 to
form the square out of whatever character is contained in character parameter fillCharacter. Thus
if side is 5 and fillCharacter is “#”, then this function should print:

5.21 (Project: Drawing Shapes with Characters) Use techniques similar to those developed in
Exercises 5.19––5.20 to produce a program that graphs a wide range of shapes.

5.22 (Separating Digits) Write program segments that accomplish each of the following:
a) Calculate the integer part of the quotient when integer a is divided by integer b.
b) Calculate the integer remainder when integer a is divided by integer b.
c) Use the program pieces developed in a) and b) to write a function that inputs an integer

between 1 and 32767 and prints it as a series of digits,with two spaces between each digit.
For example, the integer 4562 should be printed as:

5.23 (Time in Seconds) Write a function that takes the time as three integer arguments (for
hours, minutes, and seconds) and returns the number of seconds since the last time the clock “struck
12.” Use this function to calculate the amount of time in seconds between two times, both of which
are within one 12-hour cycle of the clock.

Triangle Side 1 Side 2

1 3.0 4.0
2 5.0 12.0
3 8.0 15.0

Fig. 5.22 | Sample triangle side values for Exercise 5.15.

#####
#####
#####
#####
#####

4 5 6 2

 Exercises 207

5.24 (Temperature Conversions) Implement the following integer functions:
a) Function toCelsius returns the Celsius equivalent of a Fahrenheit temperature.
b) Function toFahrenheit returns the Fahrenheit equivalent of a Celsius temperature.
c) Use these functions to write a program that prints charts showing the Fahrenheit equiv-

alents of all Celsius temperatures from 0 to 100 degrees, and the Celsius equivalents of
all Fahrenheit temperatures from 32 to 212 degrees. Print the outputs in a tabular for-
mat that minimizes the number of lines of output while remaining readable.

5.25 (Find the Minimum) Write a function that returns the smallest of three floating-point
numbers.

5.26 (Perfect Numbers) An integer number is said to be a perfect number if its factors, including
1 (but not the number itself), sum to the number. For example, 6 is a perfect number because 6 =
1 + 2 + 3. Write a function isPerfect that determines whether parameter number is a perfect num-
ber. Use this function in a program that determines and prints all the perfect numbers between 1
and 1000. Print the factors of each perfect number to confirm that the number is indeed perfect.
Challenge the power of your computer by testing numbers much larger than 1000.

5.27 (Prime Numbers) An integer is said to be prime if it’s divisible by only 1 and itself. For ex-
ample, 2, 3, 5 and 7 are prime, but 4, 6, 8 and 9 are not.

a) Write a function that determines whether a number is prime.
b) Use this function in a program that determines and prints all the prime numbers be-

tween 1 and 10,000. How many of these 10,000 numbers do you really have to test be-
fore being sure that you have found all the primes?

c) Initially you might think that n/2 is the upper limit for which you must test to see
whether a number is prime, but you need go only as high as the square root of n. Re-
write the program, and run it both ways. Estimate the performance improvement.

5.28 (Reversing Digits) Write a function that takes an integer value and returns the number with
its digits reversed. For example, given the number 7631, the function should return 1367.

5.29 (Greatest Common Divisor) The greatest common divisor (GCD) of two integers is the largest
integer that evenly divides each of the two numbers. Write a function gcd that returns the greatest
common divisor of two integers.

5.30 (Quality Points for Student’s Grades) Write a function toQualityPoints that inputs a stu-
dent’s average and returns 4 it’s 90–100, 3 if it’s 80–89, 2 if it’s 70–79, 1 if it’s 60–69, and 0 if the
average is lower than 60.

5.31 (Coin Tossing) Write a program that simulates coin tossing. For each toss of the coin the
program should print Heads or Tails. Let the program toss the coin 100 times, and count the num-
ber of times each side of the coin appears. Print the results. The program should call a separate func-
tion flip that takes no arguments and returns 0 for tails and 1 for heads. [Note: If the program
realistically simulates the coin tossing, then each side of the coin should appear approximately half
the time for a total of approximately 50 heads and 50 tails.]

5.32 (Guess the Number) Write a C program that plays the game of “guess the number” as fol-
lows: Your program chooses the number to be guessed by selecting an integer at random in the range
1 to 1000. The program then types:

I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.

208 Chapter 5 C Functions

The player then types a first guess. The program responds with one of the following:

If the player’s guess is incorrect, your program should loop until the player finally gets the number
right. Your program should keep telling the player Too high or Too low to help the player “zero in”
on the correct answer. [Note: The searching technique employed in this problem is called binary
search. We’ll say more about this in the next problem.]

5.33 (Guess the Number Modification) Modify the program of Exercise 5.32 to count the num-
ber of guesses the player makes. If the number is 10 or fewer, print Either you know the secret or
you got lucky! If the player guesses the number in 10 tries, then print Ahah! You know the secret!
If the player makes more than 10 guesses, then print You should be able to do better! Why should
it take no more than 10 guesses? Well, with each “good guess” the player should be able to eliminate
half of the numbers. Now show why any number 1 to 1000 can be guessed in 10 or fewer tries.

5.34 (Recursive Exponentiation) Write a recursive function power(base, exponent) that when
invoked returns

baseexponent

For example, power(3, 4) = 3 * 3 * 3 * 3. Assume that exponent is an integer greater than or equal
to 1. Hint: The recursion step would use the relationship

baseexponent = base * baseexponent–1

and the terminating condition occurs when exponent is equal to 1 because

base1 = base

5.35 (Fibonacci) The Fibonacci series

0, 1, 1, 2, 3, 5, 8, 13, 21, …

begins with the terms 0 and 1 and has the property that each succeeding term is the sum of the two
preceding terms. a) Write a nonrecursive function fibonacci(n) that calculates the nth Fibonacci
number. Use unsigned int for the function’s parameter and unsigned long long int for its return
type. b) Determine the largest Fibonacci number that can be printed on your system.

5.36 (Towers of Hanoi) Every budding computer scientist must grapple with certain classic
problems, and the Towers of Hanoi (see Fig. 5.23) is one of the most famous of these. Legend has
it that in a temple in the Far East, priests are attempting to move a stack of disks from one peg to
another. The initial stack had 64 disks threaded onto one peg and arranged from bottom to top by
decreasing size. The priests are attempting to move the stack from this peg to a second peg under
the constraints that exactly one disk is moved at a time, and at no time may a larger disk be placed
above a smaller disk. A third peg is available for temporarily holding the disks. Supposedly the world
will end when the priests complete their task, so there’s little incentive for us to facilitate their ef-
forts.

Let’s assume that the priests are attempting to move the disks from peg 1 to peg 3. We wish to
develop an algorithm that will print the precise sequence of disk-to-disk peg transfers.

If we were to approach this problem with conventional methods, we’d rapidly find ourselves
hopelessly knotted up in managing the disks. Instead, if we attack the problem with recursion in
mind, it immediately becomes tractable. Moving n disks can be viewed in terms of moving only
n – 1 disks (and hence the recursion) as follows:

1. Excellent! You guessed the number!
 Would you like to play again (y or n)?
2. Too low. Try again.
3. Too high. Try again.

 Exercises 209

a) Move n – 1 disks from peg 1 to peg 2, using peg 3 as a temporary holding area.
b) Move the last disk (the largest) from peg 1 to peg 3.
c) Move the n – 1 disks from peg 2 to peg 3, using peg 1 as a temporary holding area.

The process ends when the last task involves moving n = 1 disk, i.e., the base case. This is
accomplished by trivially moving the disk without the need for a temporary holding area.

Write a program to solve the Towers of Hanoi problem. Use a recursive function with four
parameters:

a) The number of disks to be moved
b) The peg on which these disks are initially threaded
c) The peg to which this stack of disks is to be moved
d) The peg to be used as a temporary holding area

Your program should print the precise instructions it will take to move the disks from the
starting peg to the destination peg. For example, to move a stack of three disks from peg 1 to peg 3,
your program should print the following series of moves:

1 → 3 (This means move one disk from peg 1 to peg 3.)
1 → 2
3 → 2
1 → 3
2 → 1
2 → 3
1 → 3

5.37 (Towers of Hanoi: Iterative Solution) Any program that can be implemented recursively
can be implemented iteratively, although sometimes with considerably more difficulty and consid-
erably less clarity. Try writing an iterative version of the Towers of Hanoi. If you succeed, compare
your iterative version with the recursive version you developed in Exercise 5.36. Investigate issues
of performance, clarity, and your ability to demonstrate the correctness of the programs.

5.38 (Visualizing Recursion) It’s interesting to watch recursion “in action.” Modify the factorial
function of Fig. 5.18 to print its local variable and recursive call parameter. For each recursive call,
display the outputs on a separate line and add a level of indentation. Do your utmost to make the
outputs clear, interesting and meaningful. Your goal here is to design and implement an output for-
mat that helps a person understand recursion better. You may want to add such display capabilities
to the many other recursion examples and exercises throughout the text.

Fig. 5.23 | Towers of Hanoi for the case with four disks.

210 Chapter 5 C Functions

5.39 (Recursive Greatest Common Divisor) The greatest common divisor of integers x and y is
the largest integer that evenly divides both x and y. Write a recursive function gcd that returns the
greatest common divisor of x and y. The gcd of x and y is defined recursively as follows: If y is equal
to 0, then gcd(x, y) is x; otherwise gcd(x, y) is gcd(y, x % y), where % is the remainder operator.

5.40 (Recursive main) Can main be called recursively? Write a program containing a function
main. Include static local variable count initialized to 1. Postincrement and print the value of count
each time main is called. Run your program. What happens?

5.41 (Distance Between Points) Write a function distance that calculates the distance between
two points (x1, y1) and (x2, y2). All numbers and return values should be of type double.

5.42 What does the following program do? What happens if you exchange lines 8 and 9?

5.43 What does the following program do?

5.44 After you determine what the program of Exercise 5.43 does, modify the program to func-
tion properly after removing the restriction of the second argument’s being nonnegative.

1 #include <stdio.h>
2
3 int main(void)
4 {

5 int c; // variable to hold character input by user
6

7 if ((c = getchar()) != EOF) {
8 main();

9 printf("%c", c);
10 }

11 }

1 #include <stdio.h>
2
3 unsigned int mystery(unsigned int a, unsigned int b); // function prototype
4

5 int main(void)
6 {

7 printf("%s", "Enter two positive integers: ");
8 unsigned int x; // first integer
9 unsigned int y; // second integer

10 scanf("%u%u", &x, &y);
11
12 printf("The result is %u\n", mystery(x, y));
13 }

14
15 // Parameter b must be a positive integer

16 // to prevent infinite recursion

17 unsigned int mystery(unsigned int a, unsigned int b)
18 {

19 // base case

20 if (1 == b) {
21 return a;
22 }

23 else { // recursive step
24 return a + mystery(a, b - 1);
25 }

26 }

 Making a Difference 211

5.45 (Testing Math Library Functions) Write a program that tests the math library functions in
Fig. 5.2. Exercise each of these functions by having your program print out tables of return values
for a diversity of argument values.

5.46 Find the error in each of the following program segments and explain how to correct it:
a) double cube(float); // function prototype

cube(float number) // function definition
{

 return number * number * number;
}

b) int randomNumber = srand();
c) double y = 123.45678;

int x;
x = y;

printf("%f\n", (double) x);
d) double square(double number)

{

 double number;
 return number * number;
}

e) int sum(int n)
{

 if (0 == n) {
 return 0;
 }

 else {
 return n + sum(n);
 }

}

5.47 (Craps Game Modification) Modify the craps program of Fig. 5.14 to allow wagering. Pack-
age as a function the portion of the program that runs one game of craps. Initialize variable bank-
Balance to 1000 dollars. Prompt the player to enter a wager. Use a while loop to check that wager
is less than or equal to bankBalance, and if not, prompt the user to reenter wager until a valid wager
is entered. After a correct wager is entered, run one game of craps. If the player wins, increase
bankBalance by wager and print the new bankBalance. If the player loses, decrease bankBalance by
wager, print the new bankBalance, check whether bankBalance has become zero, and if so print the
message, "Sorry. You busted!" As the game progresses, print various messages to create some “chat-
ter” such as, "Oh, you're going for broke, huh?" or "Aw cmon, take a chance!" or "You're up big.
Now's the time to cash in your chips!"

5.48 (Research Project: Improving the Recursive Fibonacci Implementation) In Section 5.15, the
recursive algorithm we used to calculate Fibonacci numbers was intuitively appealing. However, re-
call that the algorithm resulted in the exponential explosion of recursive function calls. Research the
recursive Fibonacci implementation online. Study the various approaches, including the iterative
version in Exercise 5.35 and versions that use only so-called “tail recursion.” Discuss the relative
merits of each.

Making a Difference
5.49 (Global Warming Facts Quiz) The controversial issue of global warming has been widely
publicized by the film An Inconvenient Truth, featuring former Vice President Al Gore. Mr. Gore
and a U.N. network of scientists, the Intergovernmental Panel on Climate Change, shared the 2007

212 Chapter 5 C Functions

Nobel Peace Prize in recognition of “their efforts to build up and disseminate greater knowledge
about man-made climate change.” Research both sides of the global warming issue online (you
might want to search for phrases like “global warming skeptics”). Create a five-question multiple-
choice quiz on global warming, each question having four possible answers (numbered 1–4). Be ob-
jective and try to fairly represent both sides of the issue. Next, write an application that administers
the quiz, calculates the number of correct answers (zero through five) and returns a message to the
user. If the user correctly answers five questions, print “Excellent”; if four, print “Very good”; if
three or fewer, print “Time to brush up on your knowledge of global warming,” and include a list
of some of the websites where you found your facts.

Computer-Assisted Instruction
As computer costs decline, it becomes feasible for every student, regardless of economic circum-
stance, to have a computer and use it in school. This creates exciting possibilities for improving the
educational experience of all students worldwide as suggested by the next five exercises. [Note:
Check out initiatives such as the One Laptop Per Child Project (www.laptop.org). Also, research
“green” laptops—what are some key “going green” characteristics of these devices? Look into the
Electronic Product Environmental Assessment Tool (www.epeat.net) which can help you assess the
“greenness” of desktops, notebooks and monitors to help you decide which products to purchase.]

5.50 (Computer-Assisted Instruction) The use of computers in education is referred to as com-
puter-assisted instruction (CAI). Write a program that will help an elementary school student learn
multiplication. Use the rand function to produce two positive one-digit integers. The program
should then prompt the user with a question, such as

How much is 6 times 7?

The student then inputs the answer. Next, the program checks the student’s answer. If it’s correct,
display the message "Very good!" and ask another multiplication question. If the answer is wrong,
display the message "No. Please try again." and let the student try the same question repeatedly
until the student finally gets it right. A separate function should be used to generate each new ques-
tion. This function should be called once when the application begins execution and each time the
user answers the question correctly.

5.51 (Computer-Assisted Instruction: Reducing Student Fatigue) One problem in CAI environ-
ments is student fatigue. This can be reduced by varying the computer’s responses to hold the stu-
dent’s attention. Modify the program of Exercise 5.50 so that various comments are displayed for
each answer as follows:

Possible responses to a correct answer:

Very good!

Excellent!

Nice work!

Keep up the good work!

Possible responses to an incorrect answer:

No. Please try again.

Wrong. Try once more.

Don't give up!

No. Keep trying.

Use random-number generation to choose a number from 1 to 4 that will be used to select
one of the four appropriate responses to each correct or incorrect answer. Use a switch statement to
issue the responses.

5.52 (Computer-Assisted Instruction: Monitoring Student Performance) More sophisticated
computer-assisted instruction systems monitor the student’s performance over a period of time. The

 Making a Difference 213

decision to begin a new topic is often based on the student’s success with previous topics. Modify
the program of Exercise 5.51 to count the number of correct and incorrect responses typed by the
student. After the student types 10 answers, your program should calculate the percentage that are
correct. If the percentage is lower than 75%, display "Please ask your teacher for extra help.",
then reset the program so another student can try it. If the percentage is 75% or higher, display
"Congratulations, you are ready to go to the next level!", then reset the program so another
student can try it.

5.53 (Computer-Assisted Instruction: Difficulty Levels) Exercises 5.50– through Exercise 5.52
developed a computer-assisted instruction program to help teach an elementary-school student mul-
tiplication. Modify the program to allow the user to enter a difficulty level. At a difficulty level of
1, the program should use only single-digit numbers in the problems; at a difficulty level of 2, num-
bers as large as two digits, and so on.

5.54 (Computer-Assisted Instruction: Varying the Types of Problems) Modify the program of
Exercise 5.53 to allow the user to pick a type of arithmetic problem to study. An option of 1 means
addition problems only, 2 means subtraction problems only, 3 means multiplication problems only
and 4 means a random mixture of all these types.

6 C Arrays

O b j e c t i v e s
In this chapter, you’ll:

■ Use the array data structure
to represent lists and tables of
values.

■ Define an array, initialize an
array and refer to individual
elements of an array.

■ Define symbolic constants.

■ Pass arrays to functions.

■ Use arrays to store, sort and
search lists and tables of
values.

■ Define and manipulate
multidimensional arrays.

■ Create variable-length arrays
whose size is determined at
execution time.

■ Understand security issues
related to input with scanf,
output with printf and
arrays.

6.1 Introduction 215

6.1 Introduction
This chapter introduces data structures. Arrays are data structures consisting of related
data items of the same type. In Chapter 10, we discuss C’s notion of struct—a data struc-
ture consisting of related data items of possibly different types. Arrays and structs are
“static” entities in that they remain the same size throughout program execution (they
may, of course, be of automatic storage class and hence created and destroyed each time
the blocks in which they’re defined are entered and exited).

6.2 Arrays
An array is a group of contiguous memory locations that all have the same type. To refer to
a particular location or element in the array, we specify the array’s name and the position
number of the particular element in the array.

Figure 6.1 shows an integer array called c, containing 12 elements. Any one of these
elements may be referred to by giving the array’s name followed by the position number of
the particular element in square brackets ([]). The first element in every array is the zeroth
element (i.e., the one with position number 0). An array name, like other identifiers, can
contain only letters, digits and underscores and cannot begin with a digit.

6.1 Introduction
6.2 Arrays
6.3 Defining Arrays
6.4 Array Examples

6.4.1 Defining an Array and Using a Loop to
Set the Array’s Element Values

6.4.2 Initializing an Array in a Definition
with an Initializer List

6.4.3 Specifying an Array’s Size with a
Symbolic Constant and Initializing
Array Elements with Calculations

6.4.4 Summing the Elements of an Array
6.4.5 Using Arrays to Summarize Survey

Results
6.4.6 Graphing Array Element Values with

Histograms
6.4.7 Rolling a Die 60,000,000 Times and

Summarizing the Results in an Array
6.5 Using Character Arrays to Store and

Manipulate Strings
6.5.1 Initializing a Character Array with a

String
6.5.2 Initializing a Character Array with an

Intializer List of Characters
6.5.3 Accessing the Characters in a String

6.5.4 Inputting into a Character Array
6.5.5 Outputting a Character Array That

Represents a String
6.5.6 Demonstrating Character Arrays

6.6 Static Local Arrays and Automatic
Local Arrays

6.7 Passing Arrays to Functions
6.8 Sorting Arrays
6.9 Case Study: Computing Mean,

Median and Mode Using Arrays
6.10 Searching Arrays

6.10.1 Searching an Array with Linear Search
6.10.2 Searching an Array with Binary Search

6.11 Multidimensional Arrays
6.11.1 Illustrating a Double-Subcripted Array
6.11.2 Initializing a Double-Subcripted Array
6.11.3 Setting the Elements in One Row
6.11.4 Totaling the Elements in a Two-

Dimensional Array
6.11.5 Two-Dimensonal Array

Manipulations
6.12 Variable-Length Arrays
6.13 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Recursion Exercises

216 Chapter 6 C Arrays

The position number in square brackets is called the element’s index or subscript. An
index must be an integer or an integer expression. For example, the statement

assigns 1000 to array element c[2]. Similarly, if a = 5 and b = 6, then the statement

adds 2 to array element c[11]. An indexed array name is an lvalue—it can be used on the
left side of an assignment.

Let’s examine array c (Fig. 6.1) more closely. The array’s name is c. Its 12 elements
are referred to as c[0], c[1], c[2], …, c[10] and c[11]. The value stored in c[0] is –45,
the value of c[1] is 6, c[2] is 0, c[7] is 62 and c[11] is 78. To print the sum of the values
contained in the first three elements of array c, we’d write

To divide the value of element 6 of array c by 2 and assign the result to the variable x, write

The brackets used to enclose an array’s index are actually considered to be an operator
in C. They have the same level of precedence as the function call operator (i.e., the paren-
theses that are placed after a function name to call that function). Figure 6.2 shows the
precedence and associativity of the operators introduced to this point in the text.

Fig. 6.1 | 12-element array.

c[2] = 1000;

c[a + b] += 2;

printf("%d", c[0] + c[1] + c[2]);

x = c[6] / 2;

Operators Associativity Type

[] () ++ (postfix) -- (postfix) left to right highest

+ - ! ++ (prefix) -- (prefix) (type) right to left unary

Fig. 6.2 | Operator precedence and associativity. (Part 1 of 2.)

62

-3

1

6453

78

0

-89

1543

72

0

6

c[7]

c[8]

c[9]

c[10]

c[11]

c[6]

c[5]

c[4]

c[3]

c[2]

c[1]

-45c[0]

Position number of the
element within array c

All elements of this array
share the array name, c

6.3 Defining Arrays 217

6.3 Defining Arrays
Arrays occupy space in memory. You specify the type of each element and the number of
elements each array requires so that the computer may reserve the appropriate amount of
memory. The following definition reserves 12 elements for integer array c, which has in-
dices in the range 0–11.

The definition

reserves 100 elements for integer array b and 27 elements for integer array x. These arrays
have indices in the ranges 0–99 and 0–26, respectively. Though you can define multiple
arrays at once, defining only one per line is preferred, so you can add a comment explain-
ing each array’s purpose.

Arrays may contain other data types. For example, an array of type char can store a
character string. Character strings and their similarity to arrays are discussed in Chapter 8.
The relationship between pointers and arrays is discussed in Chapter 7.

6.4 Array Examples
This section presents several examples that demonstrate how to define and initialize arrays,
and how to perform many common array manipulations.

6.4.1 Defining an Array and Using a Loop to Set the Array’s Element
Values
Like any other variables, uninitialized array elements contain garbage values. Figure 6.3 uses
for statements to set the elements of a five-element integer array n to zeros (lines 11–13) and
print the array in tabular format (lines 18–20). The first printf statement (line 15) displays
the column heads for the two columns printed in the subsequent for statement.

* / % left to right multiplicative
+ - left to right additive
< <= > >= left to right relational
== != left to right equality
&& left to right logical AND
|| left to right logical OR
?: right to left conditional
= += -= *= /= %= right to left assignment
, left to right comma

int c[12];

int b[100], x[27];

Operators Associativity Type

Fig. 6.2 | Operator precedence and associativity. (Part 2 of 2.)

218 Chapter 6 C Arrays

Notice that the counter-control variable i is declared to be of type size_t in each for
statement (lines 11 and 18), which according to the C standard represents an unsigned
integral type.1 This type is recommended for any variable that represents an array’s size or
indices. Type size_t is defined in header <stddef.h>, which is often included by other
headers (such as <stdio.h>). [Note: If you attempt to compile Fig. 6.3 and receive errors,
simply include <stddef.h> in your program.]

6.4.2 Initializing an Array in a Definition with an Initializer List
The elements of an array can also be initialized when the array is defined by following the
definition with an equals sign and braces, {}, containing a comma-separated list of array
initializers. Figure 6.4 initializes an integer array with five values (line 9) and prints the
array in tabular format.

1 // Fig. 6.3: fig06_03.c

2 // Initializing the elements of an array to zeros.

3 #include <stdio.h>
4
5 // function main begins program execution

6 int main(void)
7 {

8

9
10

11

12
13

14

15 printf("%s%13s\n", "Element", "Value");
16
17

18

19
20

21 }

Element Value
 0 0
 1 0
 2 0
 3 0
 4 0

Fig. 6.3 | Initializing the elements of an array to zeros.

1. On some compilers, size_t represents unsigned int and on others it represents unsigned long.
Compilers that use unsigned long typically generate a warning on line 19 of Fig. 6.3, because %u is
for displaying unsigned ints, not unsigned longs. To eliminate this warning, replace the format
specification %u with %lu.

int n[5]; // n is an array of five integers

// set elements of array n to 0
for (size_t i = 0; i < 5; ++i) {
 n[i] = 0; // set element at location i to 0
}

// output contents of array n in tabular format

for (size_t i = 0; i < 5; ++i) {
 printf("%7u%13d\n", i, n[i]);
}

6.4 Array Examples 219

If there are fewer initializers than elements in the array, the remaining elements are
initialized to zero. For example, the elements of the array n in Fig. 6.3 could have been
initialized to zero as follows:

This explicitly initializes the first element to zero and initializes the remaining nine ele-
ments to zero because there are fewer initializers than there are elements in the array. Ar-
rays are not automatically initialized to zero. You must at least initialize the first element
to zero for the remaining elements to be automatically zeroed. Array elements are initial-
ized before program startup for static arrays and at runtime for automatic arrays.

If the array size is omitted from a definition with an initializer list, the number of ele-
ments in the array will be the number of elements in the initializer list. For example,

would create a five-element array initialized with the indicated values.

1 // Fig. 6.4: fig06_04.c

2 // Initializing the elements of an array with an initializer list.

3 #include <stdio.h>
4
5 // function main begins program execution

6 int main(void)
7 {

8

9
10

11 printf("%s%13s\n", "Element", "Value");
12
13 // output contents of array in tabular format

14 for (size_t i = 0; i < 5; ++i) {
15 printf("%7u%13d\n", i, n[i]);
16 }

17 }

Element Value
 0 32
 1 27
 2 64
 3 18
 4 95

Fig. 6.4 | Initializing the elements of an array with an initializer list.

int n[10] = {0}; // initializes entire array to zeros

Common Programming Error 6.1
Forgetting to initialize the elements of an array.

Common Programming Error 6.2
It’s a syntax error to provide more initializers in an array initializer list than there are
elements in the array—for example, int n[3] = {32, 27, 64, 18}; is a syntax error,
because there are four initializers but only three array elements.

int n[] = {1, 2, 3, 4, 5};

// use initializer list to initialize array n

int n[5] = {32, 27, 64, 18, 95};

220 Chapter 6 C Arrays

6.4.3 Specifying an Array’s Size with a Symbolic Constant and
Initializing Array Elements with Calculations
Figure 6.5 initializes the elements of a five-element array s to the values 2, 4, 6, …, 10 and
prints the array in tabular format. The values are generated by multiplying the loop coun-
ter by 2 and adding 2.

The #define preprocessor directive is introduced in this program. Line 4

defines a symbolic constant SIZE whose value is 5. A symbolic constant is an identifier that’s
replaced with replacement text by the C preprocessor before the program is compiled. When
the program is preprocessed, all occurrences of the symbolic constant SIZE are replaced with
the replacement text 5. Using symbolic constants to specify array sizes makes programs more
modifiable. In Fig. 6.5, we could have the first for loop (line 12) fill a 1000-element array
by simply changing the value of SIZE in the #define directive from 5 to 1000. If the symbolic
constant SIZE had not been used, we’d have to change the program in lines 10, 12 and 19.
As programs get larger, this technique becomes more useful for writing clear, easy to read,
maintainable programs—a symbolic constant (like SIZE) is easier to understand than the nu-
meric value 5, which could have different meanings throughout the code.

1 // Fig. 6.5: fig06_05.c

2 // Initializing the elements of array s to the even integers from 2 to 10.

3 #include <stdio.h>
4 // maximum size of array
5
6 // function main begins program execution
7 int main(void)
8 {

9 // symbolic constant SIZE can be used to specify array size
10

11
12 for (size_t j = 0; ; ++j) { // set the values

13
14 }

15
16 printf("%s%13s\n", "Element", "Value");
17
18 // output contents of array s in tabular format

19 for (size_t j = 0; ; ++j) {
20 printf("%7u%13d\n", j, s[j]);
21 }

22 }

Element Value
 0 2
 1 4
 2 6
 3 8
 4 10

Fig. 6.5 | Initializing the elements of array s to the even integers from 2 to 10.

#define SIZE 5

#define SIZE 5

int s[SIZE]; // array s has SIZE elements

j < SIZE
s[j] = 2 + 2 * j;

j < SIZE

6.4 Array Examples 221

If you terminate the #define preprocessor directive in line 4 with a semicolon, the
preprocessor replaces all occurrences of the symbolic constant SIZE in the program with
the text "5;". This may lead to syntax errors at compile time, or logic errors at execution
time. Remember that the preprocessor is not the C compiler.

6.4.4 Summing the Elements of an Array
Figure 6.6 sums the values contained in the 12-element integer array a. The for state-
ment’s body (line 15) does the totaling.

Common Programming Error 6.3
Ending a #define or #include preprocessor directive with a semicolon. Remember that
preprocessor directives are not C statements.

Software Engineering Observation 6.1
Defining the size of each array as a symbolic constant makes programs more modifiable.

Common Programming Error 6.4
Assigning a value to a symbolic constant in an executable statement is a syntax error. The
compiler does not reserve space for symbolic constants as it does for variables that hold val-
ues at execution time.

Good Programming Practice 6.1
Use only uppercase letters for symbolic constant names. This makes these constants stand
out in a program and reminds you that symbolic constants are not variables.

Good Programming Practice 6.2
In multiword symbolic constant names, separate the words with underscores for readability.

1 // Fig. 6.6: fig06_06.c

2 // Computing the sum of the elements of an array.

3 #include <stdio.h>
4 #define SIZE 12
5
6 // function main begins program execution
7 int main(void)
8 {

9 // use an initializer list to initialize the array
10 int a[SIZE] = {1, 3, 5, 4, 7, 2, 99, 16, 45, 67, 89, 45};
11 int total = 0; // sum of array
12
13 // sum contents of array a

14

15
16

17
18 printf("Total of array element values is %d\n", total);
19 }

Fig. 6.6 | Computing the sum of the elements of an array. (Part 1 of 2.)

for (size_t i = 0; i < SIZE; ++i) {
 total += a[i];

}

222 Chapter 6 C Arrays

6.4.5 Using Arrays to Summarize Survey Results
Our next example uses arrays to summarize the results of data collected in a survey. Con-
sider the problem statement.

Forty students were asked to rate the quality of the food in the student cafeteria on a
scale of 1 to 10 (1 means awful and 10 means excellent). Place the 40 responses in an
integer array and summarize the results of the poll.

This is a typical array application (Fig. 6.7). We wish to summarize the number of
responses of each type (i.e., 1 through 10). The 40-element array responses (lines 14–16)
contains the students’ responses. We use an 11-element array frequency (line 11) to count
the number of occurrences of each response. We ignore frequency[0] because it’s logical
to have response 1 increment frequency[1] rather than frequency[0]. This allows us to
use each response directly as the index in the frequency array.

Total of array element values is 383

Fig. 6.6 | Computing the sum of the elements of an array. (Part 2 of 2.)

1 // Fig. 6.7: fig06_07.c
2 // Analyzing a student poll.

3 #include <stdio.h>
4 #define RESPONSES_SIZE 40 // define array sizes
5 #define FREQUENCY_SIZE 11
6
7 // function main begins program execution
8 int main(void)
9 {

10 // initialize frequency counters to 0
11

12

13 // place the survey responses in the responses array
14 int responses[RESPONSES_SIZE] = {1, 2, 6, 4, 8, 5, 9, 7, 8, 10,
15 1, 6, 3, 8, 6, 10, 3, 8, 2, 7, 6, 5, 7, 6, 8, 6, 7, 5, 6, 6,
16 5, 6, 7, 5, 6, 4, 8, 6, 8, 10};
17
18 // for each answer, select value of an element of array responses

19 // and use that value as an index in array frequency to
20 // determine element to increment

21 for (size_t answer = 0; answer < RESPONSES_SIZE; ++answer) {
22
23 }

24
25 // display results
26 printf("%s%17s\n", "Rating", "Frequency");
27
28 // output the frequencies in a tabular format
29 for (size_t rating = 1; rating < FREQUENCY_SIZE; ++rating) {
30 printf("%6d%17d\n", rating, frequency[rating]);
31 }
32 }

Fig. 6.7 | Analyzing a student poll. (Part 1 of 2.)

int frequency[FREQUENCY_SIZE] = {0};

++frequency[responses[answer]];

6.4 Array Examples 223

The for loop (lines 21–23) takes the responses one at a time from the array responses
and increments one of the 10 counters (frequency[1] to frequency[10]) in the fre-
quency array. The key statement in the loop is line 22

which increments the appropriate frequency counter depending on the value of the ex-
pression responses[answer]. When the counter variable answer is 0, responses[answer]
is 1, so ++frequency[responses[answer]]; is interpreted as

which increments array element 1. When answer is 1, the value of responses[answer] is
2, so ++frequency[responses[answer]]; is interpreted as

which increments array element 2. When answer is 2, the value of responses[answer] is
6, so ++frequency[responses[answer]]; is interpreted as

which increments array element 6, and so on. Regardless of the number of responses pro-
cessed in the survey, only an 11-element array is required (ignoring element zero) to sum-
marize the results. If the data contained invalid values such as 13, the program would
attempt to add 1 to frequency[13]. This would be outside the bounds of the array. C has
no array bounds checking to prevent the program from referring to an element that does not ex-
ist. Thus, an executing program can “walk off” either end of an array without warning—
a security problem that we discuss in Section 6.13. You should ensure that all array refer-
ences remain within the bounds of the array.

Rating Frequency
 1 2
 2 2
 3 2
 4 2
 5 5
 6 11
 7 5
 8 7
 9 1
 10 3

Good Programming Practice 6.3
Strive for program clarity. Sometimes it may be worthwhile to trade off the most efficient
use of memory or processor time in favor of writing clearer programs.

Performance Tip 6.1
Sometimes performance considerations far outweigh clarity considerations.

++frequency[responses[answer]];

++frequency[1];

++frequency[2];

++frequency[6];

Fig. 6.7 | Analyzing a student poll. (Part 2 of 2.)

224 Chapter 6 C Arrays

6.4.6 Graphing Array Element Values with Histograms
Our next example (Fig. 6.8) reads numbers from an array and graphs the information in
the form of a bar chart or histogram—each number is printed, then a bar consisting of that
many asterisks is printed beside the number. The nested for statement (lines 18–20)
draws the bars. Note the use of puts("") to end each histogram bar (line 22).

Common Programming Error 6.5
Referring to an element outside the array bounds.

Error-Prevention Tip 6.1
When looping through an array, the array index should never go below 0 and should al-
ways be less than the total number of elements in the array (size – 1). Make sure the loop-
continuation condition prevents accessing elements outside this range.

Error-Prevention Tip 6.2
Programs should validate the correctness of all input values to prevent erroneous infor-
mation from affecting a program’s calculations.

1 // Fig. 6.8: fig06_08.c
2 // Displaying a histogram.

3 #include <stdio.h>
4 #define SIZE 5
5
6 // function main begins program execution

7 int main(void)
8 {

9 // use initializer list to initialize array n

10 int n[SIZE] = {19, 3, 15, 7, 11};
11
12 printf("%s%13s%17s\n", "Element", "Value", "Histogram");
13
14 // for each element of array n, output a bar of the histogram

15 for (size_t i = 0; i < SIZE; ++i) {
16
17
18

19
20

21
22 puts(""); // end a histogram bar with a newline
23 }

24 }

Element Value Histogram
 0 19 *******************
 1 3 ***
 2 15 ***************
 3 7 *******
 4 11 ***********

Fig. 6.8 | Displaying a histogram.

printf("%7u%13d ", i, n[i]);

for (int j = 1; j <= n[i]; ++j) { // print one bar
 printf("%c", '*');
}

6.5 Using Character Arrays to Store and Manipulate Strings 225

6.4.7 Rolling a Die 60,000,000 Times and Summarizing the Results in
an Array
In Chapter 5, we stated that we’d show a more elegant method of writing the dice-rolling
program of Fig. 5.12. Recall that the program rolled a single six-sided die 60,000,000
times to test whether the random number generator actually produces random numbers.
An array version of this program is shown in Fig. 6.9. Line 18 replaces Fig. 5.12’s entire
switch statement.

6.5 Using Character Arrays to Store and Manipulate
Strings
We’ve discussed only integer arrays. However, arrays are capable of holding data of any
type. We now discuss storing strings in character arrays. So far, the only string-processing

1 // Fig. 6.9: fig06_09.c

2 // Roll a six-sided die 60,000,000 times
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <time.h>
6 #define SIZE 7
7
8 // function main begins program execution

9 int main(void)
10 {

11 unsigned int frequency[SIZE] = {0}; // clear counts
12
13 srand(time(NULL)); // seed random number generator
14
15 // roll die 60,000,000 times
16 for (unsigned int roll = 1; roll <= 60000000; ++roll) {
17 size_t face = 1 + rand() % 6;
18
19 }

20
21 printf("%s%17s\n", "Face", "Frequency");
22
23 // output frequency elements 1-6 in tabular format

24 for (size_t face = 1; face < SIZE; ++face) {
25 printf("%4d%17d\n", face, frequency[face]);
26 }

27 }

Face Frequency
 1 9997167
 2 10003506
 3 10001940
 4 9995833
 5 10000843
 6 10000711

Fig. 6.9 | Roll a six-sided die 60,000,000 times.

++frequency[face]; // replaces entire switch of Fig. 5.12

226 Chapter 6 C Arrays

capability we have is outputting a string with printf. A string such as "hello" is really an
array of individual characters in C.

6.5.1 Initializing a Character Array with a String
Character arrays have several unique features. A character array can be initialized using a
string literal. For example,

initializes the elements of array string1 to the individual characters in the string literal
"first". In this case, the size of array string1 is determined by the compiler based on the
length of the string. The string "first" contains five characters plus a special string-termi-
nation character called the null character. Thus, array string1 actually contains six ele-
ments. The escape sequence representing the null character is '\0'. All strings in C end
with this character. A character array representing a string should always be defined large
enough to hold the number of characters in the string and the terminating null character.

6.5.2 Initializing a Character Array with an Intializer List of Characters
Character arrays also can be initialized with individual character constants in an initializer
list, but this can be tedious. The preceding definition is equivalent to

6.5.3 Accessing the Characters in a String
Because a string is really an array of characters, we can access individual characters in a
string directly using array index notation. For example, string1[0] is the character 'f'
and string1[3] is the character 's'.

6.5.4 Inputting into a Character Array
We also can input a string directly into a character array from the keyboard using scanf
and the conversion specifier %s. For example,

creates a character array capable of storing a string of at most 19 characters and a terminating
null character. The statement

reads a string from the keyboard into string2. The name of the array is passed to scanf
without the preceding & used with nonstring variables. The & is normally used to provide
scanf with a variable’s location in memory so that a value can be stored there. In Section 6.7,
when we discuss passing arrays to functions, we’ll see that the value of an array name is the
address of the start of the array; therefore, the & is not necessary. Function scanf will read char-
acters until a space, tab, newline or end-of-file indicator is encountered. The string string2
should be no longer than 19 characters to leave room for the terminating null character. If
the user types 20 or more characters, your program may crash or create a security vulnerabil-
ity called buffer overflow. For this reason, we used the conversion specifier %19s so that
scanf reads a maximum of 19 characters and does not write characters into memory beyond

char string1[] = "first";

char string1[] = {'f', 'i', 'r', 's', 't', '\0'};

char string2[20];

scanf("%19s", string2);

6.5 Using Character Arrays to Store and Manipulate Strings 227

the end of the array string2. (In Section 6.13, we revisit the potential security issue raised
by inputting into a character array and discuss the C standard’s scanf_s function.)

It’s your responsibility to ensure that the array into which the string is read is capable
of holding any string that the user types at the keyboard. Function scanf does not check
how large the array is. Thus, scanf can write beyond the end of the array.

6.5.5 Outputting a Character Array That Represents a String
A character array representing a string can be output with printf and the %s conversion
specifier. The array string2 is printed with the statement

Function printf, like scanf, does not check how large the character array is. The char-
acters of the string are printed until a terminating null character is encountered. [Consider
what would print if, for some reason, the terminating null character were missing.]

6.5.6 Demonstrating Character Arrays
Figure 6.10 demonstrates initializing a character array with a string literal, reading a string
into a character array, printing a character array as a string and accessing individual characters
of a string. The program uses a for statement (lines 22–24) to loop through the string1
array and print the individual characters separated by spaces, using the %c conversion speci-
fier. The condition in the for statement is true while the counter is less than the size of the
array and the terminating null character has not been encountered in the string. In this pro-
gram, we read only strings that do not contain whitespace characters. We’ll show how to read
strings with whitespace characters in Chapter 8. Notice that lines 17–18 contain two string
literals separated only by whitespace. The compiler automatically combines such string literals
into one—this is helpful for making long string literals more readable.

printf("%s\n", string2);

1 // Fig. 6.10: fig06_10.c

2 // Treating character arrays as strings.
3 #include <stdio.h>
4 #define SIZE 20
5
6 // function main begins program execution

7 int main(void)
8 {
9 char string1[SIZE]; // reserves 20 characters

10

11
12 // read string from user into array string1

13 printf("%s", "Enter a string (no longer than 19 characters): ");
14
15
16 // output strings

17
18

19

Fig. 6.10 | Treating character arrays as strings. (Part 1 of 2.)

char string2[] = "string literal"; // reserves 15 characters

scanf("%19s", string1); // input no more than 19 characters

printf("string1 is: %s\nstring2 is: %s\n"
 "string1 with spaces between characters is:\n",
 string1, string2);

228 Chapter 6 C Arrays

6.6 Static Local Arrays and Automatic Local Arrays
Chapter 5 discussed the storage-class specifier static. A static local variable exists for
the duration of the program but is visible only in the function body. We can apply static
to a local array definition so the array is not created and initialized each time the function
is called and the array is not destroyed each time the function is exited in the program. This
reduces program execution time, particularly for programs with frequently called func-
tions that contain large arrays.

Arrays that are static are initialized once at program startup. If you do not explicitly
initialize a static array, that array’s elements are initialized to zero by default.

Figure 6.11 demonstrates function staticArrayInit (lines 21–39) with a local
static array (line 24) and function automaticArrayInit (lines 42–60) with a local auto-
matic array (line 45). Function staticArrayInit is called twice (lines 12 and 16). The
local static array in the function is initialized to zero before program startup (line 24).
The function prints the array, adds 5 to each element and prints the array again. The
second time the function is called, the static array contains the values stored during the
first function call.

Function automaticArrayInit is also called twice (lines 13 and 17). The elements of
the automatic local array in the function are initialized with the values 1, 2 and 3 (line 45).
The function prints the array, adds 5 to each element and prints the array again. The
second time the function is called, the array elements are initialized to 1, 2 and 3 again
because the array has automatic storage duration.

20
21 // output characters until null character is reached

22
23

24

25
26 puts("");
27 }

Enter a string (no longer than 19 characters): Hello there
string1 is: Hello
string2 is: string literal
string1 with spaces between characters is:
H e l l o

Performance Tip 6.2
In functions that contain automatic arrays where the function is in and out of scope fre-
quently, make the array static so it’s not created each time the function is called.

Common Programming Error 6.6
Assuming that elements of a local static array are initialized to zero every time the func-
tion in which the array is defined is called.

Fig. 6.10 | Treating character arrays as strings. (Part 2 of 2.)

for (size_t i = 0; i < SIZE && string1[i] != '\0'; ++i) {
 printf("%c ", string1[i]);
}

6.6 Static Local Arrays and Automatic Local Arrays 229

1 // Fig. 6.11: fig06_11.c

2 // Static arrays are initialized to zero if not explicitly initialized.

3 #include <stdio.h>
4
5 void staticArrayInit(void); // function prototype
6 void automaticArrayInit(void); // function prototype
7
8 // function main begins program execution

9 int main(void)
10 {

11 puts("First call to each function:");
12
13

14
15 puts("\n\nSecond call to each function:");
16

17

18 }

19
20 // function to demonstrate a static local array

21 void staticArrayInit(void)
22 {
23 // initializes elements to 0 before the function is called

24

25
26 puts("\nValues on entering staticArrayInit:");
27
28 // output contents of array1
29 for (size_t i = 0; i <= 2; ++i) {
30 printf("array1[%u] = %d ", i, array1[i]);
31 }
32
33 puts("\nValues on exiting staticArrayInit:");
34
35 // modify and output contents of array1

36 for (size_t i = 0; i <= 2; ++i) {
37 printf("array1[%u] = %d ", i, array1[i] += 5);
38 }

39 }

40
41 // function to demonstrate an automatic local array

42 void automaticArrayInit(void)
43 {
44 // initializes elements each time function is called

45

46
47 puts("\n\nValues on entering automaticArrayInit:");
48
49 // output contents of array2
50 for (size_t i = 0; i <= 2; ++i) {
51 printf("array2[%u] = %d ", i, array2[i]);
52 }
53

Fig. 6.11 | Static arrays are initialized to zero if not explicitly initialized. (Part 1 of 2.)

staticArrayInit();

automaticArrayInit();

staticArrayInit();
automaticArrayInit();

static int array1[3];

int array2[3] = {1, 2, 3};

230 Chapter 6 C Arrays

6.7 Passing Arrays to Functions
To pass an array argument to a function, specify the array’s name without any brackets.
For example, if array hourlyTemperatures has been defined as

the function call

passes array hourlyTemperatures and its size to function modifyArray.
Recall that all arguments in C are passed by value. C automatically passes arrays to

functions by reference (again, we’ll see in Chapter 7 that this is not a contradiction)—the
called functions can modify the element values in the callers’ original arrays. The array’s
name evaluates to the address of the array’s first element. Because the starting address of
the array is passed, the called function knows precisely where the array is stored. Therefore,
when the called function modifies array elements in its function body, it’s modifying the
actual elements of the array in their original memory locations.

Figure 6.12 demonstrates that “the value of an array name” is really the address of the
first element of the array by printing array, &array[0] and &array using the %p conver-

54 puts("\nValues on exiting automaticArrayInit:");
55
56 // modify and output contents of array2
57 for (size_t i = 0; i <= 2; ++i) {
58 printf("array2[%u] = %d ", i, array2[i] += 5);
59 }
60 }

First call to each function:

Values on entering staticArrayInit:
array1[0] = 0 array1[1] = 0 array1[2] = 0
Values on exiting staticArrayInit:
array1[0] = 5 array1[1] = 5 array1[2] = 5

Values on entering automaticArrayInit:
array2[0] = 1 array2[1] = 2 array2[2] = 3
Values on exiting automaticArrayInit:
array2[0] = 6 array2[1] = 7 array2[2] = 8

Second call to each function:

Values on entering staticArrayInit:
array1[0] = 5 array1[1] = 5 array1[2] = 5
Values on exiting staticArrayInit:
array1[0] = 10 array1[1] = 10 array1[2] = 10

Values on entering automaticArrayInit:
array2[0] = 1 array2[1] = 2 array2[2] = 3
Values on exiting automaticArrayInit:
array2[0] = 6 array2[1] = 7 array2[2] = 8

int hourlyTemperatures[HOURS_IN_A_DAY];

modifyArray(hourlyTemperatures, HOURS_IN_A_DAY)

Fig. 6.11 | Static arrays are initialized to zero if not explicitly initialized. (Part 2 of 2.)

values preserved from last call

values reinitialized after last call

6.7 Passing Arrays to Functions 231

sion specifier for printing addresses. The %p conversion specifier normally outputs
addresses as hexadecimal numbers, but this is compiler dependent. Hexadecimal (base 16)
numbers consist of the digits 0 through 9 and the letters A through F (these letters are the
hexadecimal equivalents of the decimal numbers 10–15). Appendix C provides an in-
depth discussion of the relationships among binary (base 2), octal (base 8), decimal (base
10; standard integers) and hexadecimal integers. The output shows that array, &array
and &array[0] have the same value, namely 0031F930. The output of this program is
system dependent, but the addresses are always identical for a particular execution of this
program on a particular computer.

Although entire arrays are passed by reference, individual array elements are passed by
value exactly as simple variables are. Such simple single pieces of data (such as individual
ints, floats and chars) are called scalars. To pass an element of an array to a function,
use the indexed name of the array element as an argument in the function call. In
Chapter 7, we show how to pass scalars (i.e., individual variables and array elements) to
functions by reference.

For a function to receive an array through a function call, the function’s parameter list
must specify that an array will be received. For example, the function header for function
modifyArray (that we called earlier in this section) might be written as

Performance Tip 6.3
Passing arrays by reference makes sense for performance reasons. If arrays were passed by
value, a copy of each element would be passed. For large, frequently passed arrays, this
would be time consuming and would consume storage for the copies of the arrays.

1 // Fig. 6.12: fig06_12.c

2 // Array name is the same as the address of the array’s first element.

3 #include <stdio.h>
4
5 // function main begins program execution

6 int main(void)
7 {

8 char array[5]; // define an array of size 5
9

10

11

12 }

 array = 0031F930
&array[0] = 0031F930
 &array = 0031F930

Fig. 6.12 | Array name is the same as the address of the array’s first element.

Software Engineering Observation 6.2
It’s possible to pass an array by value (by placing it in a struct as we explain in
Chapter 10, C Structures, Unions, Bit Manipulation and Enumerations).

void modifyArray(int b[], size_t size)

printf(" array = %p\n&array[0] = %p\n &array = %p\n",
 array, &array[0], &array);

232 Chapter 6 C Arrays

indicating that modifyArray expects to receive an array of integers in parameter b and the
number of array elements in parameter size. The size of the array is not required between
the array brackets. If it’s included, the compiler checks that it’s greater than zero, then
ignores it. Specifying a negative size is a compilation error. Because arrays are automati-
cally passed by reference, when the called function uses the array name b, it will be refer-
ring to the array in the caller (array hourlyTemperatures in the preceding call). In
Chapter 7, we introduce other notations for indicating that an array is being received by
a function. As we’ll see, these notations are based on the intimate relationship between
arrays and pointers.

Difference Between Passing an Entire Array and Passing an Array Element
Figure 6.13 demonstrates the difference between passing an entire array and passing an in-
dividual array element. The program first prints the five elements of integer array a (lines
19–21). Next, a and its size are passed to function modifyArray (line 25), where each of
a’s elements is multiplied by 2 (lines 48–50). Then a is reprinted in main (lines 29–31).
As the output shows, the elements of a are indeed modified by modifyArray. Now the pro-
gram prints the value of a[3] (line 35) and passes it to function modifyElement (line 37).
Function modifyElement multiplies its argument by 2 (line 58) and prints the new value.
When a[3] is reprinted in main (line 40), it has not been modified, because individual ar-
ray elements are passed by value.

1 // Fig. 6.13: fig06_13.c

2 // Passing arrays and individual array elements to functions.

3 #include <stdio.h>
4 #define SIZE 5
5
6 // function prototypes
7
8
9

10 // function main begins program execution

11 int main(void)
12 {
13 int a[SIZE] = {0, 1, 2, 3, 4}; // initialize array a
14
15 puts("Effects of passing entire array by reference:\n\nThe "
16 "values of the original array are:");
17
18 // output original array
19 for (size_t i = 0; i < SIZE; ++i) {
20 printf("%3d", a[i]);
21 }
22
23 puts(""); // outputs a newline
24
25

26 puts("The values of the modified array are:");
27

Fig. 6.13 | Passing arrays and individual array elements to functions. (Part 1 of 2.)

void modifyArray(int b[], size_t size);
void modifyElement(int e);

modifyArray(a, SIZE); // pass array a to modifyArray by reference

6.7 Passing Arrays to Functions 233

There may be situations in your programs in which a function should not be allowed
to modify array elements. C provides the type qualifier const (for “constant”) that can be
used to prevent modification of array values in a function. When an array parameter is pre-
ceded by the const qualifier, the array elements become constant in the function body—

28 // output modified array

29 for (size_t i = 0; i < SIZE; ++i) {
30 printf("%3d", a[i]);
31 }

32
33 // output value of a[3]
34 printf("\n\n\nEffects of passing array element "
35 "by value:\n\nThe value of a[3] is %d\n", a[3]);
36
37

38
39 // output value of a[3]
40 printf("The value of a[3] is %d\n", a[3]);
41 }

42
43

44

45

46
47

48

49
50

51

52
53
54
55
56
57
58
59

Effects of passing entire array by reference:

The values of the original array are:
 0 1 2 3 4
The values of the modified array are:
 0 2 4 6 8

Effects of passing array element by value:

The value of a[3] is 6
Value in modifyElement is 12
The value of a[3] is 6

Fig. 6.13 | Passing arrays and individual array elements to functions. (Part 2 of 2.)

modifyElement(a[3]); // pass array element a[3] by value

// in function modifyArray, "b" points to the original array "a"
// in memory

void modifyArray(int b[], size_t size)
{
 // multiply each array element by 2

 for (size_t j = 0; j < size; ++j) {
 b[j] *= 2; // actually modifies original array
 }
}

// in function modifyElement, "e" is a local copy of array element
// a[3] passed from main

void modifyElement(int e)
{
 // multiply parameter by 2

 printf("Value in modifyElement is %d\n", e *= 2);
}

234 Chapter 6 C Arrays

any attempt to modify an element of the array in the function body results in a compile-
time error.

Using the const Qualifier with Array Parameters
Figure 6.14 shows the definition of a function named tryToModifyArray that’s defined
with the parameter const int b[] (line 3). This specifies that array b is constant and cannot
be modified. Each of the function’s attempts to modify array elements results in a compiler
error. The const qualifier is discussed in additional contexts in Chapter 7.

6.8 Sorting Arrays
Sorting data (i.e., placing the data into ascending or descending order) is one of the most
important computing applications. A bank sorts all checks by account number so that it
can prepare individual bank statements at the end of each month. Telephone companies
sort their lists of accounts by last name and, within that, by first name to make it easy to
find phone numbers. Virtually every organization must sort some data, and in many cases
massive amounts of it. Sorting data is an intriguing problem which has attracted some of
the most intense research efforts in the field of computer science. In this chapter we discuss
a simple sorting scheme. In Chapter 12 and Appendix D, we investigate more complex
schemes that yield better performance.

Figure 6.15 sorts the values in the elements of the 10-element array a (line 10) into
ascending order. The technique we use is called the bubble sort or the sinking sort because
the smaller values gradually “bubble” their way upward to the top of the array like air bub-
bles rising in water, while the larger values sink to the bottom of the array. The technique
is to make several passes through the array. On each pass, successive pairs of elements (ele-
ment 0 and element 1, then element 1 and element 2, etc.) are compared. If a pair is in

Software Engineering Observation 6.3
The const type qualifier can be applied to an array parameter in a function definition to
prevent the original array from being modified in the function body. This is another
example of the principle of least privilege. A function should not be given the capability to
modify an array in the caller unless it’s absolutely necessary.

1 // in function tryToModifyArray, array b is const, so it cannot be

2 // used to modify its array argument in the caller
3 void tryToModifyArray()

4 {

5
6

7

8 }

Fig. 6.14 | Using the const type qualifier with arrays.

Performance Tip 6.4
Often, the simplest algorithms perform poorly. Their virtue is that they’re easy to write, test
and debug. More complex algorithms are often needed to realize maximum performance.

const int b[]

b[0] /= 2; // error
b[1] /= 2; // error
b[2] /= 2; // error

6.8 Sorting Arrays 235

increasing order (or if the values are identical), we leave the values as they are. If a pair is
in decreasing order, their values are swapped in the array.

1 // Fig. 6.15: fig06_15.c

2 // Sorting an array's values into ascending order.

3 #include <stdio.h>
4 #define SIZE 10
5
6 // function main begins program execution
7 int main(void)
8 {

9 // initialize a
10 int a[SIZE] = {2, 6, 4, 8, 10, 12, 89, 68, 45, 37};
11

12 puts("Data items in original order");
13

14 // output original array

15 for (size_t i = 0; i < SIZE; ++i) {
16 printf("%4d", a[i]);
17 }

18
19 // bubble sort
20 // loop to control number of passes

21

22
23

24

25
26

27

28
29

30

31
32

33

34
35
36 puts("\nData items in ascending order");
37
38 // output sorted array

39 for (size_t i = 0; i < SIZE; ++i) {
40 printf("%4d", a[i]);
41 }

42
43 puts("");
44 }

Data items in original order
 2 6 4 8 10 12 89 68 45 37
Data items in ascending order
 2 4 6 8 10 12 37 45 68 89

Fig. 6.15 | Sorting an array’s values into ascending order.

for (unsigned int pass = 1; pass < SIZE; ++pass) {

 // loop to control number of comparisons per pass
 for (size_t i = 0; i < SIZE - 1; ++i) {

 // compare adjacent elements and swap them if first
 // element is greater than second element

 if (a[i] > a[i + 1]) {
 int hold = a[i];
 a[i] = a[i + 1];
 a[i + 1] = hold;
 }
 }

}

236 Chapter 6 C Arrays

First the program compares a[0] to a[1], then a[1] to a[2], then a[2] to a[3], and
so on until it completes the pass by comparing a[8] to a[9]. Although there are 10 ele-
ments, only nine comparisons are performed. Because of the way the successive compari-
sons are made, a large value may move down the array many positions on a single pass, but
a small value may move up only one position.

On the first pass, the largest value is guaranteed to sink to the bottom element of the
array, a[9]. On the second pass, the second-largest value is guaranteed to sink to a[8]. On
the ninth pass, the ninth-largest value sinks to a[1]. This leaves the smallest value in a[0],
so only nine passes of the array are needed to sort the array, even though there are ten ele-
ments.

The sorting is performed by the nested for loops (lines 21–34). If a swap is necessary,
it’s performed by the three assignments

where the extra variable hold temporarily stores one of the two values being swapped. The
swap cannot be performed with only the two assignments

If, for example, a[i] is 7 and a[i + 1] is 5, after the first assignment both values will be 5
and the value 7 will be lost—hence the need for the extra variable hold.

The chief virtue of the bubble sort is that it’s easy to program. However, it runs slowly
because every exchange moves an element only one position closer to its final destination.
This becomes apparent when sorting large arrays. In the exercises, we’ll develop more effi-
cient versions of the bubble sort. Far more efficient sorts than the bubble sort have been
developed. We’ll investigate other algorithms in Appendix D. More advanced courses
investigate sorting and searching in greater depth.

6.9 Case Study: Computing Mean, Median and Mode
Using Arrays
We now consider a larger example. Computers are commonly used for survey data analysis
to compile and analyze the results of surveys and opinion polls. Figure 6.16 uses array re-
sponse initialized with 99 responses to a survey. Each response is a number from 1 to 9. The
program computes the mean, median and mode of the 99 values. Figure 6.17 contains a
sample run of this program. This example includes most of the common manipulations
usually required in array problems, including passing arrays to functions.

hold = a[i];

a[i] = a[i + 1];
a[i + 1] = hold;

a[i] = a[i + 1];
a[i + 1] = a[i];

1 // Fig. 6.16: fig06_16.c

2 // Survey data analysis with arrays:

3 // computing the mean, median and mode of the data.
4 #include <stdio.h>
5 #define SIZE 99

Fig. 6.16 | Survey data analysis with arrays: computing the mean, median and mode of the data.
(Part 1 of 4.)

6.9 Case Study: Computing Mean, Median and Mode Using Arrays 237

6
7 // function prototypes

8 void mean(const unsigned int answer[]);
9 void median(unsigned int answer[]);

10 void mode(unsigned int freq[], unsigned const int answer[]) ;
11 void bubbleSort(int a[]);
12 void printArray(unsigned const int a[]);
13
14 // function main begins program execution
15 int main(void)
16 {

17 unsigned int frequency[10] = {0}; // initialize array frequency
18

19 // initialize array response

20 unsigned int response[SIZE] =
21 {6, 7, 8, 9, 8, 7, 8, 9, 8, 9,
22 7, 8, 9, 5, 9, 8, 7, 8, 7, 8,
23 6, 7, 8, 9, 3, 9, 8, 7, 8, 7,
24 7, 8, 9, 8, 9, 8, 9, 7, 8, 9,
25 6, 7, 8, 7, 8, 7, 9, 8, 9, 2,
26 7, 8, 9, 8, 9, 8, 9, 7, 5, 3,
27 5, 6, 7, 2, 5, 3, 9, 4, 6, 4,
28 7, 8, 9, 6, 8, 7, 8, 9, 7, 8,
29 7, 4, 4, 2, 5, 3, 8, 7, 5, 6,
30 4, 5, 6, 1, 6, 5, 7, 8, 7};
31
32 // process responses

33 mean(response);
34 median(response);

35 mode(frequency, response);

36 }
37
38 // calculate average of all response values

39 void mean(const unsigned int answer[])
40 {

41 printf("%s\n%s\n%s\n", "********", " Mean", "********");
42
43 unsigned int total = 0; // variable to hold sum of array elements
44
45 // total response values
46 for (size_t j = 0; j < SIZE; ++j) {
47 total += answer[j];

48 }
49
50 printf("The mean is the average value of the data\n"
51 "items. The mean is equal to the total of\n"
52 "all the data items divided by the number\n"
53 "of data items (%u). The mean value for\n"
54 "this run is: %u / %u = %.4f\n\n",
55 SIZE, total, SIZE, (double) total / SIZE);
56 }

Fig. 6.16 | Survey data analysis with arrays: computing the mean, median and mode of the data.
(Part 2 of 4.)

238 Chapter 6 C Arrays

57
58 // sort array and determine median element's value

59 void median(unsigned int answer[])
60 {

61 printf("\n%s\n%s\n%s\n%s",
62 "********", " Median", "********",
63 "The unsorted array of responses is");
64
65 printArray(answer); // output unsorted array
66
67

68
69 printf("%s", "\n\nThe sorted array is");
70 printArray(answer); // output sorted array

71
72 // display median element

73 printf("\n\nThe median is element %u of\n"
74 "the sorted %u element array.\n"
75 "For this run the median is %u\n\n",
76 SIZE / 2, SIZE,);

77 }

78
79 // determine most frequent response

80 void mode(unsigned int freq[], const unsigned int answer[])
81 {
82 printf("\n%s\n%s\n%s\n","********", " Mode", "********");
83
84 // initialize frequencies to 0
85 for (size_t rating = 1; rating <= 9; ++rating) {
86 freq[rating] = 0;
87 }
88
89 // summarize frequencies

90 for (size_t j = 0; j < SIZE; ++j) {
91 ++freq[answer[j]];

92 }

93
94 // output headers for result columns

95 printf("%s%11s%19s\n\n%54s\n%54s\n\n",
96 "Response", "Frequency", "Histogram",
97 "1 1 2 2", "5 0 5 0 5");
98
99 // output results
100 unsigned int largest = 0; // represents largest frequency
101 unsigned int modeValue = 0; // represents most frequent response
102
103 for (rating = 1; rating <= 9; ++rating) {
104 printf("%8u%11u ", rating, freq[rating]);
105

Fig. 6.16 | Survey data analysis with arrays: computing the mean, median and mode of the data.
(Part 3 of 4.)

bubbleSort(answer); // sort array

answer[SIZE / 2]

6.9 Case Study: Computing Mean, Median and Mode Using Arrays 239

106 // keep track of mode value and largest frequency value
107

108

109
110

111
112 // output histogram bar representing frequency value
113 for (unsigned int h = 1; h <= freq[rating]; ++h) {
114 printf("%s", "*");
115 }
116
117 puts(""); // being new line of output
118 }
119
120 // display the mode value

121 printf("\nThe mode is the most frequent value.\n"
122 "For this run the mode is %u which occurred"
123 " %u times.\n", modeValue, largest);
124 }

125
126 // function that sorts an array with bubble sort algorithm

127 void bubbleSort(unsigned int a[])
128 {
129 // loop to control number of passes

130 for (unsigned int pass = 1; pass < SIZE; ++pass) {
131
132 // loop to control number of comparisons per pass

133 for (size_t j = 0; j < SIZE - 1; ++j) {
134
135 // swap elements if out of order

136 if (a[j] > a[j + 1]) {
137 unsigned int hold = a[j];
138 a[j] = a[j + 1];
139 a[j + 1] = hold;
140 }
141 }

142 }

143 }
144
145 // output array contents (20 values per row)

146 void printArray(const unsigned int a[])
147 {

148 // output array contents

149 for (size_t j = 0; j < SIZE; ++j) {
150
151 if (j % 20 == 0) { // begin new line every 20 values
152 puts("");
153 }

154
155 printf("%2u", a[j]);
156 }

157 }

Fig. 6.16 | Survey data analysis with arrays: computing the mean, median and mode of the data.
(Part 4 of 4.)

if (freq[rating] > largest) {
 largest = freq[rating];

 modeValue = rating;

}

240 Chapter 6 C Arrays

 Mean

The mean is the average value of the data
items. The mean is equal to the total of
all the data items divided by the number
of data items (99). The mean value for
this run is: 681 / 99 = 6.8788

 Median

The unsorted array of responses is
 6 7 8 9 8 7 8 9 8 9 7 8 9 5 9 8 7 8 7 8
 6 7 8 9 3 9 8 7 8 7 7 8 9 8 9 8 9 7 8 9
 6 7 8 7 8 7 9 8 9 2 7 8 9 8 9 8 9 7 5 3
 5 6 7 2 5 3 9 4 6 4 7 8 9 6 8 7 8 9 7 8
 7 4 4 2 5 3 8 7 5 6 4 5 6 1 6 5 7 8 7

The sorted array is
 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 5
 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7
 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8
 8
 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

The median is element 49 of
the sorted 99 element array.
For this run the median is 7

 Mode

Response Frequency Histogram

 1 1 2 2
 5 0 5 0 5

 1 1 *
 2 3 ***
 3 4 ****
 4 5 *****
 5 8 ********
 6 9 *********
 7 23 ***********************
 8 27 ***************************
 9 19 *******************

The mode is the most frequent value.
For this run the mode is 8 which occurred 27 times.

Fig. 6.17 | Sample run for the survey data analysis program.

6.10 Searching Arrays 241

Mean
The mean is the arithmetic average of the 99 values. Function mean (Fig. 6.16, lines 39–
56) computes the mean by totaling the 99 elements and dividing the result by 99.

Median
The median is the middle value. Function median (lines 59–77) determines the median by
calling function bubbleSort (defined in lines 127–143) to sort the array of responses into
ascending order, then picking answer[SIZE / 2] (the middle element) of the sorted array.
When the number of elements is even, the median should be calculated as the mean of the
two middle elements. Function median does not currently provide this capability. Func-
tion printArray (lines 146–157) is called to output the response array.

Mode
The mode is the value that occurs most frequently among the 99 responses. Function mode
(lines 80–124) determines the mode by counting the number of responses of each type,
then selecting the value with the greatest count. This version of function mode does not
handle a tie (see Exercise 6.14). Function mode also produces a histogram to aid in deter-
mining the mode graphically.

6.10 Searching Arrays
You’ll often work with large amounts of data stored in arrays. It may be necessary to de-
termine whether an array contains a value that matches a certain key value. The process of
finding a particular element of an array is called searching. In this section we discuss two
searching techniques—the simple linear search technique and the more efficient (but
more complex) binary search technique. Exercises 6.32– and 6.33 ask you to implement
recursive versions of the linear search and the binary search, respectively.

6.10.1 Searching an Array with Linear Search
The linear search (Fig. 6.18) compares each element of the array with the search key. Be-
cause the array is not in any particular order, it’s just as likely that the value will be found
in the first element as in the last. On average, therefore, the program will have to compare
the search key with half the elements of the array.

1 // Fig. 6.18: fig06_18.c

2 // Linear search of an array.

3 #include <stdio.h>
4 #define SIZE 100
5
6 // function prototype
7

8
9 // function main begins program execution

10 int main(void)
11 {

12 int a[SIZE]; // create array a
13

Fig. 6.18 | Linear search of an array. (Part 1 of 2.)

size_t linearSearch(const int array[], int key, size_t size);

242 Chapter 6 C Arrays

6.10.2 Searching an Array with Binary Search
The linear searching method works well for small or unsorted arrays. However, for large
arrays linear searching is inefficient. If the array is sorted, the high-speed binary search tech-
nique can be used.

14 // create some data

15 for (size_t x = 0; x < SIZE; ++x) {
16 a[x] = 2 * x;
17 }

18
19 printf("Enter integer search key: ");
20 int searchKey; // value to locate in array a
21 scanf("%d", &searchKey);
22
23 // attempt to locate searchKey in array a

24

25
26 // display results

27 if (index != -1) {
28 printf("Found value at index %d\n", index);
29 }

30 else {
31 puts("Value not found");
32 }
33 }

34
35
36

37

38
39

40

41
42

43

44
45

46

47
48

49

Enter integer search key: 36
Found value at index 18

Enter integer search key: 37
Value not found

Fig. 6.18 | Linear search of an array. (Part 2 of 2.)

size_t index = linearSearch(a, searchKey, SIZE);

// compare key to every element of array until the location is found

// or until the end of array is reached; return index of element
// if key is found or -1 if key is not found

size_t linearSearch(const int array[], int key, size_t size)
{
 // loop through array

 for (size_t n = 0; n < size; ++n) {

 if (array[n] == key) {
 return n; // return location of key
 }
 }

 return -1; // key not found
}

6.10 Searching Arrays 243

The binary search algorithm eliminates from consideration one-half of the elements in a
sorted array after each comparison. The algorithm locates the middle element of the array and
compares it to the search key. If they’re equal, the search key is found and the array index of
that element is returned. If they’re not equal, the problem is reduced to searching one-
half of the array. If the search key is less than the middle element of the array, the algorithm
searches the first half of the array, otherwise the algorithm searches the second half. If the
search key is not the middle element in the specified subarray (piece of the original array),
the algorithm repeats on one-quarter of the original array. The search continues until the
search key is equal to the middle element of a subarray, or until the subarray consists of one
element that’s not equal to the search key (i.e., the search key is not found).

In a worst case-scenario, searching a sorted array of 1023 elements takes only 10 com-
parisons using a binary search. Repeatedly dividing 1,024 by 2 yields the values 512, 256,
128, 64, 32, 16, 8, 4, 2 and 1. The number 1,024 (210) is divided by 2 only 10 times to
get the value 1. Dividing by 2 is equivalent to one comparison in the binary search algo-
rithm. An array of 1,048,576 (220) elements takes a maximum of only 20 comparisons to
find the search key. A sorted array of one billion elements takes a maximum of only 30
comparisons to find the search key. This is a tremendous increase in performance over a
linear search of a sorted array, which requires comparing the search key to an average of
half of the array elements. For a one-billion-element array, this is a difference between an
average of 500 million comparisons and a maximum of 30 comparisons! The maximum
comparisons for any array can be determined by finding the first power of 2 greater than
the number of array elements.

Figure 6.19 presents the iterative version of function binarySearch (lines 40–68).
The function receives four arguments—an integer array b to be searched, an integer
searchKey, the low array index and the high array index (these define the portion of the
array to be searched). If the search key does not match the middle element of a subarray,
the low index or high index is modified so that a smaller subarray can be searched. If the
search key is less than the middle element, the high index is set to middle - 1 and the search
is continued on the elements from low to middle - 1. If the search key is greater than the
middle element, the low index is set to middle + 1 and the search is continued on the ele-
ments from middle + 1 to high. The program uses an array of 15 elements. The first power
of 2 greater than the number of elements in this array is 16 (24), so no more than 4 com-
parisons are required to find the search key. The program uses function printHeader
(lines 71–88) to output the array indices and function printRow (lines 92–110) to output
each subarray during the binary search process. The middle element in each subarray is
marked with an asterisk (*) to indicate the element to which the search key is compared.

1 // Fig. 6.19: fig06_19.c

2 // Binary search of a sorted array.

3 #include <stdio.h>
4 #define SIZE 15
5
6 // function prototypes
7 size_t binarySearch(const int b[], int searchKey, size_t low, size_t high);

Fig. 6.19 | Binary search of a sorted array. (Part 1 of 4.)

244 Chapter 6 C Arrays

8 void printHeader(void);
9 void printRow(const int b[], size_t low, size_t mid, size_t high);

10
11 // function main begins program execution

12 int main(void)
13 {
14 int a[SIZE]; // create array a
15
16 // create data
17 for (size_t i = 0; i < SIZE; ++i) {
18 a[i] = 2 * i;
19 }
20
21 printf("%s", "Enter a number between 0 and 28: ");
22 int key; // value to locate in array a
23 scanf("%d", &key);
24
25 printHeader();

26
27 // search for key in array a

28 size_t result = binarySearch(a, key, 0, SIZE - 1);
29
30 // display results

31 if (result != -1) {
32 printf("\n%d found at index %d\n", key, result);
33 }

34 else {
35 printf("\n%d not found\n", key);
36 }

37 }

38
39 // function to perform binary search of an array

40 size_t binarySearch(const int b[], int searchKey, size_t low, size_t high)
41 {
42 // loop until low index is greater than high index

43

44
45 // determine middle element of subarray being searched

46

47
48 // display subarray used in this loop iteration

49 printRow(b, low, middle, high);

50
51

52

53
54

55
56
57

58

59

Fig. 6.19 | Binary search of a sorted array. (Part 2 of 4.)

while (low <= high) {

size_t middle = (low + high) / 2;

// if searchKey matched middle element, return middle
if (searchKey == b[middle]) {
 return middle;
}

// if searchKey is less than middle element, set new high

else if (searchKey < b[middle]) {
 high = middle - 1; // search low end of array
} if

6.10 Searching Arrays 245

60
61

62
63

64

65
66
67 return -1; // searchKey not found
68 }
69
70 // Print a header for the output

71 void printHeader(void)
72 {

73 puts("\nIndices:");
74
75 // output column head

76 for (unsigned int i = 0; i < SIZE; ++i) {
77 printf("%3u ", i);
78 }
79
80 puts(""); // start new line of output
81
82 // output line of - characters

83 for (unsigned int i = 1; i <= 4 * SIZE; ++i) {
84 printf("%s", "-");
85 }

86
87 puts(""); // start new line of output
88 }

89
90 // Print one row of output showing the current
91 // part of the array being processed.

92 void printRow(const int b[], size_t low, size_t mid, size_t high)
93 {
94 // loop through entire array

95 for (size_t i = 0; i < SIZE; ++i) {
96
97 // display spaces if outside current subarray range

98 if (i < low || i > high) {
99 printf("%s", " ");
100 }

101 else if (i == mid) { // display middle element
102 printf("%3d*", b[i]); // mark middle value
103 }

104 else { // display other elements in subarray
105 printf("%3d ", b[i]);
106 }

107 }

108
109 puts(""); // start new line of output
110 }

Fig. 6.19 | Binary search of a sorted array. (Part 3 of 4.)

// if searchKey is greater than middle element, set new low

else {
 low = middle + 1; // search high end of array
}

} // end while

246 Chapter 6 C Arrays

6.11 Multidimensional Arrays
Arrays in C can have multiple indices. A common use of multidimensional arrays, which
the C standard refers to as multidimensional arrays, is to represent tables of values con-
sisting of information arranged in rows and columns. To identify a particular table element,
we must specify two indices: The first (by convention) identifies the element’s row and the
second (by convention) identifies the element’s column. Tables or arrays that require two
indices to identify a particular element are called two-dimensional arrays. Multidimen-
sional arrays can have more than two indices.

6.11.1 Illustrating a Double-Subcripted Array
Figure 6.20 illustrates a two-dimensional array, a. The array contains three rows and four
columns, so it’s said to be a 3-by-4 array. In general, an array with m rows and n columns
is called an m-by-n array.

Enter a number between 0 and 28: 25
Indices:
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
--
 0 2 4 6 8 10 12 14* 16 18 20 22 24 26 28
 16 18 20 22* 24 26 28
 24 26* 28
 24*

25 not found

Enter a number between 0 and 28: 8
Indices:
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
--
 0 2 4 6 8 10 12 14* 16 18 20 22 24 26 28
 0 2 4 6* 8 10 12
 8 10* 12
 8*

8 found at index 4

Enter a number between 0 and 28: 6
Indices:
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
--
 0 2 4 6 8 10 12 14* 16 18 20 22 24 26 28
 0 2 4 6* 8 10 12

6 found at index 3

Fig. 6.19 | Binary search of a sorted array. (Part 4 of 4.)

6.11 Multidimensional Arrays 247

Every element in array a is identified in Fig. 6.20 by an element name of the form
a[i][j]; a is the name of the array, and i and j are the indices that uniquely identify each
element in a. The names of the elements in row 0 all have a first index of 0; the names of
the elements in column 3 all have a second index of 3.

6.11.2 Initializing a Double-Subcripted Array
A multidimensional array can be initialized when it’s defined. For example, a two-dimen-
sional array int b[2][2] could be defined and initialized with

The values are grouped by row in braces. The values in the first set of braces initialize row
0 and the values in the second set of braces initialize row 1. So, the values 1 and 2 initialize
elements b[0][0] and b[0][1], respectively, and the values 3 and 4 initialize elements
b[1][0] and b[1][1], respectively. If there are not enough initializers for a given row, the
remaining elements of that row are initialized to 0. Thus,

would initialize b[0][0] to 1, b[0][1] to 0, b[1][0] to 3 and b[1][1] to 4. Figure 6.21
demonstrates defining and initializing two-dimensional arrays.

Fig. 6.20 | Two-dimensional array with three rows and four columns.

Common Programming Error 6.7
Referencing a two-dimensional array element as a[x, y] instead of a[x][y] is a logic
error. C interprets a[x, y] as a[y] (because the comma in this context is treated as a
comma operator), so this programmer error is not a syntax error.

int b[2][2] = {{1, 2}, {3, 4}};

int b[2][2] = {{1}, {3, 4}};

1 // Fig. 6.21: fig06_21.c
2 // Initializing multidimensional arrays.

3 #include <stdio.h>
4
5 void printArray(int a[][3]); // function prototype
6

Fig. 6.21 | Initializing multidimensional arrays. (Part 1 of 2.)

Row 0

Row 1

Row 2

Column index
Row index
Array name

a[0][0]

a[1][0]

a[2][0]

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

a[0][3]

Column 0 Column 1 Column 2 Column 3

a[1][3]

a[2][3]

248 Chapter 6 C Arrays

array1 Definition
The program defines three arrays of two rows and three columns (six elements each).
The definition of array1 (line 10) provides six initializers in two sublists. The first sublist
initializes row 0 of the array to the values 1, 2 and 3; and the second sublist initializes row
1 of the array to the values 4, 5 and 6.

array2 Definition
If the braces around each sublist are removed from the array1 initializer list, the compiler
initializes the elements of the first row followed by the elements of the second row. The
definition of array2 (line 14) provides five initializers. The initializers are assigned to the

7 // function main begins program execution

8 int main(void)
9 {

10

11 puts("Values in array1 by row are:");
12 printArray(array1);
13
14

15 puts("Values in array2 by row are:");
16 printArray(array2);

17
18
19 puts("Values in array3 by row are:");
20 printArray(array3);

21 }
22
23 // function to output array with two rows and three columns

24 void printArray()

25 {
26 // loop through rows

27

28
29 // output column values

30

31 printf("%d ",);
32 }

33

34 printf("\n"); // start new line of output
35 }

36 }

Values in array1 by row are:
1 2 3
4 5 6
Values in array2 by row are:
1 2 3
4 5 0
Values in array3 by row are:
1 2 0
4 0 0

Fig. 6.21 | Initializing multidimensional arrays. (Part 2 of 2.)

int array1[2][3] = {{1, 2, 3}, {4, 5, 6}};

int array2[2][3] = {1, 2, 3, 4, 5};

int array3[2][3] = {{1, 2}, {4}};

int a[][3]

for (size_t i = 0; i <= 1; ++i) {

for (size_t j = 0; j <= 2; ++j) {
a[i][j]

6.11 Multidimensional Arrays 249

first row, then the second row. Any elements that do not have an explicit initializer are ini-
tialized to zero automatically, so array2[1][2] is initialized to 0.

array3 Definition
The definition of array3 (line 18) provides three initializers in two sublists. The sublist
for the first row explicitly initializes the first two elements of the first row to 1 and 2. The
third element is initialized to zero. The sublist for the second row explicitly initializes the
first element to 4. The last two elements are initialized to zero.

printArray Function
The program calls printArray (lines 24–36) to output each array’s elements. The func-
tion definition specifies the array parameter as int a[][3]. In a one-dimensional array pa-
rameter, the array brackets are empty. The first index of a multidimensional array is not
required, but all subsequent indices are required. The compiler uses these indices to deter-
mine the locations in memory of elements in multidimensional arrays. All array elements
are stored consecutively in memory regardless of the number of indices. In a two-dimen-
sional array, the first row is stored in memory followed by the second row.

Providing the index values in a parameter declaration enables the compiler to tell the
function how to locate an element in the array. In a two-dimensional array, each row is
basically a one-dimensional array. To locate an element in a particular row, the compiler
must know how many elements are in each row so that it can skip the proper number of
memory locations when accessing the array. Thus, when accessing a[1][2] in our
example, the compiler knows to skip the three elements of the first row to get to the second
row (row 1). Then, the compiler accesses element 2 of that row.

6.11.3 Setting the Elements in One Row
Many common array manipulations use for iteration statements. For example, the follow-
ing statement sets all the elements in row 2 of array a in Fig. 6.20 to zero:

We specified row 2, so the first index is always 2. The loop varies only the second (column)
index. The preceding for statement is equivalent to the assignment statements:

6.11.4 Totaling the Elements in a Two-Dimensional Array
The following nested for statement determines the total of all the elements in array a.

for (column = 0; column <= 3; ++column) {
 a[2][column] = 0;
}

a[2][0] = 0;
a[2][1] = 0;
a[2][2] = 0;
a[2][3] = 0;

total = 0;
for (row = 0; row <= 2; ++row) {
 for (column = 0; column <= 3; ++column) {
 total += a[row][column];
 }

}

250 Chapter 6 C Arrays

The for statement totals the elements of the array one row at a time. The outer for state-
ment begins by setting row (i.e., the row index) to 0 so that the elements of that row may
be totaled by the inner for statement. The outer for statement then increments row to 1,
so the elements of that row can be totaled. Then, the outer for statement increments row
to 2, so the elements of the third row can be totaled. When the nested for statement ter-
minates, total contains the sum of all the elements in the array a.

6.11.5 Two-Dimensonal Array Manipulations
Figure 6.22 performs several other common array manipulations on a 3-by-4 array stu-
dentGrades using for statements. Each row of the array represents a student and each col-
umn represents a grade on one of the four exams the students took during the semester.
The array manipulations are performed by four functions. Function minimum (lines 39–
56) determines the lowest grade of any student for the semester. Function maximum (lines
59–76) determines the highest grade of any student for the semester. Function average
(lines 79–89) determines a particular student’s semester average. Function printArray
(lines 92–108) outputs the two-dimensional array in a neat, tabular format.

1 // Fig. 6.22: fig06_22.c

2 // Two-dimensional array manipulations.

3 #include <stdio.h>
4 #define STUDENTS 3
5 #define EXAMS 4
6
7 // function prototypes

8 int minimum(const int grades[][EXAMS], size_t pupils, size_t tests);
9 int maximum(const int grades[][EXAMS], size_t pupils, size_t tests);

10 double average(const int setOfGrades[], size_t tests);
11 void printArray(const int grades[][EXAMS], size_t pupils, size_t tests);
12
13 // function main begins program execution

14 int main(void)
15 {
16 // initialize student grades for three students (rows)

17 int studentGrades[STUDENTS][EXAMS] =
18 { { 77, 68, 86, 73 },
19 { 96, 87, 89, 78 },
20 { 70, 90, 86, 81 } };
21
22 // output array studentGrades

23 puts("The array is:");
24 printArray(studentGrades, STUDENTS, EXAMS);
25
26 // determine smallest and largest grade values

27 printf("\n\nLowest grade: %d\nHighest grade: %d\n",
28 minimum(studentGrades, STUDENTS, EXAMS),

29 maximum(studentGrades, STUDENTS, EXAMS));

Fig. 6.22 | Two-dimensional array manipulations. (Part 1 of 3.)

6.11 Multidimensional Arrays 251

30
31 // calculate average grade for each student

32 for (size_t student = 0; student < STUDENTS; ++student) {
33 printf("The average grade for student %u is %.2f\n",
34 student,);

35 }
36 }

37
38 // Find the minimum grade
39 int minimum(const int grades[][EXAMS], size_t pupils, size_t tests)
40 {

41 int lowGrade = 100; // initialize to highest possible grade
42
43 // loop through rows of grades

44 for (size_t i = 0; i < pupils; ++i) {
45
46 // loop through columns of grades

47 for (size_t j = 0; j < tests; ++j) {
48
49 if (grades[i][j] < lowGrade) {
50 lowGrade = grades[i][j];

51 }
52 }

53 }

54
55 return lowGrade; // return minimum grade
56 }

57
58 // Find the maximum grade

59 int maximum(const int grades[][EXAMS], size_t pupils, size_t tests)
60 {
61 int highGrade = 0; // initialize to lowest possible grade
62
63 // loop through rows of grades
64 for (size_t i = 0; i < pupils; ++i) {
65
66 // loop through columns of grades
67 for (size_t j = 0; j < tests; ++j) {
68
69 if (grades[i][j] > highGrade) {
70 highGrade = grades[i][j];

71 }

72 }
73 }

74
75 return highGrade; // return maximum grade
76 }

77

Fig. 6.22 | Two-dimensional array manipulations. (Part 2 of 3.)

average(studentGrades[student], EXAMS)

252 Chapter 6 C Arrays

Functions minimum, maximum and printArray each receive three arguments—the
studentGrades array (called grades in each function), the number of students (rows of
the array) and the number of exams (columns of the array). Each function loops through
array grades using nested for statements. The following nested for statement is from the
function minimum definition:

78 // Determine the average grade for a particular student

79

80 {
81 int total = 0; // sum of test grades
82

83 // total all grades for one student
84 for (size_t i = 0; i < tests; ++i) {
85 total += setOfGrades[i];

86 }
87

88 return (double) total / tests; // average
89 }
90
91 // Print the array

92 void printArray(const int grades[][EXAMS], size_t pupils, size_t tests)
93 {

94 // output column heads

95 printf("%s", " [0] [1] [2] [3]");
96
97 // output grades in tabular format

98 for (size_t i = 0; i < pupils; ++i) {
99
100 // output label for row

101 printf("\nstudentGrades[%u] ", i);
102
103 // output grades for one student

104 for (size_t j = 0; j < tests; ++j) {
105 printf("%-5d", grades[i][j]);
106 }

107 }

108 }

The array is:
 [0] [1] [2] [3]
studentGrades[0] 77 68 86 73
studentGrades[1] 96 87 89 78
studentGrades[2] 70 90 86 81

Lowest grade: 68
Highest grade: 96
The average grade for student 0 is 76.00
The average grade for student 1 is 87.50
The average grade for student 2 is 81.75

Fig. 6.22 | Two-dimensional array manipulations. (Part 3 of 3.)

double average(const int setOfGrades[], size_t tests)

6.12 Variable-Length Arrays 253

The outer for statement begins by setting i (i.e., the row index) to 0 so the elements of
that row (i.e., the grades of the first student) can be compared to variable lowGrade in the
body of the inner for statement. The inner for statement loops through the four grades
of a particular row and compares each grade to lowGrade. If a grade is less than lowGrade,
lowGrade is set to that grade. The outer for statement then increments the row index to
1. The elements of that row are compared to variable lowGrade. The outer for statement
then increments the row index to 2. The elements of that row are compared to variable
lowGrade. When execution of the nested statement is complete, lowGrade contains the
smallest grade in the two-dimensional array. Function maximum works similarly to function
minimum.

Function average (lines 79–89) takes two arguments—a two-dimensional array of
test results for a particular student called setOfGrades and the number of test results in
the array. When average is called, the first argument studentGrades[student] is passed.
This causes the address of one row of the two-dimensional array to be passed to average.
The argument studentGrades[1] is the starting address of row 1 of the array. Remember
that a two-dimensional array is basically an array of one-dimensional arrays and that the
name of a one-dimensional array is the address of the array in memory. Function average
calculates the sum of the array elements, divides the total by the number of test results and
returns the floating-point result.

6.12 Variable-Length Arrays2

For each array you’ve defined so far, you’ve specified its size at compilation time. But what
if you cannot determine an array’s size until execution time? In the past, to handle this, you
had to use dynamic memory allocation (introduced in Chapter 12, C Data Structures).
For cases in which an array’s size is not known at compilation time, C has variable-length
arrays (VLAs)—that is, arrays whose lengths are defined in terms of expressions evaluated
at execution time. The program of Fig. 6.23 declares and prints several VLAs.

// loop through rows of grades

for (i = 0; i < pupils; ++i) {
 // loop through columns of grades
 for (j = 0; j < tests; ++j) {
 if (grades[i][j] < lowGrade) {
 lowGrade = grades[i][j];
 }

 }

}

2. This feature is not supported in Microsoft Visual C++.

1 // Fig. 6.23: fig06_23.c

2 // Using variable-length arrays in C99
3 #include <stdio.h>
4
5 // function prototypes
6 void print1DArray(size_t size, int array[size]);

Fig. 6.23 | Using variable-length arrays in C99. (Part 1 of 3.)

254 Chapter 6 C Arrays

7 void print2DArray(int row, int col, int array[row][col]);
8
9 int main(void)

10 {

11 printf("%s", "Enter size of a one-dimensional array: ");
12 int arraySize; // size of 1-D array
13 scanf("%d", &arraySize);
14
15
16
17 printf("%s", "Enter number of rows and columns in a 2-D array: ");
18 int row1, col1; // number of rows and columns in a 2-D array
19 scanf("%d %d", &row1, &col1);
20
21
22
23 printf("%s",
24 "Enter number of rows and columns in another 2-D array: ");
25 int row2, col2; // number of rows and columns in another 2-D array
26 scanf("%d %d", &row2, &col2);
27
28
29
30 // test sizeof operator on VLA

31 printf("\nsizeof(array) yields array size of %d bytes\n",
32);

33
34 // assign elements of 1-D VLA
35 for (size_t i = 0; i < arraySize; ++i) {
36 array[i] = i * i;

37 }
38
39 // assign elements of first 2-D VLA

40 for (size_t i = 0; i < row1; ++i) {
41 for (size_t j = 0; j < col1; ++j) {
42 array2D1[i][j] = i + j;

43 }
44 }

45
46 // assign elements of second 2-D VLA
47 for (size_t i = 0; i < row2; ++i) {
48 for (size_t j = 0; j < col2; ++j) {
49 array2D2[i][j] = i + j;
50 }

51 }

52
53 puts("\nOne-dimensional array:");
54 print1DArray(arraySize, array); // pass 1-D VLA to function

55
56 puts("\nFirst two-dimensional array:");
57 print2DArray(row1, col1, array2D1); // pass 2-D VLA to function

58

Fig. 6.23 | Using variable-length arrays in C99. (Part 2 of 3.)

int array[arraySize]; // declare 1-D variable-length array

int array2D1[row1][col1]; // declare 2-D variable-length array

int array2D2[row2][col2]; // declare 2-D variable-length array

sizeof(array)

6.12 Variable-Length Arrays 255

Creating the VLAs
Lines 11–28 prompt the user for the desired sizes for a one-dimensional array and two
two-dimensional arrays and use the input values in lines 15, 21 and 28 to create VLAs.
Lines 15, 21 and 28 are valid as long as the variables representing the array sizes are of an
integral type.

59 puts("\nSecond two-dimensional array:");
60 print2DArray(row2, col2, array2D2); // pass other 2-D VLA to function

61 }
62
63 void print1DArray(size_t size, int array[size])
64 {
65 // output contents of array

66 for (size_t i = 0; i < size; i++) {
67 printf("array[%d] = %d\n", i, array[i]);
68 }

69 }

70
71 void print2DArray(size_t row, size_t col, int array[row][col])
72 {

73 // output contents of array
74 for (size_t i = 0; i < row; ++i) {
75 for (size_t j = 0; j < col; ++j) {
76 printf("%5d", array[i][j]);
77 }
78
79 puts("");
80 }
81 }

Enter size of a one-dimensional array: 6
Enter number of rows and columns in a 2-D array: 2 5
Enter number of rows and columns in another 2-D array: 4 3
sizeof(array) yields array size of 24 bytes

One-dimensional array:
array[0] = 0
array[1] = 1
array[2] = 4
array[3] = 9
array[4] = 16
array[5] = 25

First two-dimensional array:
 0 1 2 3 4
 1 2 3 4 5

Second two-dimensional array:
 0 1 2
 1 2 3
 2 3 4
 3 4 5

Fig. 6.23 | Using variable-length arrays in C99. (Part 3 of 3.)

256 Chapter 6 C Arrays

sizeof Operator with VLAs
After creating the arrays, we use the sizeof operator in lines 31–32 to ensure that our one-
dimensional VLA is of the proper length. In early versions of C sizeof was always a com-
pile-time operation, but when applied to a VLA, sizeof operates at runtime. The output
window shows that the sizeof operator returns a size of 24 bytes—four times that of the
number we entered because the size of an int on our machine is 4 bytes.

Assigning Values to VLA Elements
Next we assign values to the elements of our VLAs (lines 35–51). We use the loop-contin-
uation condition i < arraySize when filling the one-dimensional array. As with fixed-
length arrays, there is no protection against stepping outside the array bounds.

Function print1DArray
Lines 63–69 define function print1DArray that takes a one-dimensional VLA and displays
it. The syntax for passing VLAs as parameters to functions is the same as with regular ar-
rays. We use the variable size in the declaration of the array parameter, but it’s purely
documentation for the programmer.

Function print2DArray
Function print2DArray (lines 71–81) takes a two-dimensional VLA and displays it. Recall
from Section 6.11.2 that you must specify a size for all but the first index in a multidimen-
sional array parameter. The same restriction holds true for VLAs, except that the sizes can
be specified by variables. The initial value of col passed to the function is used to deter-
mine where each row begins in memory, just as with a fixed-size array. Changing the value
of col inside the function will not cause any changes to the indexing, but passing an in-
correct value to the function will.

6.13 Secure C Programming
Bounds Checking for Array Indices
It’s important to ensure that every index you use to access an array element is within the
array’s bounds. A one-dimensional array’s indices must be greater than or equal to 0 and
less than the number of array elements. A two-dimensional array’s row and column indices
must be greater than or equal to 0 and less than the numbers of rows and columns, respec-
tively. This extends to arrays with additional dimensions as well.

Allowing programs to read from or write to array elements outside the bounds of arrays
are common security flaws. Reading from out-of-bounds array elements can cause a program
to crash or even appear to execute correctly while using bad data. Writing to an out-of-
bounds element (known as a buffer overflow) can corrupt a program’s data in memory, crash
a program and allow attackers to exploit the system and execute their own code.

As we stated in the chapter, C provides no automatic bounds checking for arrays, so you
must provide your own. For techniques that help you prevent such problems, see CERT
guideline ARR30-C at www.securecoding.cert.org.

scanf_s
Bounds checking is also important in string processing. When reading a string into a char
array, scanf does not prevent buffer overflows. If the number of characters input is greater
than or equal to the array’s length, scanf will write characters—including the string’s ter-

6.13 Secure C Programming 257

minating null character ('\0')—beyond the end of the array. This might overwrite other
variables’ values. In addition, if the program writes to those other variables, it might over-
write the string’s '\0'.

A function determines where a string ends by looking for its terminating '\0' char-
acter. For example, recall that function printf outputs a string by reading characters from
the beginning of the string in memory and continuing until it encounters the string’s '\0'.
If the '\0' is missing, printf continues reading from memory until it encounters some
later '\0' in memory. This can lead to strange results or cause a program to crash.

The C11 standard’s optional Annex K provides new, more secure, versions of many
string-processing and input/output functions. When reading a string into a character array
function scanf_s performs additional checks to ensure that it does not write beyond the
end of the array. Assuming that myString is a 20-character array, the statement

reads a string into myString. Function scanf_s requires two arguments for each %s in the
format string:

• a character array in which to place the input string and

• the array’s number of elements.

The function uses the number of elements to prevent buffer overflows. For example, it’s
possible to supply a field width for %s that’s too long for the underlying character array, or
to simply omit the field width entirely. With scanf_s, if the number of characters input
plus the terminating null character is larger than the number of array elements specified,
the %s conversion fails. For the preceding statement, which contains only one conversion
specifier, scanf_s would return 0 indicating that no conversions were performed, and the
array myString would be unaltered.

In general, if your compiler supports the functions from the C standard’s optional
Annex K, you should use them. We discuss additional Annex K functions in later Secure
C Programming sections.

Don’t Use Strings Read from the User as Format-Control Strings
You might have noticed that throughout this book, we do not use single-argument printf
statements. Instead we use one of the following forms:

• When we need to output a '\n' after the string, we use function puts (which au-
tomatically outputs a '\n' after its single string argument), as in

• When we need the cursor to remain on the same line as the string, we use func-
tion printf, as in

scanf_s("%19s", myString, 20);

Portability Tip 6.1
Not all compilers support the C11 standard’s Annex K functions. For programs that must
compile on multiple platforms and compilers, you might have to edit your code to use the
versions of scanf_s or scanf available on each platform. Your compiler might also re-
quire a specific setting to enable you to use the Annex K functions.

 puts("Welcome to C!");

 printf("%s", "Enter first integer: ");

258 Chapter 6 C Arrays

Because we were displaying string literals, we certainly could have used the one-argument
form of printf, as in

When printf evaluates the format-control string in its first (and possibly its only) argu-
ment, the function performs tasks based on the conversion specifier(s) in that string. If the
format-control string were obtained from the user, an attacker could supply malicious con-
version specifiers that would be “executed” by the formatted output function. Now that you
know how to read strings into character arrays, it’s important to note that you should never
use as a printf’s format-control string a character array that might contain user input. For
more information, see CERT guideline FIO30-C at www.securecoding.cert.org.

printf("Welcome to C!\n");
printf("Enter first integer: ");

Summary
Section 6.1 Introduction
• Arrays (p. 215) are data structures consisting of related data items of the same type.

• Arrays are “static” entities in that they remain the same size throughout program execution.

Section 6.2 Arrays
• An array is a contiguous group of memory locations related by the fact that they all have the

same name and the same type.

• To refer to a particular location or element (p. 215) in the array, specify the array’s name and
the position number (p. 215) of the particular element in the array.

• The first element in every array is the zeroth element (p. 215), i.e., the one with position number
0. Thus, the first element of array c is referred to as c[0], the second element is referred to as c[1],
the seventh element is referred to as c[6], and, in general, the ith element is referred to as c[i - 1].

• An array name, like other variable names, can contain only letters, digits and underscores and
cannot begin with a digit.

• The position number contained within square brackets is more formally called an index or sub-
script (p. 216). An index must be an integer or an integer expression.

• The brackets used to enclose the index of an array are actually considered to be an operator in
C. They have the same level of precedence as the function call operator.

Section 6.3 Defining Arrays
• Arrays occupy space in memory. You specify the type of each element and the number of ele-

ments in the array so that the computer may reserve the appropriate amount of memory.

• An array of type char can be used to store a character string.

Section 6.4 Array Examples
• Type size_t represents an unsigned integral type. This type is recommended for any variable

that represents an array’s size or an array’s indices. The header <stddef.h> defines size_t and
is often included by other headers (such as <stdio.h>).

 Summary 259

• The elements of an array can be initialized when the array is defined by following the definition
with an equals sign and braces, {}, containing a comma-separated list of initializers (p. 218). If
there are fewer initializers than elements in the array, the remaining elements are initialized to zero.

• The statement int n[10] = {0}; explicitly initializes the first element to zero and initializes the
remaining nine elements to zero because there are fewer initializers than there are elements in the
array. It’s important to remember that automatic arrays are not automatically initialized to zero.
You must at least initialize the first element to zero for the remaining elements to be automati-
cally zeroed. This method of initializing the array elements to 0 is performed before program
startup for static arrays and at runtime for automatic arrays.

• If the array size is omitted from a definition with an initializer list, the number of elements in the
array will be the number of elements in the initializer list.

• The #define preprocessor directive can be used to define a symbolic constant—an identifier
that the preprocessor replaces with replacement text before the program is compiled. When the
program is preprocessed, all occurrences of the symbolic constant are replaced with the replace-
ment text (p. 220). Using symbolic constants to specify array sizes makes programs more modi-
fiable.

• C has no array bounds checking to prevent a program from referring to an element that does not
exist. Thus, an executing program can “walk off” the end of an array without warning. You
should ensure that all array references remain within the bounds of the array.

Section 6.5 Using Character Arrays to Store and Manipulate Strings
• A string literal such as "hello" is really an array of individual characters in C.

• A character array can be initialized using a string literal. In this case, the size of the array is de-
termined by the compiler based on the length of the string.

• Every string contains a special string-termination character called the null character (p. 226).
The character constant representing the null character is '\0'.

• A character array representing a string should always be defined large enough to hold the number
of characters in the string and the terminating null character.

• Character arrays also can be initialized with individual character constants in an initializer list.

• Because a string is really an array of characters, we can access individual characters in a string di-
rectly using array index notation.

• You can input a string directly into a character array from the keyboard using scanf and the con-
version specifier %s. The name of the character array is passed to scanf without the preceding &
used with non-array variables.

• Function scanf reads characters from the keyboard until the first white-space character is en-
countered—it does not check the array size. Thus, scanf can write beyond the end of the array.

• A character array representing a string can be output with printf and the %s conversion specifier.
The characters of the string are printed until a terminating null character is encountered.

Section 6.6 Static Local Arrays and Automatic Local Arrays
• A static local variable exists for the duration of the program but is visible only in the function

body. We can apply static to a local array definition so that the array is not created and initial-
ized each time the function is called and the array is not destroyed each time the function is exited
in the program. This reduces program execution time, particularly for programs with frequently
called functions that contain large arrays.

• Arrays that are static are automatically initialized once before program startup. If you do not
explicitly initialize a static array, that array’s elements are initialized to zero by the compiler.

260 Chapter 6 C Arrays

Section 6.7 Passing Arrays to Functions
• To pass an array argument to a function, specify the name of the array without any brackets.

• Unlike char arrays that contain strings, other array types do not have a special terminator. For
this reason, the size of an array is passed to a function, so that the function can process the proper
number of elements.

• C automatically passes arrays to functions by reference—the called functions can modify the
element values in the callers’ original arrays. The name of the array evaluates to the address of the
first element of the array. Because the starting address of the array is passed, the called function
knows precisely where the array is stored. Therefore, when the called function modifies array el-
ements in its function body, it’s modifying the actual elements of the array in their original mem-
ory locations.

• Although entire arrays are passed by reference, individual array elements are passed by value ex-
actly as simple variables are.

• Such simple single pieces of data (such as individual ints, floats and chars) are called scalars
(p. 231).

• To pass an element of an array to a function, use the indexed name of the array element as an
argument in the function call.

• For a function to receive an array through a function call, the function’s parameter list must spec-
ify that an array will be received. The size of the array is not required between the array brackets.
If it’s included, the compiler checks that it’s greater than zero, then ignores it.

• When an array parameter is preceded by the const qualifier (p. 233), the elements of the array
become constant in the function body, and any attempt to modify an element of the array in the
function body results in a compile-time error.

Section 6.8 Sorting Arrays
• Sorting data (i.e., placing the data into a particular order such as ascending or descending) is one

of the most important computing applications.

• One sorting technique is called the bubble sort (p. 234) or the sinking sort, because the smaller
values gradually “bubble” their way upward to the top of the array like air bubbles rising in water,
while the larger values sink to the bottom of the array. The technique is to make several passes
through the array. On each pass, successive pairs of elements are compared. If a pair is in increas-
ing order (or if the values are identical), we leave the values as they are. If a pair is in decreasing
order, their values are swapped in the array.

• Because of the way the successive comparisons are made, a large value may move down the array
many positions on a single pass, but a small value may move up only one position.

• The chief virtue of the bubble sort is that it’s easy to program. However, the bubble sort runs
slowly. This becomes apparent when sorting large arrays.

Section 6.9 Case Study: Computing Mean, Median and Mode Using Arrays
• The mean is the arithmetic average of a set of values.

• The median is the “middle value” in a sorted set of values.

• The mode is the value that occurs most frequently in a set of values.

Section 6.10 Searching Arrays
• The process of finding a particular element of an array is called searching (p. 241).

• The linear search compares each element of the array with the search key (p. 241). Because the
array is not in any particular order, it’s just as likely that the value will be found in the first ele-

 Summary 261

ment as in the last. On average, therefore, the search key will be compared with half the elements
of the array.

• The linear search algoritm (p. 241) works well for small or unsorted arrays. For sorted arrays, the
high-speed binary search algorithm can be used.

• The binary search algorithm (p. 241) eliminates from consideration one-half of the elements in
a sorted array after each comparison. The algorithm locates the middle element of the array and
compares it to the search key. If they’re equal, the search key is found and the array index of that
element is returned. If they’re not equal, the problem is reduced to searching one-half of
the array. If the search key is less than the middle element of the array, the first half of the array
is searched, otherwise the second half is searched. If the search key is not found in the specified
subarray (piece of the original array), the algorithm is repeated on one-quarter of the original ar-
ray. The search continues until the search key is equal to the middle element of a subarray, or
until the subarray consists of one element that’s not equal to the search key (i.e., the search key
is not found).

• When using a binary search, the maximum number of comparisons required for any array can
be determined by finding the first power of 2 greater than the number of array elements.

Section 6.11 Multidimensional Arrays
• A common use of multidimensional arrays (p. 246) is to represent tables of values consisting of

information arranged in rows and columns. To identify a particular table element, we must spec-
ify two indices: The first (by convention) identifies the element’s row and the second (by con-
vention) identifies the element’s column.

• Tables or arrays that require two indices to identify a particular element are called two-dimen-
sional arrays (p. 246).

• Multidimensional arrays can have more than two indices.

• A multidimensional array can be initialized when it’s defined, much like a one-dimensional array.
The values in a two-dimensional array are grouped by row in braces. If there are not enough ini-
tializers for a given row, the remaining elements of that row are initialized to 0.

• The first index of a multidimensional array parameter declaration is not required, but all subse-
quent indices are required. The compiler uses these indices to determine the locations in memory
of elements in multidimensional arrays. All array elements are stored consecutively in memory
regardless of the number of indices. In a two-dimensional array, the first row is stored in memory
followed by the second row.

• Providing the index values in a parameter declaration enables the compiler to tell the function
how to locate an array element. In a two-dimensional array, each row is basically a two-dimen-
sional array. To locate an element in a particular row, the compiler must know how many ele-
ments are in each row so that it can skip the proper number of memory locations when accessing
the array.

Section 6.12 Variable-Length Arrays
• A variable-length array (p. 253) is an array whose size is defined by an expression evaluated at

execution time.

• When applied to a variable-length array, sizeof operates at runtime.

• As with fixed-length arrays, there is no protection against stepping outside the array bounds of
variable-length arrays.

• The syntax for passing variable-length arrays as parameters to functions is the same as with a nor-
mal, fixed-length array.

262 Chapter 6 C Arrays

Self-Review Exercises
6.1 Answer each of the following:

a) Lists and tables of values are stored in .
b) The number used to refer to a particular element of an array is called its .
c) A(n) should be used to specify the size of an array because it makes the pro-

gram more modifiable.
d) The process of placing the elements of an array in order is called the array.
e) Determining whether an array contains a certain key value is called the array.
f) An array that uses two indices is referred to as a(n) array.

6.2 State whether the following are true or false. If the answer is false, explain why.
a) An array can store many different types of values.
b) An array index can be of data type double.
c) If there are fewer initializers in an initializer list than the number of elements in the array,

C automatically initializes the remaining elements to the last value in the list of initializers.
d) It’s an error if an initializer list contains more initializers than there are array elements.
e) An individual array element that’s passed to a function as an argument of the form a[i]

and modified in the called function will contain the modified value in the calling function.

6.3 Follow the instructions below regarding an array called fractions.
a) Define a symbolic constant SIZE to be replaced with the replacement text 10.
b) Define an array with SIZE elements of type double and initialize the elements to 0.
c) Refer to array element 4.
d) Assign the value 1.667 to array element nine.
e) Assign the value 3.333 to the seventh element of the array.
f) Print array elements 6 and 9 with two digits of precision to the right of the decimal

point, and show the output that’s displayed on the screen.
g) Print all the elements of the array, using a for iteration statement. Assume the integer

variable x has been defined as a control variable for the loop. Show the output.

6.4 Write statements to accomplish the following:
a) Define table to be an integer array and to have 3 rows and 3 columns. Assume the sym-

bolic constant SIZE has been defined to be 3.
b) How many elements does the array table contain? Print the total number of elements.
c) Use a for iteration statement to initialize each element of table to the sum of its indices.

Assume the integer variables x and y are defined as control variables.
d) Print the values of each element of array table. Assume the array was initialized with

the definition:

int table[SIZE][SIZE] =
 { { 1, 8 }, { 2, 4, 6 }, { 5 } };

6.5 Find the error in each of the following program segments and correct the error.
a) #define SIZE 100;
b) SIZE = 10;
c) Assume int b[10] = { 0 }, i;

 for (i = 0; i <= 10; ++i) {
 b[i] = 1;
 }

d) #include <stdio.h>;
e) Assume int a[2][2] = { { 1, 2 }, { 3, 4 } };

 a[1, 1] = 5;
f) #define VALUE = 120

 Answers to Self-Review Exercises 263

Answers to Self-Review Exercises
6.1 a) arrays. b) index. c) symbolic constant. d) sorting. e) searching. f) two-dimensional.

6.2 a) False. An array can store only values of the same type.
b) False. An array index must be an integer or an integer expression.
c) False. C automatically initializes the remaining elements to zero.
d) True.
e) False. Individual elements of an array are passed by value. If the entire array is passed to

a function, then any modifications to the elements will be reflected in the original.

6.3 a) #define SIZE 10
b) double fractions[SIZE] = { 0.0 };
c) fractions[4]
d) fractions[9] = 1.667;
e) fractions[6] = 3.333;
f) printf("%.2f %.2f\n", fractions[6], fractions[9]);

Output: 3.33 1.67.
g) for (x = 0; x < SIZE; ++x) {

 printf("fractions[%u] = %f\n", x, fractions[x]);
}

Output:
fractions[0] = 0.000000

fractions[1] = 0.000000

fractions[2] = 0.000000

fractions[3] = 0.000000

fractions[4] = 0.000000

fractions[5] = 0.000000

fractions[6] = 3.333000

fractions[7] = 0.000000

fractions[8] = 0.000000

fractions[9] = 1.667000

6.4 a) int table[SIZE][SIZE];
b) Nine elements. printf("%d\n", SIZE * SIZE);
c) for (x = 0; x < SIZE; ++x) {

 for (y = 0; y < SIZE; ++y) {
 table[x][y] = x + y;

 }

}
d) for (x = 0; x < SIZE; ++x) {

 for (y = 0; y < SIZE; ++y) {
 printf("table[%d][%d] = %d\n", x, y, table[x][y]);
 }

}

Output:
table[0][0] = 1

table[0][1] = 8

table[0][2] = 0

table[1][0] = 2

table[1][1] = 4

table[1][2] = 6

table[2][0] = 5

table[2][1] = 0

table[2][2] = 0

264 Chapter 6 C Arrays

6.5 a) Error: Semicolon at the end of the #define preprocessor directive.
Correction: Eliminate semicolon.

b) Error: Assigning a value to a symbolic constant using an assignment statement.
Correction: Assign a value to the symbolic constant in a #define preprocessor directive
without using the assignment operator as in #define SIZE 10.

c) Error: Referencing an array element outside the bounds of the array (b[10]).
Correction: Change the final value of the control variable to 9.

d) Error: Semicolon at the end of the #include preprocessor directive.
Correction: Eliminate semicolon.

e) Error: Array indexing done incorrectly.
Correction: Change the statement to a[1][1] = 5;

f) Error: Assigning a value to a symbolic constant using an assignment statement.
Correction: Assign a value to the symbolic constant in a #define preprocessor
directive without using the assignment operator as in #define VALUE 120.

Exercises
6.6 Fill in the blanks in each of the following:

a) C stores lists of values in .
b) The elements of an array are related by the fact that they .
c) When referring to an array element, the position number contained within square

brackets is called a(n) .
d) The names of the five elements of array p are , , ,

and .
e) The contents of a particular element of an array is called the of that element.
f) Naming an array, stating its type and specifying the number of elements in the array is

called the array.
g) The process of placing the elements of an array into either ascending or descending or-

der is called .
h) In a two-dimensional array, the first index identifies the of an element and the

second index identifies the of an element.
i) An m-by-n array contains rows, columns and elements.
j) The name of the element in row 3 and column 5 of array d is .

6.7 State which of the following are true and which are false. If false, explain why.
a) To refer to a particular location or element within an array, we specify the name of the

array and the value of the particular element.
b) An array definition reserves space for the array.
c) To indicate that 100 locations should be reserved for integer array p, write

p[100];
d) A C program that initializes the elements of a 15-element array to zero must contain

one for statement.
e) A C program that totals the elements of a two-dimensional array must contain nested

for statements.
f) The mean, median and mode of the following set of values are 5, 6 and 7, respectively:

1, 2, 5, 6, 7, 7, 7.

6.8 Write statements to accomplish each of the following:
a) Display the value of the seventh element of character array f.
b) Input a value into element 4 of one-dimensional floating-point array b.
c) Initialize each of the five elements of one-dimensional integer array g to 8.
d) Total the elements of floating-point array c of 100 elements.

 Exercises 265

e) Copy array a into the first portion of array b. Assume double a[11], b[34];
f) Determine and print the smallest and largest values contained in 99-element floating-

point array w.

6.9 Consider a 2-by-5 integer array t.
a) Write a definition for t.
b) How many rows does t have?
c) How many columns does t have?
d) How many elements does t have?
e) Write the names of all the elements in the second row of t.
f) Write the names of all the elements in the third column of t.
g) Write a single statement that sets the element of t in row 1 and column 2 to zero.
h) Write a series of statements that initialize each element of t to zero. Do not use an iter-

ation statement.
i) Write a nested for statement that initializes each element of t to zero.
j) Write a statement that inputs the values for the elements of t from the terminal.
k) Write a series of statements that determine and print the smallest value in array t.
l) Write a statement that displays the elements of the first row of t.
m) Write a statement that totals the elements of the fourth column of t.
n) Write a series of statements that print the array t in tabular format. List the column in-

dices as headings across the top and list the row indices at the left of each row.

6.10 (Sales Commissions) Use a one-dimensional array to solve the following problem. A com-
pany pays its salespeople on a commission basis. The salespeople receive $200 per week plus 9% of
their gross sales for that week. For example, a salesperson who grosses $3,000 in sales in a week re-
ceives $200 plus 9% of $3,000, or a total of $470. Write a C program (using an array of counters)
that determines how many of the salespeople earned salaries in each of the following ranges (assume
that each salesperson’s salary is truncated to an integer amount):

a) $200–299
b) $300–399
c) $400–499
d) $500–599
e) $600–699
f) $700–799
g) $800–899
h) $900–999
i) $1000 and over

6.11 (Bubble Sort) The bubble sort presented in Fig. 6.15 is inefficient for large arrays. Make the
following simple modifications to improve its performance.

a) After the first pass, the largest number is guaranteed to be in the highest-numbered el-
ement of the array; after the second pass, the two highest numbers are “in place,” and
so on. Instead of making nine comparisons on every pass, modify the bubble sort to
make eight comparisons on the second pass, seven on the third pass and so on.

b) The data in the array may already be in the proper or near-proper order, so why make
nine passes if fewer will suffice? Modify the sort to check at the end of each pass whether
any swaps have been made. If none has been made, then the data must already be in the
proper order, so the program should terminate. If swaps have been made, then at least
one more pass is needed.

6.12 Write loops that perform each of the following one-dimensional array operations:
a) Initialize the 10 elements of integer array counts to zeros.
b) Add 1 to each of the 15 elements of integer array bonus.

266 Chapter 6 C Arrays

c) Read the 12 values of floating-point array monthlyTemperatures from the keyboard.
d) Print the five values of integer array bestScores in column format.

6.13 Find the error(s) in each of the following statements:
a) Assume: char str[5];

 scanf("%s", str); // User types hello
b) Assume: int a[3];

 printf("$d %d %d\n", a[1], a[2], a[3]);
c) double f[3] = { 1.1, 10.01, 100.001, 1000.0001 };
d) Assume: double d[2][10];

 d[1, 9] = 2.345;

6.14 (Mean, Median and Mode Program Modifications) Modify the program of Fig. 6.16 so
function mode is capable of handling a tie for the mode value. Also modify function median so the
two middle elements are averaged in an array with an even number of elements.

6.15 (Duplicate Elimination) Use a one-dimensional array to solve the following problem. Read
in 20 numbers, each of which is between 10 and 100, inclusive. As each number is read, print it
only if it’s not a duplicate of a number already read. Provide for the “worst case” in which all 20
numbers are different. Use the smallest possible array to solve this problem.

6.16 Label the elements of 3-by-5 two-dimensional array sales to indicate the order in which
they’re set to zero by the following program segment:

for (row = 0; row <= 2; ++row) {
 for (column = 0; column <= 4; ++column) {
 sales[row][column] = 0;
 }

}

6.17 What does the following program do?

1 // ex06_17.c

2 // What does this program do?

3 #include <stdio.h>
4 #define SIZE 10
5
6 int whatIsThis(const int b[], size_t p); // function prototype
7
8 // function main begins program execution

9 int main(void)
10 {

11 int x; // holds return value of function whatIsThis
12
13 // initialize array a

14 int a[SIZE] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
15
16 x = whatIsThis(a, SIZE);
17
18 printf("Result is %d\n", x);
19 }

20
21 // what does this function do?

22 int whatIsThis(const int b[], size_t p)
23 {

24 // base case

25 if (1 == p) {
26 return b[0];
27 }

 Exercises 267

6.18 What does the following program do?

6.19 (Dice Rolling) Write a program that simulates the rolling of two dice. The program should
use rand twice to roll the first die and second die, respectively. The sum of the two values should
then be calculated. [Note: Because each die can show an integer value from 1 to 6, then the sum of
the two values will vary from 2 to 12, with 7 being the most frequent sum and 2 and 12 the least
frequent sums.] Figure 6.24 shows the 36 possible combinations of the two dice. Your program
should roll the two dice 36,000 times. Use a one-dimensional array to tally the numbers of times
each possible sum appears. Print the results in a tabular format. Also, determine if the totals are rea-
sonable; i.e., there are six ways to roll a 7, so approximately one-sixth of all the rolls should be 7.

28 else { // recursion step
29 return b[p - 1] + whatIsThis(b, p - 1);
30 }

31 }

1 // ex06_18.c

2 // What does this program do?

3 #include <stdio.h>
4 #define SIZE 10
5
6 // function prototype

7 void someFunction(const int b[], size_t startIndex, size_t size);
8
9 // function main begins program execution

10 int main(void)
11 {

12 int a[SIZE] = { 8, 3, 1, 2, 6, 0, 9, 7, 4, 5 }; // initialize a
13

14 puts("Answer is:");
15 someFunction(a, 0, SIZE);
16 puts("");
17 }

18
19 // What does this function do?

20 void someFunction(const int b[], size_t startIndex, size_t size)
21 {

22 if (startIndex < size) {
23 someFunction(b, startIndex + 1, size);
24 printf("%d ", b[startIndex]);
25 }

26 }

Fig. 6.24 | Dice-rolling outcomes.

1 2 3 4 5 6

6 7 8 9 10 11

7 8 9 10 11 12

5

5 6 7 8 9 104

4 5 6 7 8 93

3 4 5 6 7 82

2 3 4 5 6 71

6

268 Chapter 6 C Arrays

6.20 (Game of Craps) Write a program that runs 1000 games of craps (without human interven-
tion) and answers each of the following questions:

a) How many games are won on the first roll, second roll, …, twentieth roll and after the
twentieth roll?

b) How many games are lost on the first roll, second roll, …, twentieth roll and after the
twentieth roll?

c) What are the chances of winning at craps? [Note: You should discover that craps is one
of the fairest casino games. What do you suppose this means?]

d) What’s the average length of a game of craps?
e) Do the chances of winning improve with the length of the game?

6.21 (Airline Reservations System) A small airline has just purchased a computer for its new au-
tomated reservations system. The president has asked you to program the new system. You’ll write
a program to assign seats on each flight of the airline’s only plane (capacity: 10 seats).

Your program should display the following menu of alternatives:

Please type 1 for "first class"

Please type 2 for "economy"

If the person types 1, then your program should assign a seat in the first class section (seats 1–
5). If the person types 2, then your program should assign a seat in the economy section (seats 6–
10). Your program should then print a boarding pass indicating the person's seat number and
whether it’s in the first class or economy section of the plane.

Use a one-dimensional array to represent the seating chart of the plane. Initialize all the ele-
ments of the array to 0 to indicate that all seats are empty. As each seat is assigned, set the corre-
sponding element of the array to 1 to indicate that the seat is no longer available.

Your program should, of course, never assign a seat that has already been assigned. When the
first class section is full, your program should ask the person if it’s acceptable to be placed in the
economy section (and vice versa). If yes, then make the appropriate seat assignment. If no, then
print the message "Next flight leaves in 3 hours."

6.22 (Total Sales) Use a two-dimensional array to solve the following problem. A company has
four salespeople (1 to 4) who sell five different products (1 to 5). Once a day, each salesperson passes
in a slip for each different type of product sold. Each slip contains:

a) The salesperson number
b) The product number
c) The total dollar value of that product sold that day

Thus, each salesperson passes in between 0 and 5 sales slips per day. Assume that the information
from all of the slips for last month is available. Write a program that will read all this information
for last month’s sales and summarize the total sales by salesperson by product. All totals should be
stored in the two-dimensional array sales. After processing all the information for last month,
print the results in tabular format with each column representing a particular salesperson and each
row representing a particular product. Cross total each row to get the total sales of each product for
last month; cross total each column to get the total sales by salesperson for last month. Your tabular
printout should include these cross totals to the right of the totaled rows and to the bottom of the
totaled columns.

6.23 (Turtle Graphics) The Logo language made the concept of turtle graphics famous. Imagine
a mechanical turtle that walks around the room under the control of a C program. The turtle holds
a pen in one of two positions, up or down. While the pen is down, the turtle traces out shapes as it
moves; while the pen is up, the turtle moves about freely without writing anything. In this problem
you’ll simulate the operation of the turtle and create a computerized sketchpad as well.

Use a 50-by-50 array floor which is initialized to zeros. Read commands from an array that
contains them. Keep track of the current turtle position at all times and whether the pen is cur-

 Exercises 269

rently up or down. Assume that the turtle always starts at position 0, 0 of the floor with its pen up.
The set of turtle commands your program must process are shown in Fig. 6.25. Suppose that the
turtle is somewhere near the center of the floor. The following “program” would draw and print a
12-by-12 square:

2

5,12

3

5,12

3

5,12

3

5,12

1

6

9

As the turtle moves with the pen down, set the appropriate elements of array floor to 1s. When the
6 command (print) is given, wherever there’s a 1 in the array, display an asterisk, or some other
character you choose. Wherever there’s a zero, display a blank. Write a program to implement the
turtle graphics capabilities discussed here. Write several turtle graphics programs to draw interest-
ing shapes. Add other commands to increase the power of your turtle graphics language.

6.24 (Knight’s Tour) One of the more interesting puzzlers for chess buffs is the Knight’s Tour
problem, originally proposed by the mathematician Euler. The question is this: Can the chess piece
called the knight move around an empty chessboard and touch each of the 64 squares once and only
once? We study this intriguing problem in depth here.

The knight makes L-shaped moves (over two in one direction and then over one in a per-
pendicular direction). Thus, from a square in the middle of an empty chessboard, the knight can
make eight different moves (numbered 0 through 7) as shown in Fig. 6.26.

a) Draw an 8-by-8 chessboard on a sheet of paper and attempt a Knight’s Tour by hand.
Put a 1 in the first square you move to, a 2 in the second square, a 3 in the third, and so
on. Before starting the tour, estimate how far you think you’ll get, remembering that a
full tour consists of 64 moves. How far did you get? Were you close to the estimate?

b) Now let’s develop a program that will move the knight around a chessboard. The board
itself is represented by an 8-by-8 two-dimensional array board. Each square is initialized
to zero. We describe each of the eight possible moves in terms of both its horizontal and
vertical components. For example, a move of type 0 as shown in Fig. 6.26 consists of

Command Meaning

1 Pen up
2 Pen down
3 Turn right

4 Turn left

5, 10 Move forward 10 spaces (or a number other than 10)
6 Print the 50-by-50 array
9 End of data (sentinel)

Fig. 6.25 | Turtle commands.

270 Chapter 6 C Arrays

moving two squares horizontally to the right and one square vertically upward. Move 2
consists of moving one square horizontally to the left and two squares vertically upward.
Horizontal moves to the left and vertical moves upward are indicated with negative
numbers. The eight moves may be described by two one-dimensional arrays, horizon-
tal and vertical, as follows:

horizontal[0] = 2
horizontal[1] = 1
horizontal[2] = -1
horizontal[3] = -2
horizontal[4] = -2
horizontal[5] = -1
horizontal[6] = 1
horizontal[7] = 2
vertical[0] = -1
vertical[1] = -2
vertical[2] = -2
vertical[3] = -1
vertical[4] = 1
vertical[5] = 2
vertical[6] = 2
vertical[7] = 1

Let the variables currentRow and currentColumn indicate the row and column of the
knight’s current position on the board. To make a move of type moveNumber, where
moveNumber is between 0 and 7, your program uses the statements

currentRow += vertical[moveNumber];

currentColumn += horizontal[moveNumber];

Keep a counter that varies from 1 to 64. Record the latest count in each square the
knight moves to. Remember to test each potential move to see if the knight has already
visited that square. And, of course, test every potential move to make sure that the
knight does not land off the chessboard. Now write a program to move the knight
around the chessboard. Run the program. How many moves did the knight make?

c) After attempting to write and run a Knight’s Tour program, you have probably devel-
oped some valuable insights. We’ll use these to develop a heuristic (or strategy) for mov-
ing the knight. Heuristics do not guarantee success, but a carefully developed heuristic

Fig. 6.26 | The eight possible moves of the knight.

0 1 2 3 4 5 6 7

4 4 7

3 K

2 3 0

1 2 1

0

5 5 6

6

7

 Exercises 271

greatly improves the chance of success. You may have observed that the outer squares
are in some sense more troublesome than the squares nearer the center of the board. In
fact, the most troublesome, or inaccessible, squares are the four corners.

Intuition may suggest that you should attempt to move the knight to the most trou-
blesome squares first and leave open those that are easiest to get to, so that when the
board gets congested near the end of the tour, there will be a greater chance of success.

We develop an “accessibility heuristic” by classifying each square according to how
accessible it is and always moving the knight to the square (within the knight’s L-
shaped moves, of course) that’s most inaccessible. We label a two-dimensional array
accessibility with numbers indicating from how many squares each particular
square is accessible. On a blank chessboard, the center squares are therefore rated as 8s,
the corner squares are rated as 2s, and the other squares have accessibility numbers of 3,
4, or 6 as follows:

2 3 4 4 4 4 3 2

3 4 6 6 6 6 4 3

4 6 8 8 8 8 6 4

4 6 8 8 8 8 6 4

4 6 8 8 8 8 6 4

4 6 8 8 8 8 6 4

3 4 6 6 6 6 4 3

2 3 4 4 4 4 3 2

Now write a version of the Knight’s Tour program using the accessibility heuristic.
At any time, the knight should move to the square with the lowest accessibility num-
ber. In case of a tie, the knight may move to any of the tied squares. Therefore, the tour
may begin in any of the four corners. [Note: As the knight moves around the chess-
board, your program should reduce the accessibility numbers as more and more
squares become occupied. In this way, at any given time during the tour, each available
square’s accessibility number will remain equal to precisely the number of squares from
which that square may be reached.] Run this version of your program. Did you get a
full tour? (Optional: Modify the program to run 64 tours, one from each square of the
chessboard. How many full tours did you get?)

d) Write a version of the Knight’s Tour program which, when encountering a tie between
two or more squares, decides what square to choose by looking ahead to those squares
reachable from the “tied” squares. Your program should move to the square for which
the next move would arrive at a square with the lowest accessibility number.

6.25 (Knight’s Tour: Brute-Force Approaches) In Exercise 6.24 we developed a solution to the
Knight’s Tour problem. The approach used, called the “accessibility heuristic,” generates many so-
lutions and executes efficiently.

As computers continue increasing in power, we’ll be able to solve many problems with sheer
computer power and relatively unsophisticated algorithms. Let’s call this approach brute-force
problem solving.

a) Use random number generation to enable the knight to walk around the chess board
(in its legitimate L-shaped moves, of course) at random. Your program should run one
tour and print the final chessboard. How far did the knight get?

b) Most likely, the preceding program produced a relatively short tour. Now modify your
program to attempt 1,000 tours. Use a one-dimensional array to keep track of the num-
ber of tours of each length. When your program finishes attempting the 1000 tours, it
should print this information in a tabular format. What was the best result?

c) Most likely, the preceding program gave you some “respectable” tours but no full tours.
Now “pull all the stops out” and simply let your program run until it produces a full
tour. [Caution: This version of the program could run for hours on a powerful comput-

272 Chapter 6 C Arrays

er.] Once again, keep a table of the number of tours of each length and print this table
when the first full tour is found. How many tours did your program attempt before pro-
ducing a full tour? How much time did it take?

d) Compare the brute-force version of the Knight’s Tour with the accessibility-heuristic
version. Which required a more careful study of the problem? Which algorithm was
more difficult to develop? Which required more computer power? Could we be certain
(in advance) of obtaining a full tour with the accessibility-heuristic approach? Could we
be certain (in advance) of obtaining a full tour with the brute-force approach? Argue the
pros and cons of brute-force problem solving in general.

6.26 (Eight Queens) Another puzzler for chess buffs is the Eight Queens problem. Simply stated:
Is it possible to place eight queens on an empty chessboard so that no queen is “attacking” any oth-
er—that is, so that no two queens are in the same row, the same column, or along the same diagonal?
Use the kind of thinking developed in Exercise 6.24 to formulate a heuristic for solving the Eight
Queens problem. Run your program. [Hint: It’s possible to assign a numeric value to each square
of the chessboard indicating how many squares of an empty chessboard are “eliminated” once a
queen is placed in that square. For example, each of the four corners would be assigned the value
22, as in Fig. 6.27.]

Once these “elimination numbers” are placed in all 64 squares, an appropriate heuristic might
be: Place the next queen in the square with the smallest elimination number. Why is this strategy
intuitively appealing?

6.27 (Eight Queens: Brute-Force Approaches) In this problem you’ll develop several brute-force
approaches to solving the Eight Queens problem introduced in Exercise 6.26.

a) Solve the Eight Queens problem, using the random brute-force technique developed in
Exercise 6.25.

b) Use an exhaustive technique (i.e., try all possible combinations of eight queens on the
chessboard).

c) Why do you suppose the exhaustive brute-force approach may not be appropriate for
solving the Eight Queens problem?

d) Compare and contrast the random brute-force and exhaustive brute-force approaches
in general.

6.28 (Duplicate Elimination) In Chapter 12, we explore the high-speed binary search tree data
structure. One feature of a binary search tree is that duplicate values are discarded when insertions
are made into the tree. This is referred to as duplicate elimination. Write a program that produces
20 random numbers between 1 and 20. The program should store all nonduplicate values in an ar-
ray. Use the smallest possible array to accomplish this task.

Fig. 6.27 | The 22 squares eliminated by placing a queen in the upper-left corner.

* *****

* *

* *

* *

* *

* *

*

*

*

*

*

*

 Recursion Exercises 273

6.29 (Knight’s Tour: Closed Tour Test) In the Knight’s Tour, a full tour occurs when the knight
makes 64 moves touching each square of the chessboard once and only once. A closed tour occurs
when the 64th move is one move away from the location in which the knight started the tour. Mod-
ify the Knight’s Tour program you wrote in Exercise 6.24 to test for a closed tour if a full tour has
occurred.

6.30 (The Sieve of Eratosthenes) A prime integer is any integer greater than 1 that can be divided
evenly only by itself and 1. The Sieve of Eratosthenes is a method of finding prime numbers. It
works as follows:

a) Create an array with all elements initialized to 1 (true). Array elements with prime in-
dices will remain 1. All other array elements will eventually be set to zero.

b) Starting with array index 2 (index 1 is not prime), every time an array element is found
whose value is 1, loop through the remainder of the array and set to zero every element
whose index is a multiple of the index for the element with value 1. For array index 2,
all elements beyond 2 in the array that are multiples of 2 will be set to zero (indices 4,
6, 8, 10, and so on.). For array index 3, all elements beyond 3 in the array that are mul-
tiples of 3 will be set to zero (indices 6, 9, 12, 15, and so on.).

When this process is complete, the array elements that are still set to 1 indicate that the index is a
prime number. Write a program that uses an array of 1,000 elements to determine and print the
prime numbers between 1 and 999. Ignore element 0 of the array.

Recursion Exercises
6.31 (Palindromes) A palindrome is a string that’s spelled the same way forward and backward.
Some examples of palindromes are: “radar,” “able was i ere i saw elba,” and, if you ignore blanks, “a
man a plan a canal panama.” Write a recursive function testPalindrome that returns 1 if the string
stored in the array is a palindrome and 0 otherwise. The function should ignore spaces and punctu-
ation in the string.

6.32 (Linear Search) Modify the program of Fig. 6.18 to use a recursive linearSearch function
to perform the linear search of the array. The function should receive an integer array, the size of
the array and the search key as arguments. If the search key is found, return the array index; other-
wise, return –1.

6.33 (Binary Search) Modify the program of Fig. 6.19 to use a recursive binarySearch function
to perform the binary search of the array. The function should receive an integer array, the starting
index, the ending index and the search key as arguments. If the search key is found, return the array
index; otherwise, return –1.

6.34 (Eight Queens) Modify the Eight Queens program you created in Exercise 6.26 to solve the
problem recursively.

6.35 (Print an Array) Write a recursive function printArray that takes an array and the size of
the array as arguments, prints the array, and returns nothing. The function should stop processing
and return when it receives an array of size zero.

6.36 (Print a String Backward) Write a recursive function stringReverse that takes a character
array as an argument, prints it back to front and returns nothing. The function should stop process-
ing and return when the terminating null character of the string is encountered.

6.37 (Find the Minimum Value in an Array) Write a recursive function recursiveMinimum that
takes an integer array and the array size as arguments and returns the smallest element of the array.
The function should stop processing and return when it receives an array of one element.

7 C Pointers

O b j e c t i v e s
In this chapter, you’ll:

■ Use pointers and pointer
operators.

■ Pass arguments to functions
by reference using pointers.

■ Understand the various
placements of the const
qualifier and how they affect
what you can do with a
variable.

■ Use the sizeof operator
with variables and types.

■ Use pointer arithmetic to
process the elements in
arrays.

■ Understand the close
relationships among
pointers, arrays and strings.

■ Define and use arrays of
strings.

■ Use pointers to functions.

■ Learn about secure C
programming issues with
regard to pointers.

7.1 Introduction 275

7.1 Introduction
In this chapter, we discuss one of the most powerful features of the C programming lan-
guage, the pointer.1 Pointers are among C’s most difficult capabilities to master. Pointers
enable programs to accomplish pass-by-reference, to pass functions between functions,
and to create and manipulate dynamic data structures—ones that can grow and shrink at
execution time, such as linked lists, queues, stacks and trees. This chapter explains basic
pointer concepts. In Section 7.13, we discuss various pointer-related security issues.
Chapter 10 examines the use of pointers with structures. Chapter 12 introduces dynamic
memory management techniques and presents examples of creating and using dynamic
data structures.

7.1 Introduction
7.2 Pointer Variable Definitions and

Initialization
7.3 Pointer Operators
7.4 Passing Arguments to Functions by

Reference
7.5 Using the const Qualifier with

Pointers
7.5.1 Converting a String to Uppercase

Using a Non-Constant Pointer to
Non-Constant Data

7.5.2 Printing a String One Character at a
Time Using a Non-Constant Pointer
to Constant Data

7.5.3 Attempting to Modify a Constant
Pointer to Non-Constant Data

7.5.4 Attempting to Modify a Constant
Pointer to Constant Data

7.6 Bubble Sort Using Pass-by-Reference
7.7 sizeof Operator
7.8 Pointer Expressions and Pointer

Arithmetic
7.8.1 Allowed Operators for Pointer

Arithmetic
7.8.2 Aiming a Pointer at an Array

7.8.3 Adding an Integer to a Pointer
7.8.4 Subtracting an Integer from a Pointer
7.8.5 Incrementing and Decrementing a

Pointer
7.8.6 Subtracting One Pointer from Another
7.8.7 Assigning Pointers to One Another
7.8.8 Pointer to void
7.8.9 Comparing Pointers

7.9 Relationship between Pointers and
Arrays

7.9.1 Pointer/Offset Notation
7.9.2 Pointer/Index Notation
7.9.3 Cannot Modify an Array Name with

Pointer Arithmetic
7.9.4 Demonstrating Pointer Indexing and

Offsets
7.9.5 String Copying with Arrays and

Pointers
7.10 Arrays of Pointers
7.11 Case Study: Card Shuffling and

Dealing Simulation
7.12 Pointers to Functions

7.12.1 Sorting in Ascending or Descending
Order

7.12.2 Using Function Pointers to Create a
Menu-Driven System

7.13 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises
Special Section: Building Your Own Computer | Array of Function Pointer Exercises |

Making a Difference

1. Pointers and pointer-based entities such as arrays and strings, when misused intentionally or acciden-
tally, can lead to errors and security breaches. See our Secure C Programming Resource Center
(www.deitel.com/SecureC/) for articles, books, white papers and forums on this important topic.

276 Chapter 7 C Pointers

7.2 Pointer Variable Definitions and Initialization
Pointers are variables whose values are memory addresses. Normally, a variable directly con-
tains a specific value. A pointer, however, contains an address of a variable that contains a spe-
cific value. In this sense, a variable name directly references a value, and a pointer indirectly
references a value (Fig. 7.1). Referencing a value through a pointer is called indirection.

Declaring Pointers
Pointers, like all variables, must be defined before they can be used. The definition

specifies that variable countPtr is of type int * (i.e., a pointer to an integer) and is read (right
to left), “countPtr is a pointer to int” or “countPtr points to an object2 of type int.” Also,
the variable count is defined to be an int, not a pointer to an int. The * applies only to
countPtr in the definition. When * is used in this manner in a definition, it indicates that
the variable being defined is a pointer. Pointers can be defined to point to objects of any type.
To prevent the ambiguity of declaring pointer and non-pointer variables in the same decla-
ration as shown above, you should always declare only one variable per declaration.

Initializing and Assigning Values to Pointers
Pointers should be initialized when they’re defined, or they can be assigned a value. A
pointer may be initialized to NULL, 0 or an address. A pointer with the value NULL points
to nothing. NULL is a symbolic constant defined in the <stddef.h> header (and several other
headers, such as <stdio.h>). Initializing a pointer to 0 is equivalent to initializing a pointer
to NULL, but NULL is preferred, because it highlights the fact that the variable is of a pointer

Fig. 7.1 | Directly and indirectly referencing a variable.

int *countPtr, count;

2. In C, an “object” is a region of memory that can hold a value. So objects in C include primitive types
such as ints, floats, chars and doubles, as well as aggregate types such as arrays and structs (which
we discuss in Chapter 10).

Common Programming Error 7.1
The asterisk (*) notation used to declare pointer variables does not distribute to all vari-
able names in a declaration. Each pointer must be declared with the * prefixed to the
name; e.g., if you wish to declare xPtr and yPtr as int pointers, use int *xPtr, *yPtr;.

Good Programming Practice 7.1
We prefer to include the letters Ptr in pointer variable names to make it clear that these
variables are pointers and need to be handled appropriately.

7
The pointer countPtr indirectly
references a variable that
contains the value 7

countcountPtr

7
The name count directly references
a variable that contains the value 7

count

7.3 Pointer Operators 277

type. When 0 is assigned, it’s first converted to a pointer of the appropriate type. The value
0 is the only integer value that can be assigned directly to a pointer variable. Assigning a
variable’s address to a pointer is discussed in Section 7.3.

7.3 Pointer Operators
In this section, we present the address (&) and indirection (*) operators, and the relation-
ship between them.

The Address (&) Operator
The &, or address operator, is a unary operator that returns the address of its operand. For
example, assuming the definitions

the statement

assigns the address of the variable y to pointer variable yPtr. Variable yPtr is then said to
“point to” y. Figure 7.2 shows a schematic representation of memory after the preceding
assignment is executed.

Pointer Representation in Memory
Figure 7.3 shows the representation of the preceding pointer in memory, assuming that
integer variable y is stored at location 600000, and pointer variable yPtr is stored at loca-
tion 500000. The operand of the address operator must be a variable; the address operator
cannot be applied to constants or expressions.

The Indirection (*) Operator
The unary * operator, commonly referred to as the indirection operator or dereferencing
operator, returns the value of the object to which its operand (i.e., a pointer) points. For
example, the statement

Error-Prevention Tip 7.1
Initialize pointers to prevent unexpected results.

int y = 5;
int *yPtr;

yPtr = &y;

Fig. 7.2 | Graphical representation of a pointer pointing to an integer variable in memory.

Fig. 7.3 | Representation of y and yPtr in memory.

5

yyPtr

5

y

600000
location
500000

yPtr

location
600000

278 Chapter 7 C Pointers

prints the value of variable y (5). Using * in this manner is called dereferencing a pointer.

Demonstrating the & and * Operators
Figure 7.4 demonstrates the pointer operators & and *. The printf conversion specifier %p
outputs the memory location as a hexadecimal integer on most platforms. (See Appendix C
for more information on hexadecimal integers.) In the program’s output, notice that the
address of a and the value of aPtr are identical in the output, thus confirming that the ad-
dress of a is indeed assigned to the pointer variable aPtr (line 8). The & and * operators
are complements of one another—when they’re both applied consecutively to aPtr in ei-
ther order (line 18), the same result is printed. The addresses shown in the output will vary
across systems. Figure 7.5 lists the precedence and associativity of the operators introduced
to this point.

printf("%d", *yPtr);

Common Programming Error 7.2
Dereferencing a pointer that has not been properly initialized or that has not been assigned
to point to a specific location in memory is an error. This could cause a fatal execution-
time error, or it could accidentally modify important data and allow the program to run
to completion with incorrect results.

1 // Fig. 7.4: fig07_04.c

2 // Using the & and * pointer operators.

3 #include <stdio.h>
4
5 int main(void)
6 {
7 int a = 7;
8

9
10 printf("The address of a is %p"
11 "\nThe value of aPtr is %p", ,);

12
13 printf("\n\nThe value of a is %d"
14 "\nThe value of *aPtr is %d", a,);

15
16 printf("\n\nShowing that * and & are complements of "
17 "each other\n&*aPtr = %p"
18 "\n*&aPtr = %p\n", ,);
19 }

The address of a is 0028FEC0
The value of aPtr is 0028FEC0

The value of a is 7
The value of *aPtr is 7

Showing that * and & are complements of each other
&*aPtr = 0028FEC0
*&aPtr = 0028FEC0

Fig. 7.4 | Using the & and * pointer operators.

int *aPtr = &a; // set aPtr to the address of a

&a aPtr

*aPtr

&*aPtr *&aPtr

7.4 Passing Arguments to Functions by Reference 279

7.4 Passing Arguments to Functions by Reference
There are two ways to pass arguments to a function—pass-by-value and pass-by-refer-
ence. However, all arguments in C are passed by value. Functions often require the capability
to modify variables in the caller or receive a pointer to a large data object to avoid the over-
head of receiving the object by value (which incurs the time and memory overheads of
making a copy of the object). As we saw in Chapter 5, return may be used to return one
value from a called function to a caller (or to return control from a called function without
passing back a value). Pass-by-reference also can be used to enable a function to “return”
multiple values to its caller by modifying variables in the caller.

Use & and * to Accomplish Pass-By-Reference
In C, you use pointers and the indirection operator to accomplish pass-by-reference.
When calling a function with arguments that should be modified, the addresses of the ar-
guments are passed. This is normally accomplished by applying the address operator (&)
to the variable (in the caller) whose value will be modified. As we saw in Chapter 6, arrays
are not passed using operator & because C automatically passes the starting location in
memory of the array (the name of an array is equivalent to &arrayName[0]). When the ad-
dress of a variable is passed to a function, the indirection operator (*) may be used in the
function to modify the value at that location in the caller’s memory.

Pass-By-Value
The programs in Figs. 7.6 and 7.7 present two versions of a function that cubes an inte-
ger—cubeByValue and cubeByReference. Line 14 of Fig. 7.6 passes the variable number
by value to function cubeByValue. The cubeByValue function cubes its argument and
passes the new value back to main using a return statement. The new value is assigned to
number in main (line 14).

Operators Associativity Type

() [] ++ (postfix) -- (postfix) left to right postfix

+ - ++ -- ! * & (type) right to left unary
* / % left to right multiplicative
+ - left to right additive
< <= > s>= left to right relational
== != left to right equality
&& left to right logical AND
|| left to right logical OR
?: right to left conditional
= += -= *= /= %= right to left assignment
, left to right comma

Fig. 7.5 | Precedence and associativity of the operators discussed so far.

280 Chapter 7 C Pointers

Pass-By-Reference
Figure 7.7 passes the variable number by reference (line 15)—the address of number is
passed—to function cubeByReference. Function cubeByReference takes as a parameter
a pointer to an int called nPtr (line 21). The function dereferences the pointer and cubes
the value to which nPtr points (line 23), then assigns the result to *nPtr (which is really
number in main), thus changing the value of number in main. Figures 7.8 and 7.9 analyze
graphically and step-by-step the programs in Figs. 7.6 and 7.7, respectively.

1 // Fig. 7.6: fig07_06.c

2 // Cube a variable using pass-by-value.

3 #include <stdio.h>
4
5
6
7 int main(void)
8 {

9 int number = 5; // initialize number
10
11 printf("The original value of number is %d", number);
12
13 // pass number by value to cubeByValue

14

15
16 printf("\nThe new value of number is %d\n", number);
17 }

18
19
20
21
22
23

The original value of number is 5
The new value of number is 125

Fig. 7.6 | Cube a variable using pass-by-value.

1 // Fig. 7.7: fig07_07.c

2 // Cube a variable using pass-by-reference with a pointer argument.
3
4 #include <stdio.h>
5
6
7
8 int main(void)
9 {

Fig. 7.7 | Cube a variable using pass-by-reference with a pointer argument. (Part 1 of 2.)

int cubeByValue(int n); // prototype

number = cubeByValue(number);

// calculate and return cube of integer argument
int cubeByValue(int n)
{

 return n * n * n; // cube local variable n and return result
}

void cubeByReference(int *nPtr); // function prototype

7.4 Passing Arguments to Functions by Reference 281

Use a Pointer Parameter to Receive an Address
A function receiving an address as an argument must define a pointer parameter to receive
the address. For example, in Fig. 7.7 the header for function cubeByReference (line 21) is:

The header specifies that cubeByReference receives the address of an integer variable as an
argument, stores the address locally in nPtr and does not return a value.

Pointer Parameters in Function Prototypes
The function prototype for cubeByReference (Fig. 7.7, line 6) specifies an int * parame-
ter. As with other variable types, it’s not necessary to include names of pointers in function
prototypes. Names included for documentation purposes are ignored by the C compiler.

Functions That Receive One-Dimensional Arrays
For a function that expects a one-dimensional array as an argument, the function’s proto-
type and header can use the pointer notation shown in the parameter list of function
cubeByReference (line 21). The compiler does not differentiate between a function that
receives a pointer and one that receives a one-dimensional array. This, of course, means
that the function must “know” when it’s receiving an array or simply a single variable for
which it’s to perform pass-by-reference. When the compiler encounters a function param-
eter for a one-dimensional array of the form int b[], the compiler converts the parameter
to the pointer notation int *b. The two forms are interchangeable.

10 int number = 5; // initialize number
11
12 printf("The original value of number is %d", number);
13

14 // pass address of number to cubeByReference

15
16
17 printf("\nThe new value of number is %d\n", number);
18 }
19
20
21
22
23
24

The original value of number is 5
The new value of number is 125

void cubeByReference(int *nPtr)

Error-Prevention Tip 7.2
Use pass-by-value to pass arguments to a function unless the caller explicitly requires the
called function to modify the value of the argument variable in the caller’s environment.
This prevents accidental modification of the caller’s arguments and is another example of
the principle of least privilege.

Fig. 7.7 | Cube a variable using pass-by-reference with a pointer argument. (Part 2 of 2.)

cubeByReference(&number);

// calculate cube of *nPtr; actually modifies number in main

void cubeByReference(int *nPtr)
{
 *nPtr = *nPtr * *nPtr * *nPtr; // cube *nPtr

}

282 Chapter 7 C Pointers

Fig. 7.8 | Analysis of a typical pass-by-value.

Step 1: Before main calls cubeByValue:

int main(void)
{
 int number = 5;

 number = cubeByValue(number);
}

125

125

125125

5

number

5

number

5

number

125

number

5

number

int cubeByValue(int n)
{
 return n * n * n;
}

undefined

n

undefined

n

undefined

n

Step 2: After cubeByValue receives the call:

int main(void)
{
 int number = 5;

 number = cubeByValue(number);
}

int cubeByValue(int n)
{
 return n * n * n;
}

5

n

5

n

Step 3: After cubeByValue cubes parameter n and before cubeByValue returns to main:

int main(void)
{
 int number = 5;

 number = cubeByValue(number);
}

int cubeByValue(int n)
{

 return n * n * n;
}

Step 4: After cubeByValue returns to main and before assigning the result to number:

int main(void)
{
 int number = 5;

 number = cubeByValue(number);
}

int cubeByValue(int n)
{
 return n * n * n;
}

Step 5: After main completes the assignment to number:

int main(void)
{
 int number = 5;

 number = cubeByValue(number);
}

int cubeByValue(int n)
{
 return n * n * n;
}

7.5 Using the const Qualifier with Pointers 283

7.5 Using the const Qualifier with Pointers
The const qualifier enables you to inform the compiler that the value of a particular vari-
able should not be modified.

Over the years, a large base of legacy code was written in early versions of C that did
not use const because it was not available. For this reason, there are significant oppor-
tunities for improvement by reengineering old C code.

Six possibilities exist for using (or not using) const with function parameters—two
with pass-by-value parameter passing and four with pass-by-reference parameter passing.
How do you choose one of the six possibilities? Let the principle of least privilege be your
guide—always award a function enough access to the data in its parameters to accomplish
its specified task, but absolutely no more.

Fig. 7.9 | Analysis of a typical pass-by-reference with a pointer argument.

Software Engineering Observation 7.1
The const qualifier can be used to enforce the principle of least privilege in software
design. This can reduce debugging time and prevent unintentional side effects, making a
program easier to modify and maintain.

Step 1: Before main calls cubeByReference:

int main(void)
{
 int number = 5;

 cubeByReference(&number);
}

125

5

number

125

number

5

number

void cubeByReference(int *nPtr)
{
 *nPtr = *nPtr * *nPtr * *nPtr;
}

undefined

nPtr

nPtr

nPtr

Step 2: After cubeByReference receives the call and before *nPtr is cubed:

int main(void)
{
 int number = 5;

 cubeByReference(&number);
}

void cubeByReference(int *nPtr)
{
 *nPtr = *nPtr * *nPtr * *nPtr;
}

Step 3: After *nPtr is cubed and before program control returns to main:

int main(void)
{
 int number = 5;

 cubeByReference(&number);
}

void cubeByReference(int *nPtr)
{

 *nPtr = *nPtr * *nPtr * *nPtr;
}

called function modifies caller’s
variable

call establishes this pointer

284 Chapter 7 C Pointers

const Values and Parameters
In Chapter 5, we explained that all function calls in C are pass-by-value—a copy of the ar-
gument in the function call is made and passed to the function. If the copy is modified in
the function, the original value in the caller does not change. In many cases, a value passed
to a function is modified so the function can accomplish its task. However, in some instanc-
es, the value should not be altered in the called function, even though it manipulates only
a copy of the original value.

Consider a function that takes a one-dimensional array and its size as arguments and
prints the array. Such a function should loop through the array and output each array ele-
ment individually. The size of the array is used in the function body to determine when
the loop should terminate. Neither the size of the array nor its contents should change in
the function body.

If an attempt is made to modify a value that’s declared const, the compiler catches it
and issues either a warning or an error, depending on the particular compiler.

There are four ways to pass a pointer to a function:

• a non-constant pointer to non-constant data.

• a constant pointer to nonconstant data.

• a non-constant pointer to constant data.

• a constant pointer to constant data.

Each of the four combinations provides different access privileges and is discussed in the
next several examples.

7.5.1 Converting a String to Uppercase Using a Non-Constant Pointer
to Non-Constant Data
The highest level of data access is granted by a non-constant pointer to non-constant data.
In this case, the data can be modified through the dereferenced pointer, and the pointer
can be modified to point to other data items. A declaration for a non-constant pointer to
non-constant data does not include const. Such a pointer might be used to receive a string
as an argument to a function that processes (and possibly modifies) each character in the
string. Function convertToUppercase of Fig. 7.10 declares its parameter, a non-constant
pointer to non-constant data called sPtr (char *sPtr), in line 19. The function processes
the array string (pointed to by sPtr) one character at a time. C standard library function

Error-Prevention Tip 7.3
If a variable does not (or should not) change in the body of a function to which it’s passed,
the variable should be declared const to ensure that it’s not accidentally modified.

Common Programming Error 7.3
Being unaware that a function is expecting pointers as arguments for pass-by-reference
and passing arguments by value. Some compilers take the values assuming they’re pointers
and dereference the values as pointers. At runtime, memory-access violations or segmen-
tation faults are often generated. Other compilers catch the mismatch in types between
arguments and parameters and generate error messages.

7.5 Using the const Qualifier with Pointers 285

toupper (line 22) from the <ctype.h> header is called to convert each character to its cor-
responding uppercase letter—if the original character is not a letter or is already uppercase,
toupper returns the original character. Line 23 moves the pointer to the next character in
the string. Chapter 8 presents many C standard library character- and string-processing
functions.

7.5.2 Printing a String One Character at a Time Using a Non-Constant
Pointer to Constant Data
A non-constant pointer to constant data can be modified to point to any data item of the
appropriate type, but the data to which it points cannot be modified. Such a pointer might
be used to receive an array argument to a function that will process each element without
modifying that element. For example, function printCharacters (Fig. 7.11) declares pa-
rameter sPtr to be of type const char * (line 21). The declaration is read from right to left
as “sPtr is a pointer to a character constant.” The function uses a for statement to output
each character in the string until the null character is encountered. After each character is
printed, pointer sPtr is incremented—this makes the pointer move to the next character
in the string.

1 // Fig. 7.10: fig07_10.c
2 // Converting a string to uppercase using a

3 // non-constant pointer to non-constant data.

4 #include <stdio.h>
5 #include <ctype.h>
6
7 void convertToUppercase(); // prototype
8
9 int main(void)

10 {

11 char string[] = "cHaRaCters and $32.98"; // initialize char array
12
13 printf("The string before conversion is: %s", string);
14 convertToUppercase(string);
15 printf("\nThe string after conversion is: %s\n", string);
16 }

17
18 // convert string to uppercase letters

19 void convertToUppercase()

20 {
21 while () { // current character is not '\0'

22 // convert to uppercase

23 // make sPtr point to the next character
24 }

25 }

The string before conversion is: cHaRaCters and $32.98
The string after conversion is: CHARACTERS AND $32.98

Fig. 7.10 | Converting a string to uppercase using a non-constant pointer to non-constant data.

char *sPtr

char *sPtr

*sPtr != '\0'
*sPtr = toupper(*sPtr);

++sPtr;

286 Chapter 7 C Pointers

Figure 7.12 illustrates the attempt to compile a function that receives a non-constant
pointer (xPtr) to constant data. This function attempts to modify the data pointed to by
xPtr in line 18—which results in a compilation error. The error shown is from the Visual
C++ compiler. The actual error message you receive (in this and other examples) is com-
piler specific—for example, Xcode’s LLVM compiler reports the error:

and the GNU gcc compiler reports the error:

1 // Fig. 7.11: fig07_11.c

2 // Printing a string one character at a time using

3 // a non-constant pointer to constant data.
4
5 #include <stdio.h>
6
7 void printCharacters();

8
9 int main(void)

10 {

11 // initialize char array

12 char string[] = "print characters of a string";
13
14 puts("The string is:");
15 printCharacters(string);
16 puts("");
17 }

18
19 // sPtr cannot be used to modify the character to which it points,
20 // i.e., sPtr is a "read-only" pointer

21 void printCharacters(const char *sPtr)
22 {
23

24

25
26

27 }

The string is:
print characters of a string

Fig. 7.11 | Printing a string one character at a time using a non-constant pointer to constant
data.

Read-only variable is not assignable"

error: assignment of read-only location ‘*xPtr’

1 // Fig. 7.12: fig07_12.c
2 // Attempting to modify data through a

3 // non-constant pointer to constant data.

Fig. 7.12 | Attempting to modify data through a non-constant pointer to constant data. (Part 1
of 2.)

const char *sPtr

// loop through entire string

for (; *sPtr != '\0'; ++sPtr) { // no initialization
 printf("%c", *sPtr);
}

7.5 Using the const Qualifier with Pointers 287

As you know, arrays are aggregate data types that store related data items of the same
type under one name. In Chapter 10, we’ll discuss another form of aggregate data type
called a structure (sometimes called a record or tuple in other languages). A structure is
capable of storing related data items of the same or different data types under one name
(e.g., storing information about each employee of a company). When a function is called
with an array as an argument, the array is automatically passed to the function by reference.
However, structures are always passed by value—a copy of the entire structure is passed.
This requires the execution-time overhead of making a copy of each data item in the struc-
ture and storing it on the computer’s function call stack. When structure data must be
passed to a function, we can use pointers to constant data to get the performance of pass-
by-reference and the protection of pass-by-value. When a pointer to a structure is passed,
only a copy of the address at which the structure is stored must be made. On a machine
with four-byte addresses, a copy of four bytes of memory is made rather than a copy of a
possibly large structure.

If memory is low and execution efficiency is a concern, use pointers. If memory is in
abundance and efficiency is not a major concern, pass data by value to enforce the prin-
ciple of least privilege. Remember that some systems do not enforce const well, so pass-
by-value is still the best way to prevent data from being modified.

7.5.3 Attempting to Modify a Constant Pointer to Non-Constant Data
A constant pointer to non-constant data always points to the same memory location, and
the data at that location can be modified through the pointer. This is the default for an array

4 #include <stdio.h>
5 void f(const int *xPtr); // prototype
6
7 int main(void)
8 {

9 int y; // define y
10
11

12 }
13
14 // xPtr cannot be used to modify the

15 // value of the variable to which it points
16 void f()

17 {

18
19 }

error C2166: l-value specifies const object

Performance Tip 7.1
Passing large objects such as structures by using pointers to constant data obtains the per-
formance benefits of pass-by-reference and the security of pass-by-value.

Fig. 7.12 | Attempting to modify data through a non-constant pointer to constant data. (Part 2
of 2.)

f(&y); // f attempts illegal modification

const int *xPtr

*xPtr = 100; // error: cannot modify a const object

288 Chapter 7 C Pointers

name. An array name is a constant pointer to the beginning of the array. All data in the
array can be accessed and changed by using the array name and array indexing. A constant
pointer to non-constant data can be used to receive an array as an argument to a function
that accesses array elements using only array index notation. Pointers that are declared
const must be initialized when they’re defined (if the pointer is a function parameter, it’s
initialized with a pointer that’s passed to the function). Figure 7.13 attempts to modify a
constant pointer. Pointer ptr is defined in line 12 to be of type int * const. The defini-
tion is read from right to left as “ptr is a constant pointer to an integer.” The pointer is
initialized (line 12) with the address of integer variable x. The program attempts to assign
the address of y to ptr (line 15), but the compiler generates an error message.

7.5.4 Attempting to Modify a Constant Pointer to Constant Data
The least access privilege is granted by a constant pointer to constant data. Such a pointer
always points to the same memory location, and the data at that memory location cannot
be modified. This is how an array should be passed to a function that only looks at the array
using array index notation and does not modify the array. Figure 7.14 defines pointer vari-
able ptr (line 13) to be of type const int *const, which is read from right to left as “ptr
is a constant pointer to an integer constant.” The figure shows the error messages generat-
ed when an attempt is made to modify the data to which ptr points (line 16) and when an
attempt is made to modify the address stored in the pointer variable (line 17).

1 // Fig. 7.13: fig07_13.c

2 // Attempting to modify a constant pointer to non-constant data.

3 #include <stdio.h>
4
5 int main(void)
6 {

7 int x; // define x
8 int y; // define y
9

10
11

12

13
14 *ptr = 7; // allowed: *ptr is not const
15

16 }

c:\examples\ch07\fig07_13.c(15) : error C2166: l-value specifies const object

Fig. 7.13 | Attempting to modify a constant pointer to non-constant data.

1 // Fig. 7.14: fig07_14.c

2 // Attempting to modify a constant pointer to constant data.

3 #include <stdio.h>
4

Fig. 7.14 | Attempting to modify a constant pointer to constant data. (Part 1 of 2.)

// ptr is a constant pointer to an integer that can be modified

// through ptr, but ptr always points to the same memory location
int * const ptr = &x;

ptr = &y; // error: ptr is const; cannot assign new address

7.6 Bubble Sort Using Pass-by-Reference 289

7.6 Bubble Sort3 Using Pass-by-Reference
Let’s improve the bubble sort program of Fig. 6.15 to use two functions—bubbleSort and
swap (Fig. 7.15). Function bubbleSort sorts the array. It calls function swap (line 46) to
exchange the array elements array[j] and array[j + 1].

5 int main(void)
6 {

7 int x = 5; // initialize x
8 int y; // define y
9

10 // ptr is a constant pointer to a constant integer. ptr always
11 // points to the same location; the integer at that location

12 // cannot be modified

13 // initialization is OK
14

15 printf("%d\n", *ptr);
16
17

18 }

c:\examples\ch07\fig07_14.c(16) : error C2166: l-value specifies const object
c:\examples\ch07\fig07_14.c(17) : error C2166: l-value specifies const object

3. In Chapter 12 and Appendix D, we investigate sorting schemes that yield better performance.

1 // Fig. 7.15: fig07_15.c
2 // Putting values into an array, sorting the values into

3 // ascending order and printing the resulting array.

4 #include <stdio.h>
5 #define SIZE 10
6
7 void bubbleSort(int * const array, const size_t size); // prototype
8
9 int main(void)

10 {
11 // initialize array a

12 int a[SIZE] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };
13
14 puts("Data items in original order");
15
16 // loop through array a
17 for (size_t i = 0; i < SIZE; ++i) {
18 printf("%4d", a[i]);
19 }
20

Fig. 7.15 | Putting values into an array, sorting the values into ascending order and printing the
resulting array. (Part 1 of 2.)

Fig. 7.14 | Attempting to modify a constant pointer to constant data. (Part 2 of 2.)

const int *const ptr = &x;

*ptr = 7; // error: *ptr is const; cannot assign new value
ptr = &y; // error: ptr is const; cannot assign new address

290 Chapter 7 C Pointers

Function swap
Remember that C enforces information hiding between functions, so swap does not have ac-
cess to individual array elements in bubbleSort by default. Because bubbleSort wants swap
to have access to the array elements to be swapped, bubbleSort passes each of these elements
by reference to swap—the address of each array element is passed explicitly. Although entire

21 bubbleSort(a, SIZE); // sort the array
22
23 puts("\nData items in ascending order");
24

25 // loop through array a

26 for (size_t i = 0; i < SIZE; ++i) {
27 printf("%4d", a[i]);
28 }

29
30 puts("");
31 }

32
33 // sort an array of integers using bubble sort algorithm

34 void bubbleSort(int * const array, const size_t size)
35 {
36

37

38 // loop to control passes

39 for (unsigned int pass = 0; pass < size - 1; ++pass) {
40
41 // loop to control comparisons during each pass

42 for (size_t j = 0; j < size - 1; ++j) {
43
44 // swap adjacent elements if they’re out of order

45 if (array[j] > array[j + 1]) {
46

47 }

48 }
49 }

50 }

51
52
53
54
55
56
57
58
59

Data items in original order
 2 6 4 8 10 12 89 68 45 37
Data items in ascending order
 2 4 6 8 10 12 37 45 68 89

Fig. 7.15 | Putting values into an array, sorting the values into ascending order and printing the
resulting array. (Part 2 of 2.)

void swap(int *element1Ptr, int *element2Ptr); // prototype

swap(&array[j], &array[j + 1]);

// swap values at memory locations to which element1Ptr and
// element2Ptr point

void swap(int *element1Ptr, int *element2Ptr)
{
 int hold = *element1Ptr;
 *element1Ptr = *element2Ptr;

 *element2Ptr = hold;
}

7.6 Bubble Sort Using Pass-by-Reference 291

arrays are automatically passed by reference, individual array elements are scalars and are or-
dinarily passed by value. Therefore, bubbleSort uses the address operator (&) on each of the
array elements in the swap call (line 46) to effect pass-by-reference as follows

Function swap receives &array[j] in element1Ptr (line 54). Even though swap—because
of information hiding—is not allowed to know the name array[j], swap may use
*element1Ptr as a synonym for array[j]—when swap accesses *element1Ptr, it’s actually
referencing array[j] in bubbleSort. Similarly, when swap accesses *element2Ptr, it’s actu-
ally referencing array[j + 1] in bubbleSort. Even though swap is not allowed to say

precisely the same effect is achieved by lines 56 through 58

Function bubbleSort’s Array Parameter
Several features of function bubbleSort should be noted. The function header (line 34)
declares array as int * const array rather than int array[] to indicate that bubbleSort
receives a one-dimensional array array as an argument (again, these notations are inter-
changeable). Parameter size is declared const to enforce the principle of least privilege.
Although parameter size receives a copy of a value in main, and modifying the copy can-
not change the value in main, bubbleSort does not need to alter size to accomplish its
task. The size of the array remains fixed during the execution of function bubbleSort.
Therefore, size is declared const to ensure that it’s not modified.

Function swap’s Prototype in Function bubbleSort’s Body
The prototype for function swap (line 36) is included in the body of function bubbleSort
because bubbleSort is the only function that calls swap. Placing the prototype in bubble-
Sort restricts proper calls of swap to those made from bubbleSort (or any function that
appears after swap in the source code). Other functions defined before swap that attempt
to call swap do not have access to a proper function prototype, so the compiler generates
one automatically. This normally results in a prototype that does not match the function
header (and generates a compilation warning or error) because the compiler assumes int
for the return type and the parameter types.

Function bubbleSort’s size Parameter
Function bubbleSort receives the size of the array as a parameter (line 34). The function
must know the size of the array to sort the array. When an array is passed to a function,

swap(&array[j], &array[j + 1]);

int hold = array[j];
array[j] = array[j + 1];
array[j + 1] = hold;

int hold = *element1Ptr;
*element1Ptr = *element2Ptr;

*element2Ptr = hold;

Software Engineering Observation 7.2
Placing function prototypes in the definitions of other functions enforces the principle of
least privilege by restricting proper function calls to the functions in which the prototypes
appear.

292 Chapter 7 C Pointers

the memory address of the first element of the array is received by the function. The ad-
dress, of course, does not convey the number of elements in the array. Therefore, you must
pass the array size to the function. Another common practice is to pass a pointer to the
beginning of the array and a pointer to the location just beyond the end of the array—as
you’ll learn in Section 7.8, the difference of the two pointers is the length of the array and
the resulting code is simpler.

In the program, the size of the array is explicitly passed to function bubbleSort. There
are two main benefits to this approach—software reusability and proper software engi-
neering. By defining the function to receive the array size as an argument, we enable the
function to be used by any program that sorts one-dimensional integer arrays of any size.

We could have stored the array’s size in a global variable that’s accessible to the entire
program. This would be more efficient, because a copy of the size is not made to pass to
the function. However, other programs that require an integer array-sorting capability
may not have the same global variable, so the function cannot be used in those programs.

The size of the array could have been programmed directly into the function. This
restricts the use of the function to an array of a specific size and significantly reduces its
reusability. Only programs processing one-dimensional integer arrays of the specific size
coded into the function can use the function.

7.7 sizeof Operator
C provides the special unary operator sizeof to determine the size in bytes of an array (or
any other data type). This operator is applied at compilation time, unless its operand is a
variable-length array (Section 6.12). When applied to the name of an array as in Fig. 7.16
(line 15), the sizeof operator returns the total number of bytes in the array as type
size_t.4 Variables of type float on this computer are stored in 4 bytes of memory, and
array is defined to have 20 elements. Therefore, there are a total of 80 bytes in array.

Software Engineering Observation 7.3
When passing an array to a function, also pass the size of the array. This helps make the
function reusable in many programs.

Software Engineering Observation 7.4
Global variables usually violate the principle of least privilege and can lead to poor
software engineering. Global variables should be used only to represent truly shared
resources, such as the time of day.

4. Recall that on a Mac size_t represents unsigned long. Xcode reports warnings when you display
an unsigned long using "%u" in a printf. To eliminate the warnings, use "%lu" instead.

Performance Tip 7.2
 sizeof is a compile-time operator, so it does not incur any execution-time overhead.

7.7 sizeof Operator 293

The number of elements in an array also can be determined with sizeof. For
example, consider the following array definition:

Variables of type double normally are stored in 8 bytes of memory. Thus, array real con-
tains a total of 176 bytes. To determine the number of elements in the array, the following
expression can be used:

The expression determines the number of bytes in array real and divides that value by the
number of bytes used in memory to store the first element of array real (a double value).

Even though function getSize receives an array of 20 elements as an argument, the
function’s parameter ptr is simply a pointer to the array’s first element. When you use
sizeof with a pointer, it returns the size of the pointer, not the size of the item to which it
points. On our Windows and Linux test systems, the size of a pointer is 4 bytes, so getSize
returns 4; on our Mac, the size of a pointer is 8 bytes, so getSize returns 8. Also, the cal-
culation shown above for determining the number of array elements using sizeof works
only when using the actual array, not when using a pointer to the array.

Determining the Sizes of the Standard Types, an Array and a Pointer
Figure 7.17 calculates the number of bytes used to store each of the standard data types.
The results of this program are implementation dependent and often differ across platforms and

1 // Fig. 7.16: fig07_16.c

2 // Applying sizeof to an array name returns

3 // the number of bytes in the array.
4 #include <stdio.h>
5 #define SIZE 20
6
7 getSize(); // prototype

8
9 int main(void)

10 {

11 float array[SIZE]; // create array
12
13 printf("The number of bytes in the array is %u"
14 "\nThe number of bytes returned by getSize is %u\n",
15 ,);
16 }

17
18 // return size of ptr

19 size_t getSize()
20 {

21

22 }

The number of bytes in the array is 80
The number of bytes returned by getSize is 4

Fig. 7.16 | Applying sizeof to an array name returns the number of bytes in the array.

double real[22];

sizeof(real) / sizeof(real[0])

size_t float *ptr

sizeof(array) getSize(array)

float *ptr

return sizeof(ptr);

294 Chapter 7 C Pointers

sometimes across different compilers on the same platform. The output shows the results from
our Windows system using the Visual C++ compiler. The size of a long double was 12
bytes on our Linux system using the GNU gcc compiler. The size of a long was 8 bytes
and the size of a long double was 16 bytes on our Mac system using Xcode’s LLVM com-
piler.

1 // Fig. 7.17: fig07_17.c

2 // Using operator sizeof to determine standard data type sizes.
3 #include <stdio.h>
4
5 int main(void)
6 {

7 char c;
8 short s;
9 int i;

10 long l;
11 long long ll;
12 float f;
13 double d;
14 long double ld;
15 int array[20]; // create array of 20 int elements
16 int *ptr = array; // create pointer to array
17
18 printf(" sizeof c = %u\tsizeof(char) = %u"
19 "\n sizeof s = %u\tsizeof(short) = %u"
20 "\n sizeof i = %u\tsizeof(int) = %u"
21 "\n sizeof l = %u\tsizeof(long) = %u"
22 "\n sizeof ll = %u\tsizeof(long long) = %u"
23 "\n sizeof f = %u\tsizeof(float) = %u"
24 "\n sizeof d = %u\tsizeof(double) = %u"
25 "\n sizeof ld = %u\tsizeof(long double) = %u"
26 "\n sizeof array = %u"
27 "\n sizeof ptr = %u\n",
28

29

30
31

32

33 }

 sizeof c = 1 sizeof(char) = 1
 sizeof s = 2 sizeof(short) = 2
 sizeof i = 4 sizeof(int) = 4
 sizeof l = 4 sizeof(long) = 4
 sizeof ll = 8 sizeof(long long) = 8
 sizeof f = 4 sizeof(float) = 4
 sizeof d = 8 sizeof(double) = 8
 sizeof ld = 8 sizeof(long double) = 8
 sizeof array = 80
 sizeof ptr = 4

Fig. 7.17 | Using operator sizeof to determine standard data type sizes.

sizeof c, sizeof(char), sizeof s, sizeof(short), sizeof i,
sizeof(int), sizeof l, sizeof(long), sizeof ll,
sizeof(long long), sizeof f, sizeof(float), sizeof d,
sizeof(double), sizeof ld, sizeof(long double),
sizeof array, sizeof ptr);

7.8 Pointer Expressions and Pointer Arithmetic 295

Operator sizeof can be applied to any variable name, type or value (including the
value of an expression). When applied to a variable name (that’s not an array name) or a
constant, the number of bytes used to store the specific type of variable or constant is
returned. The parentheses are required when a type is supplied as sizeof’s operand.

7.8 Pointer Expressions and Pointer Arithmetic
Pointers are valid operands in arithmetic expressions, assignment expressions and com-
parison expressions. However, not all the operators normally used in these expressions are
valid in conjunction with pointer variables. This section describes the operators that can
have pointers as operands, and how these operators are used.

7.8.1 Allowed Operators for Pointer Arithmetic
A pointer may be incremented (++) or decremented (--), an integer may be added to a pointer
(+ or +=), an integer may be subtracted from a pointer (- or -=) and one pointer may be
subtracted from another—this last operation is meaningful only when both pointers point
to elements of the same array.

7.8.2 Aiming a Pointer at an Array
Assume that array int v[5] has been defined and its first element is at location 3000 in
memory. Assume pointer vPtr has been initialized to point to v[0]—i.e., the value of
vPtr is 3000. Figure 7.18 illustrates this situation for a machine with 4-byte integers. Vari-
able vPtr can be initialized to point to array v with either of the statements

Portability Tip 7.1
The number of bytes used to store a particular data type may vary between systems. When
writing programs that depend on data type sizes and that will run on several computer
systems, use sizeof to determine the number of bytes used to store the data types.

vPtr = v;
vPtr = &v[0];

Portability Tip 7.2
Because the results of pointer arithmetic depend on the size of the objects a pointer points
to, pointer arithmetic is machine and compiler dependent.

Fig. 7.18 | Array v and a pointer variable vPtr that points to v.

pointer variable vPtr

v[0] v[1] v[2] v[3] v[4]

3000
location

3004 3008 3012 3016

296 Chapter 7 C Pointers

7.8.3 Adding an Integer to a Pointer
In conventional arithmetic, 3000 + 2 yields the value 3002. This is normally not the case
with pointer arithmetic. When an integer is added to or subtracted from a pointer, the
pointer is not incremented or decremented simply by that integer, but by that integer
times the size of the object to which the pointer refers. The number of bytes depends on
the object’s data type. For example, the statement

would produce 3008 (3000 + 2 * 4), assuming an integer is stored in 4 bytes of memory.
In the array v, vPtr would now point to v[2] (Fig. 7.19). If an integer is stored in 2 bytes
of memory, then the preceding calculation would result in memory location 3004 (3000 +

2 * 2). If the array were of a different data type, the preceding statement would increment
the pointer by twice the number of bytes that it takes to store an object of that data type.
When performing pointer arithmetic on a character array, the results will be consistent
with regular arithmetic, because each character is 1 byte long.

7.8.4 Subtracting an Integer from a Pointer
If vPtr had been incremented to 3016, which points to v[4], the statement

would set vPtr back to 3000—the beginning of the array.

7.8.5 Incrementing and Decrementing a Pointer
If a pointer is being incremented or decremented by one, the increment (++) and decre-
ment (--) operators can be used. Either of the statements

vPtr += 2;

Common Programming Error 7.4
Using pointer arithmetic on a pointer that does not refer to an element in an array.

Fig. 7.19 | The pointer vPtr after pointer arithmetic.

vPtr -= 4;

Common Programming Error 7.5
Running off either end of an array when using pointer arithmetic.

++vPtr;
vPtr++;

pointer variable vPtr

v[0] v[1] v[2] v[3] v[4]

3000
location

3004 3008 3012 3016

7.8 Pointer Expressions and Pointer Arithmetic 297

increments the pointer to point to the next location in the array. Either of the statements

decrements the pointer to point to the previous element of the array.

7.8.6 Subtracting One Pointer from Another
Pointer variables may be subtracted from one another. For example, if vPtr contains the
location 3000, and v2Ptr contains the address 3008, the statement

would assign to x the number of array elements from vPtr to v2Ptr, in this case 2 (not 8).
Pointer arithmetic is undefined unless performed on an array. We cannot assume that two
variables of the same type are stored contiguously in memory unless they’re adjacent ele-
ments of an array.

7.8.7 Assigning Pointers to One Another
A pointer can be assigned to another pointer if both have the same type. The exception to
this rule is the pointer to void (i.e., void *), which is a generic pointer that can represent
any pointer type. All pointer types can be assigned a pointer to void, and a pointer to void
can be assigned a pointer of any type (including another pointer to void). In both cases, a
cast operation is not required.

7.8.8 Pointer to void
A pointer to void cannot be dereferenced. Consider this: The compiler knows that a point-
er to int refers to 4 bytes of memory on a machine with 4-byte integers, but a pointer to
void simply contains a memory location for an unknown data type—the precise number
of bytes to which the pointer refers is not known by the compiler. The compiler must know
the data type to determine the number of bytes that represent the referenced value.

7.8.9 Comparing Pointers
Pointers can be compared using equality and relational operators, but such comparisons
are meaningless unless the pointers point to elements of the same array. Pointer compari-
sons compare the addresses stored in the pointers. A comparison of two pointers pointing
to elements in the same array could show, for example, that one pointer points to a higher-

--vPtr;

vPtr--;

x = v2Ptr - vPtr;

Common Programming Error 7.6
Subtracting two pointers that do not refer to elements in the same array.

Common Programming Error 7.7
Assigning a pointer of one type to a pointer of another type if neither is of type void * is
a syntax error.

Common Programming Error 7.8
Dereferencing a void * pointer is a syntax error.

298 Chapter 7 C Pointers

numbered element of the array than the other pointer does. A common use of pointer
comparison is determining whether a pointer is NULL.

7.9 Relationship between Pointers and Arrays
Arrays and pointers are intimately related in C and often may be used interchangeably. An
array name can be thought of as a constant pointer. Pointers can be used to do any operation
involving array indexing.

Assume the following definitions:

Because the array name b (without an index) is a pointer to the array’s first element, we
can set bPtr equal to the address of the array b’s first element with the statement

This statement is equivalent to taking the address of array b’s first element as follows:

7.9.1 Pointer/Offset Notation
Array element b[3] can alternatively be referenced with the pointer expression

The 3 in the expression is the offset to the pointer. When bPtr points to the array’s first
element, the offset indicates which array element to reference, and the offset value is iden-
tical to the array index. This notation is referred to as pointer/offset notation. The paren-
theses are necessary because the precedence of * is higher than the precedence of +.
Without the parentheses, the above expression would add 3 to the value of the expression
*bPtr (i.e., 3 would be added to b[0], assuming bPtr points to the beginning of the array).
Just as the array element can be referenced with a pointer expression, the address

can be written with the pointer expression

The array itself can be treated as a pointer and used in pointer arithmetic. For
example, the expression

also refers to the array element b[3]. In general, all indexed array expressions can be writ-
ten with a pointer and an offset. In this case, pointer/offset notation was used with the
name of the array as a pointer. The preceding statement does not modify the array name
in any way; b still points to the first element in the array.

Common Programming Error 7.9
Comparing two pointers that do not refer to elements in the same array.

int b[5];
int *bPtr;

bPtr = b;

bPtr = &b[0];

*(bPtr + 3)

&b[3]

bPtr + 3

*(b + 3)

7.9 Relationship between Pointers and Arrays 299

7.9.2 Pointer/Index Notation
Pointers can be indexed like arrays. If bPtr has the value b, the expression

refers to the array element b[1]. This is referred to as pointer/index notation.

7.9.3 Cannot Modify an Array Name with Pointer Arithmetic
Remember that an array name always points to the beginning of the array—so the array
name is like a constant pointer. Thus, the expression

is invalid because it attempts to modify the array name’s value with pointer arithmetic.

7.9.4 Demonstrating Pointer Indexing and Offsets
Figure 7.20 uses the four methods we’ve discussed for referring to array elements—array
indexing, pointer/offset with the array name as a pointer, pointer indexing, and pointer/
offset with a pointer—to print the four elements of the integer array b.

bPtr[1]

b += 3

Common Programming Error 7.10
Attempting to modify the value of an array name with pointer arithmetic is a compilation
error.

1 // Fig. 7.20: fig07_20.cpp

2 // Using indexing and pointer notations with arrays.
3 #include <stdio.h>
4 #define ARRAY_SIZE 4
5
6 int main(void)
7 {

8 int b[] = {10, 20, 30, 40}; // create and initialize array b
9 int *bPtr = b; // create bPtr and point it to array b

10
11 // output array b using array index notation
12 puts("Array b printed with:\nArray index notation");
13
14 // loop through array b
15 for (size_t i = 0; i < ARRAY_SIZE; ++i) {
16 printf("b[%u] = %d\n", i,);

17 }
18
19 // output array b using array name and pointer/offset notation

20 puts("\nPointer/offset notation where\n"
21 "the pointer is the array name");
22
23 // loop through array b
24 for (size_t offset = 0; offset < ARRAY_SIZE; ++offset) {
25 printf("*(b + %u) = %d\n", offset, *());

26 }

Fig. 7.20 | Using indexing and pointer notations with arrays. (Part 1 of 2.)

b[i]

b + offset

300 Chapter 7 C Pointers

7.9.5 String Copying with Arrays and Pointers
To further illustrate the interchangeability of arrays and pointers, let’s look at the two
string-copying functions—copy1 and copy2—in the program of Fig. 7.21. Both functions
copy a string into a character array. After a comparison of the function prototypes for
copy1 and copy2, the functions appear identical. They accomplish the same task, but
they’re implemented differently.

27
28 // output array b using bPtr and array index notation

29 puts("\nPointer index notation");
30
31 // loop through array b

32 for (size_t i = 0; i < ARRAY_SIZE; ++i) {
33 printf("bPtr[%u] = %d\n", i,);

34 }

35
36 // output array b using bPtr and pointer/offset notation

37 puts("\nPointer/offset notation");
38
39 // loop through array b

40 for (size_t offset = 0; offset < ARRAY_SIZE; ++offset) {
41 printf("*(bPtr + %u) = %d\n", offset, *());
42 }

43 }

Array b printed with:
Array index notation
b[0] = 10
b[1] = 20
b[2] = 30
b[3] = 40

Pointer/offset notation where
the pointer is the array name
*(b + 0) = 10
*(b + 1) = 20
*(b + 2) = 30
*(b + 3) = 40

Pointer index notation
bPtr[0] = 10
bPtr[1] = 20
bPtr[2] = 30
bPtr[3] = 40

Pointer/offset notation
*(bPtr + 0) = 10
*(bPtr + 1) = 20
*(bPtr + 2) = 30
*(bPtr + 3) = 40

Fig. 7.20 | Using indexing and pointer notations with arrays. (Part 2 of 2.)

bPtr[i]

bPtr + offset

7.9 Relationship between Pointers and Arrays 301

Copying with Array Index Notation
Function copy1 uses array index notation to copy the string in s2 to the character array s1.
The function defines counter variable i as the array index. The for statement header (line
28) performs the entire copy operation—its body is the empty statement. The header
specifies that i is initialized to zero and incremented by one on each iteration of the loop.
The expression s1[i] = s2[i] copies one character from s2 to s1. When the null character

1 // Fig. 7.21: fig07_21.c

2 // Copying a string using array notation and pointer notation.

3 #include <stdio.h>
4 #define SIZE 10
5
6 void copy1(char * const s1, const char * const s2); // prototype
7 void copy2(char *s1, const char *s2); // prototype
8
9 int main(void)

10 {

11 char string1[SIZE]; // create array string1
12 char *string2 = "Hello"; // create a pointer to a string
13
14 copy1(string1, string2);

15 printf("string1 = %s\n", string1);
16
17 char string3[SIZE]; // create array string3
18 char string4[] = "Good Bye"; // create an array containing a string
19
20 copy2(string3, string4);

21 printf("string3 = %s\n", string3);
22 }
23
24
25 void copy1(char * const s1, const char * const s2)
26 {

27 // loop through strings

28
29

30

31 }
32
33
34 void copy2(char *s1, const char *s2)
35 {

36 // loop through strings

37
38

39

40 }

string1 = Hello
string3 = Good Bye

Fig. 7.21 | Copying a string using array notation and pointer notation.

// copy s2 to s1 using array notation

for (size_t i = 0; (s1[i] = s2[i]) != '\0'; ++i) {
 ; // do nothing in body
}

// copy s2 to s1 using pointer notation

for (; (*s1 = *s2) != '\0'; ++s1, ++s2) {
 ; // do nothing in body
}

302 Chapter 7 C Pointers

is encountered in s2, it’s assigned to s1, and the value of the assignment becomes the value
assigned to the left operand (s1). The loop terminates when the null character is assigned
from s2 to s1 (false).

Copying with Pointers and Pointer Arithmetic
Function copy2 uses pointers and pointer arithmetic to copy the string in s2 to the character
array s1. Again, the for statement header (line 37) performs the entire copy operation.
The header does not include any variable initialization. As in function copy1, the expres-
sion (*s1 = *s2) performs the copy operation. Pointer s2 is dereferenced, and the resulting
character is assigned to the dereferenced pointer *s1. After the assignment in the con-
dition, the pointers are incremented to point to the next character in the array s1 and the
next character in the string s2, respectively. When the null character is encountered in s2,
it’s assigned to the dereferenced pointer s1 and the loop terminates.

Notes Regarding Functions copy1 and copy2
The first argument to both copy1 and copy2 must be an array large enough to hold the string in
the second argument. Otherwise, an error may occur when an attempt is made to write into a
memory location that’s not part of the array. Also, the second parameter of each function is
declared as const char * const (a constant string). In both functions, the second argument
is copied into the first argument—characters are read from it one at a time, but the characters
are never modified. Therefore, the second parameter is declared to point to a constant value
so that the principle of least privilege is enforced—neither function requires the capability of
modifying the string in the second argument.

7.10 Arrays of Pointers
Arrays may contain pointers. A common use of an array of pointers is to form an array of
strings, referred to simply as a string array. Each entry in the array is a string, but in C a
string is essentially a pointer to its first character. So each entry in an array of strings is ac-
tually a pointer to the first character of a string. Consider the definition of string array
suit, which might be useful in representing a deck of cards.

The suit[4] portion of the definition indicates an array of 4 elements. The char * por-
tion of the declaration indicates that each element of array suit is of type “pointer to
char.” Qualifier const indicates that the strings pointed to by each element will not be
modified. The four values to be placed in the array are "Hearts", "Diamonds", "Clubs"
and "Spades". Each is stored in memory as a null-terminated character string that’s one
character longer than the number of characters between the quotes. The four strings are 7,
9, 6 and 7 characters long, respectively. Although it appears these strings are being placed
in the suit array, only pointers are actually stored in the array (Fig. 7.22). Each pointer
points to the first character of its corresponding string. Thus, even though the suit array
is fixed in size, it provides access to character strings of any length. This flexibility is one
example of C’s powerful data-structuring capabilities.

The suits could have been placed in a two-dimensional array, in which each row
would represent a suit and each column would represent a letter from a suit name. Such a
data structure would have to have a fixed number of columns per row, and that number

const char *suit[4] = {"Hearts", "Diamonds", "Clubs", "Spades"};

7.11 Case Study: Card Shuffling and Dealing Simulation 303

would have to be as large as the largest string. Therefore, considerable memory could be
wasted when storing a large number of strings of which most were shorter than the longest
string. We use string arrays to represent a deck of cards in the next section.

7.11 Case Study: Card Shuffling and Dealing Simulation
In this section, we use random number generation to develop a card shuffling and dealing
simulation program. This program can then be used to implement programs that play
specific card games. To reveal some subtle performance problems, we’ve intentionally used
suboptimal shuffling and dealing algorithms. In this chapter’s exercises and in Chapter 10,
we develop more efficient algorithms.

Using the top-down, stepwise refinement approach, we develop a program that will
shuffle a deck of 52 playing cards and then deal each of the 52 cards. The top-down
approach is particularly useful in attacking larger, more complex problems than you’ve
seen in earlier chapters.

Representing a Deck of Cards as a Two-Dimensional Array
We use 4-by-13 two-dimensional array deck to represent the deck of playing cards
(Fig. 7.23). The rows correspond to the suits—row 0 corresponds to hearts, row 1 to dia-
monds, row 2 to clubs and row 3 to spades. The columns correspond to the face values of
the cards—columns 0 through 9 correspond to ace through ten respectively, and columns
10 through 12 correspond to jack, queen and king. We shall load string array suit with
character strings representing the four suits, and string array face with character strings
representing the thirteen face values.

Shuffling the Two-Dimensional Array
This simulated deck of cards may be shuffled as follows. First the array deck is cleared to ze-
ros. Then, a row (0–3) and a column (0–12) are each chosen at random. The number 1 is
inserted in array element deck[row][column] to indicate that this card will be the first one
dealt from the shuffled deck. This process continues with the numbers 2, 3, …, 52 being
randomly inserted in the deck array to indicate which cards are to be placed second, third,
…, and fifty-second in the shuffled deck. As the deck array begins to fill with card numbers,
it’s possible that a card will be selected again—i.e., deck[row][column] will be nonzero
when it’s selected. This selection is simply ignored and other rows and columns are repeat-
edly chosen at random until an unselected card is found. Eventually, the numbers 1 through
52 will occupy the 52 slots of the deck array. At this point, the deck of cards is fully shuffled.

Fig. 7.22 | Graphical representation of the suit array.

'S'suit[3]

suit[2]

suit[1]

suit[0]

'p' 'a' 'd' 'e' 's' '\0'

'C' 'l' 'u' 'b' 's' '\0'

'D' 'i' 'a' 'm' 'o' 'n' 'd' 's' '\0'

'H' 'e' 'a' 'r' 't' 's' '\0'

304 Chapter 7 C Pointers

Possibility of Indefinite Postponement
This shuffling algorithm can execute indefinitely if cards that have already been shuffled
are repeatedly selected at random. This phenomenon is known as indefinite postpone-
ment. In this chapter’s exercises, we discuss a better shuffling algorithm that eliminates the
possibility of indefinite postponement.

Dealing Cards from the Two-Dimensional Array
To deal the first card, we search the array for deck[row][column] equal to 1. This is ac-
complished with nested for statements that vary row from 0 to 3 and column from 0 to
12. What card does that element of the array correspond to? The suit array has been pre-
loaded with the four suits, so to get the suit, we print the character string suit[row]. Sim-
ilarly, to get the face value of the card, we print the character string face[column]. We
also print the character string " of ". Printing this information in the proper order enables
us to print each card in the form "King of Clubs", "Ace of Diamonds" and so on.

Developing the Program’s Logic with Top-Down, Stepwise Refinement
Let’s proceed with the top-down, stepwise refinement process. The top is simply

Our first refinement yields:

Fig. 7.23 | Two-dimensional array representation of a deck of cards.

Performance Tip 7.3
Sometimes an algorithm that emerges in a “natural” way can contain subtle performance
problems, such as indefinite postponement. Seek algorithms that avoid indefinite post-
ponement.

Shuffle and deal 52 cards

Initialize the suit array
Initialize the face array
Initialize the deck array
Shuffle the deck
Deal 52 cards

0 543

deck[2][12] represents the King of Clubs

Clubs King

21

1

2

0

3

Diamonds

Clubs

Hearts

Spades

6 7 98 10 11 12

A
ce

Si
x

Fi
ve

Fo
ur

Th
re

e

Tw
o

Se
ve

n

Ei
gh

t

Te
n

N
in

e

Ja
ck

Q
ue

en

Ki
ng

7.11 Case Study: Card Shuffling and Dealing Simulation 305

“Shuffle the deck” may be expanded as follows:

“Deal 52 cards” may be expanded as follows:

Incorporating these expansions yields our complete second refinement:

“Place card number in randomly selected unoccupied slot of deck” may be expanded as:

“Find card number in deck array and print face and suit of card” may be expanded as:

Incorporating these expansions yields our third refinement:

This completes the refinement process. This program is more efficient if the shuffle
and deal portions of the algorithm are combined so that each card is dealt as it’s placed in

For each of the 52 cards
Place card number in randomly selected unoccupied element of deck

For each of the 52 cards
Find card number in deck array and print face and suit of card

Initialize the suit array
Initialize the face array
Initialize the deck array

For each of the 52 cards
Place card number in randomly selected unoccupied slot of deck

For each of the 52 cards
Find card number in deck array and print face and suit of card

Choose slot of deck randomly

While chosen slot of deck has been previously chosen
Choose slot of deck randomly

Place card number in chosen slot of deck

For each slot of the deck array
If slot contains card number

 Print the face and suit of the card

Initialize the suit array
Initialize the face array
Initialize the deck array

For each of the 52 cards
Choose slot of deck randomly

While slot of deck has been previously chosen
Choose slot of deck randomly

Place card number in chosen slot of deck

For each of the 52 cards
For each slot of deck array

 If slot contains desired card number
 Print the face and suit of the card

306 Chapter 7 C Pointers

the deck. We’ve chosen to program these operations separately because normally cards are
dealt after they’re shuffled (not while they’re being shuffled).

Implementing the Card Shuffling and Dealing Program
The card shuffling and dealing program is shown in Fig. 7.24, and a sample execution is
shown in Fig. 7.25. Conversion specifier %s is used to print strings of characters in the calls
to printf. The corresponding argument in the printf call must be a pointer to char (or
a char array). The format specification "%5s of %-8s" (line 68) prints a character string
right justified in a field of five characters followed by " of " and a character string left jus-
tified in a field of eight characters. The minus sign in %-8s signifies left justification.

There’s a weakness in the dealing algorithm. Once a match is found, the two inner
for statements continue searching the remaining elements of deck for a match. We correct
this deficiency in this chapter’s exercises and in a Chapter 10 case study.

1 // Fig. 7.24: fig07_24.c

2 // Card shuffling and dealing.

3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <time.h>
6
7 #define SUITS 4
8 #define FACES 13
9 #define CARDS 52

10
11 // prototypes

12 void shuffle(unsigned int wDeck[][FACES]); // shuffling modifies wDeck
13 void deal(unsigned int wDeck[][FACES], const char *wFace[],
14 const char *wSuit[]); // dealing doesn't modify the arrays
15
16 int main(void)
17 {

18 // initialize deck array
19 unsigned int deck[SUITS][FACES] = {0};
20
21 srand(time(NULL)); // seed random-number generator
22 shuffle(deck); // shuffle the deck

23
24
25

26

27
28

29

30
31

32

33
34 deal(deck, face, suit); // deal the deck

35 }

36

Fig. 7.24 | Card shuffling and dealing. (Part 1 of 2.)

// initialize suit array

const char *suit[SUITS] =
 {"Hearts", "Diamonds", "Clubs", "Spades"};

// initialize face array
const char *face[FACES] =
 {"Ace", "Deuce", "Three", "Four",
 "Five", "Six", "Seven", "Eight",
 "Nine", "Ten", "Jack", "Queen", "King"};

7.11 Case Study: Card Shuffling and Dealing Simulation 307

37 // shuffle cards in deck

38 void shuffle(unsigned int wDeck[][FACES])
39 {
40 // for each of the cards, choose slot of deck randomly

41 for (size_t card = 1; card <= CARDS; ++card) {
42 size_t row; // row number
43 size_t column; // column number
44
45
46

47

48
49

50
51 // place card number in chosen slot of deck
52 wDeck[row][column] = card;

53 }

54 }

55
56 // deal cards in deck

57 void deal(unsigned int wDeck[][FACES], const char *wFace[],
58 const char *wSuit[])
59 {

60 // deal each of the cards

61 for (size_t card = 1; card <= CARDS; ++card) {
62 // loop through rows of wDeck

63 for (size_t row = 0; row < SUITS; ++row) {
64 // loop through columns of wDeck for current row
65 for (size_t column = 0; column < FACES; ++column) {
66 // if slot contains current card, display card

67 if (wDeck[row][column] == card) {
68

69

70 }
71 }

72 }

73 }
74 }

 Nine of Hearts Five of Clubs
Queen of Spades Three of Spades
Queen of Hearts Ace of Clubs
 King of Hearts Six of Spades
 Jack of Diamonds Five of Spades
Seven of Hearts King of Clubs
Three of Clubs Eight of Hearts
Three of Diamonds Four of Diamonds
Queen of Diamonds Five of Diamonds

Fig. 7.25 | Sample run of card dealing program. (Part 1 of 2.)

Fig. 7.24 | Card shuffling and dealing. (Part 2 of 2.)

// choose new random location until unoccupied slot found

do {
 row = rand() % SUITS;
 column = rand() % FACES;
} while(wDeck[row][column] != 0);

printf("%5s of %-8s%c", wFace[column], wSuit[row],
 card % 2 == 0 ? '\n' : '\t'); // 2-column format

308 Chapter 7 C Pointers

7.12 Pointers to Functions
A pointer to a function contains the address of the function in memory. In Chapter 6, we
saw that an array name is really the address in memory of the first element of the array.
Similarly, a function name is really the starting address in memory of the code that per-
forms the function’s task. Pointers to functions can be passed to functions, returned from
functions, stored in arrays and assigned to other function pointers.

7.12.1 Sorting in Ascending or Descending Order
To illustrate the use of pointers to functions, Fig. 7.26 presents a modified version of the
bubble sort program in Fig. 7.15. The new version consists of main and functions bubble,
swap, ascending and descending. Function bubbleSort receives a pointer to a func-
tion—either function ascending or function descending—as an argument, in addition to
an integer array and the size of the array. The program prompts the user to choose whether
the array should be sorted in ascending or in descending order. If the user enters 1, a pointer
to function ascending is passed to function bubble, causing the array to be sorted into
increasing order. If the user enters 2, a pointer to function descending is passed to function
bubble, causing the array to be sorted into decreasing order. The output of the program is
shown in Fig. 7.27.

 Six of Diamonds Five of Hearts
 Ace of Spades Six of Hearts
 Nine of Diamonds Queen of Clubs
Eight of Spades Nine of Clubs
Deuce of Clubs Six of Clubs
Deuce of Spades Jack of Clubs
 Four of Clubs Eight of Clubs
 Four of Spades Seven of Spades
Seven of Diamonds Seven of Clubs
 King of Spades Ten of Diamonds
 Jack of Hearts Ace of Hearts
 Jack of Spades Ten of Clubs
Eight of Diamonds Deuce of Diamonds
 Ace of Diamonds Nine of Spades
 Four of Hearts Deuce of Hearts
 King of Diamonds Ten of Spades
Three of Hearts Ten of Hearts

1 // Fig. 7.26: fig07_26.c
2 // Multipurpose sorting program using function pointers.

3 #include <stdio.h>
4 #define SIZE 10
5

Fig. 7.26 | Multipurpose sorting program using function pointers. (Part 1 of 3.)

Fig. 7.25 | Sample run of card dealing program. (Part 2 of 2.)

7.12 Pointers to Functions 309

6 // prototypes

7 void bubble(int work[], size_t size,);

8 int ascending(int a, int b);
9 int descending(int a, int b);

10
11 int main(void)
12 {

13 // initialize unordered array a

14 int a[SIZE] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };
15
16 printf("%s", "Enter 1 to sort in ascending order,\n"
17 "Enter 2 to sort in descending order: ");
18 int order; // 1 for ascending order or 2 for descending order
19 scanf("%d", &order);
20
21 puts("\nData items in original order");
22

23 // output original array

24 for (size_t counter = 0; counter < SIZE; ++counter) {
25 printf("%5d", a[counter]);
26 }

27
28 // sort array in ascending order; pass function ascending as an

29 // argument to specify ascending sorting order

30 if (order == 1) {
31

32 puts("\nData items in ascending order");
33 }
34 else { // pass function descending
35

36 puts("\nData items in descending order");
37 }

38
39 // output sorted array
40 for (size_t counter = 0; counter < SIZE; ++counter) {
41 printf("%5d", a[counter]);
42 }
43
44 puts("\n");
45 }
46
47 // multipurpose bubble sort; parameter compare is a pointer to

48 // the comparison function that determines sorting order
49 void bubble(int work[], size_t size,)

50 {

51 void swap(int *element1Ptr, int *element2ptr); // prototype
52
53 // loop to control passes

54 for (unsigned int pass = 1; pass < size; ++pass) {
55
56 // loop to control number of comparisons per pass

57 for (size_t count = 0; count < size - 1; ++count) {
58

Fig. 7.26 | Multipurpose sorting program using function pointers. (Part 2 of 3.)

int (*compare)(int a, int b)

bubble(a, SIZE, ascending);

bubble(a, SIZE, descending);

int (*compare)(int a, int b)

310 Chapter 7 C Pointers

The following parameter appears in the function header for bubble (line 49)

59 // if adjacent elements are out of order, swap them

60 if () {

61 swap(&work[count], &work[count + 1]);
62 }

63 }

64 }
65 }

66
67 // swap values at memory locations to which element1Ptr and
68 // element2Ptr point

69 void swap(int *element1Ptr, int *element2Ptr)
70 {
71 int hold = *element1Ptr;
72 *element1Ptr = *element2Ptr;

73 *element2Ptr = hold;
74 }

75
76
77
78
79
80
81
82
83
84
85
86
87
88

Enter 1 to sort in ascending order,
Enter 2 to sort in descending order: 1

Data items in original order
 2 6 4 8 10 12 89 68 45 37
Data items in ascending order
 2 4 6 8 10 12 37 45 68 89

Enter 1 to sort in ascending order,
Enter 2 to sort in descending order: 2

Data items in original order
 2 6 4 8 10 12 89 68 45 37
Data items in descending order
 89 68 45 37 12 10 8 6 4 2

Fig. 7.27 | The outputs of the bubble sort program in Fig. 7.26.

Fig. 7.26 | Multipurpose sorting program using function pointers. (Part 3 of 3.)

(*compare)(work[count], work[count + 1])

// determine whether elements are out of order for an ascending

// order sort
int ascending(int a, int b)
{

 return b < a; // should swap if b is less than a
}

// determine whether elements are out of order for a descending

// order sort
int descending(int a, int b)
{

 return b > a; // should swap if b is greater than a
}

7.12 Pointers to Functions 311

This tells bubble to expect a parameter (compare) that’s a pointer to a function that re-
ceives two integer parameters and returns an integer result. Parentheses are needed around
*compare to group the * with compare to indicate that compare is a pointer. If we had not
included the parentheses, the declaration would have been

which declares a function that receives two integers as parameters and returns a pointer to
an integer.

The function prototype for bubble is shown in line 7. The third parameter in the pro-
totype could have been written as

without the function-pointer name and parameter names.
The function passed to bubble is called in an if statement (line 60) as follows:

Just as a pointer to a variable is dereferenced to access the value of the variable, a pointer to
a function is dereferenced to use the function.

The call to the function could have been made without dereferencing the pointer as in

which uses the pointer directly as the function name. We prefer the first method of calling
a function through a pointer because it explicitly illustrates that compare is a pointer to a
function that’s dereferenced to call the function. The second method of calling a function
through a pointer makes it appear as if compare is an actual function. This may be confus-
ing to a programmer reading the code who would like to see the definition of function
compare and finds that it’s never defined in the file.

7.12.2 Using Function Pointers to Create a Menu-Driven System
A common use of function pointers is in text-based menu-driven systems. A user is prompt-
ed to select an option from a menu (possibly from 1 to 5) by typing the menu item’s num-
ber. Each option is serviced by a different function. Pointers to each function are stored in
an array of pointers to functions. The user’s choice is used as a index in the array, and the
pointer in the array is used to call the function.

Figure 7.28 provides a generic example of the mechanics of defining and using an
array of pointers to functions. We define three functions—function1, function2 and
function3—that each take an integer argument and return nothing. We store pointers to
these three functions in array f, which is defined in line 14. The definition is read begin-
ning at the leftmost set of parentheses, “f is an array of 3 pointers to functions that each
take an int as an argument and return void.” The array is initialized with the names of
the three functions. When the user enters a value between 0 and 2, the value is used as the
index into the array of pointers to functions. In the function call (line 25), f[choice]
selects the pointer at location choice in the array. The pointer is dereferenced to call the func-
tion, and choice is passed as the argument to the function. Each function prints its argu-

int (*compare)(int a, int b)

int *compare(int a, int b)

int (*)(int, int);

if ((*compare)(work[count], work[count + 1]))

if (compare(work[count], work[count + 1]))

312 Chapter 7 C Pointers

ment’s value and its function name to demonstrate that the function is called correctly. In
this chapter’s exercises, you’ll develop several text-based, menu-driven systems.

1 // Fig. 7.28: fig07_28.c

2 // Demonstrating an array of pointers to functions.
3 #include <stdio.h>
4
5 // prototypes
6
7
8
9

10 int main(void)
11 {
12

13

14

15
16 printf("%s", "Enter a number between 0 and 2, 3 to end: ");
17 size_t choice; // variable to hold user's choice
18 scanf("%u", &choice);
19
20 // process user's choice

21 while (choice >= 0 && choice < 3) {
22
23

24
25

26
27 printf("%s", "Enter a number between 0 and 2, 3 to end: ");
28 scanf("%u", &choice);
29 }

30
31 puts("Program execution completed.");
32 }

33
34
35 {

36 printf("You entered %d so function1 was called\n\n", a);
37 }

38
39
40 {

41 printf("You entered %d so function2 was called\n\n", b);
42 }
43
44
45 {
46 printf("You entered %d so function3 was called\n\n", c);
47 }

Fig. 7.28 | Demonstrating an array of pointers to functions. (Part 1 of 2.)

void function1(int a);
void function2(int b);
void function3(int c);

// initialize array of 3 pointers to functions that each take an
// int argument and return void

void (*f[3])(int) = { function1, function2, function3 };

// invoke function at location choice in array f and pass

// choice as an argument

(*f[choice])(choice);

void function1(int a)

void function2(int b)

void function3(int c)

7.13 Secure C Programming 313

7.13 Secure C Programming

printf_s, scanf_s and Other Secure Functions
Earlier Secure C Programming sections presented printf_s and scanf_s, and mentioned
other more secure versions of standard library functions that are described by Annex K of
the C standard. A key feature of functions like printf_s and scanf_s that makes them
more secure is that they have runtime constraints requiring their pointer arguments to be
non-NULL. The functions check these runtime constraints before attempting to use the
pointers. Any NULL pointer argument is considered to be a constraint violation and causes
the function to fail and return a status notification. In a scanf_s, if any of the pointer ar-
guments (including the format-control string) are NULL, the function returns EOF. In a
printf_s, if the format-control string or any argument that corresponds to a %s is NULL,
the function stops outputting data and returns a negative number. For complete details of
the Annex K functions, see the C standard document or your compiler’s library documen-
tation.

Other CERT Guidelines Regarding Pointers
Misused pointers lead to many of the most common security vulnerabilities in systems to-
day. CERT provides various guidelines to help you prevent such problems. If you’re build-
ing industrial-strength C systems, you should familiarize yourself with the CERT C Secure
Coding Standard at www.securecoding.cert.org. The following guidelines apply to
pointer programming techniques that we presented in this chapter:

• EXP34-C: Dereferencing NULL pointers typically causes programs to crash, but
CERT has encountered cases in which dereferencing NULL pointers can allow at-
tackers to execute code.

• DCL13-C: Section 7.5 discussed uses of const with pointers. If a function pa-
rameter points to a value that will not be changed by the function, const should
be used to indicate that the data is constant. For example, to represent a pointer
to a string that will not be modified, use const char * as the pointer parameter’s
type, as in line 21 of Fig. 7.11.

• MSC16-C: This guideline discusses techniques for encrypting function pointers
to help prevent attackers from overwriting them and executing attack code.

Enter a number between 0 and 2, 3 to end: 0
You entered 0 so function1 was called

Enter a number between 0 and 2, 3 to end: 1
You entered 1 so function2 was called

Enter a number between 0 and 2, 3 to end: 2
You entered 2 so function3 was called

Enter a number between 0 and 2, 3 to end: 3
Program execution completed.

Fig. 7.28 | Demonstrating an array of pointers to functions. (Part 2 of 2.)

314 Chapter 7 C Pointers

Summary
Section 7.2 Pointer Variable Definitions and Initialization
• A pointer (p. 275) contains an address of another variable that contains a value. In this sense, a

variable name directly references a value, and a pointer indirectly references a value.

• Referencing a value through a pointer is called indirection (p. 276).

• Pointers can be defined to point to objects of any type.

• Pointers should be initialized either when they’re defined or in an assignment statement. A point-
er may be initialized to NULL, 0 or an address. A pointer with the value NULL points to nothing.
Initializing a pointer to 0 is equivalent to initializing a pointer to NULL, but NULL is preferred for
clarity. The value 0 is the only integer value that can be assigned directly to a pointer variable.

• NULL is a symbolic constant defined in the <stddef.h> header (and several other headers).

Section 7.3 Pointer Operators
• The &, or address operator (p. 277), is a unary operator that returns the address of its operand.

• The operand of the address operator must be a variable.

• The indirection operator * (p. 277) returns the value of the object to which its operand points.

• The printf conversion specifier %p outputs a memory location as a hexadecimal integer on most
platforms.

Section 7.4 Passing Arguments to Functions by Reference
• All arguments in C are passed by value (p. 279).

• C programs accomplish pass-by-reference (p. 279) by using pointers and the indirection opera-
tor. To pass a variable by reference, apply the address operator (&) to the variable’s name.

• When the address of a variable is passed to a function, the indirection operator (*) may be used
in the function to read and/or modify the value at that location in the caller’s memory.

• A function receiving an address as an argument must define a pointer parameter to receive the
address.

• The compiler does not differentiate between a function that receives a pointer and one that re-
ceives a one-dimensional array. A function must “know” when it’s receiving an array vs. a single
variable passed by reference.

• When the compiler encounters a function parameter for a one-dimensional array of the form int
b[], the compiler converts the parameter to the pointer notation int *b.

Section 7.5 Using the const Qualifier with Pointers
• The const qualifier (p. 283) indicates that the value of a particular variable should not be modified.

• If an attempt is made to modify a value that’s declared const, the compiler catches it and issues
either a warning or an error, depending on the particular compiler.

• There are four ways to pass a pointer to a function (p. 284): a non-constant pointer to non-con-
stant data, a constant pointer to non-constant data, a non-constant pointer to constant data,
and a constant pointer to constant data.

• With a non-constant pointer to non-constant data, the data can be modified through the deref-
erenced pointer, and the pointer can be modified to point to other data items.

• A non-constant pointer to constant data can be modified to point to any data item of the appro-
priate type, but the data to which it points cannot be modified.

• A constant pointer to non-constant data always points to the same memory location, and the data
at that location can be modified through the pointer. This is the default for an array name.

 Summary 315

• A constant pointer to constant data always points to the same memory location, and the data at
that memory location cannot be modified.

Section 7.7 sizeof Operator
• Unary operator sizeof (p. 292) determine the size in bytes of a variable or type at compilation time.

• When applied to the name of an array, sizeof returns the total number of bytes in the array.

• Operator sizeof can be applied to any variable name, type or value.

• The parentheses used with sizeof are required if a type name is supplied as its operand.

Section 7.8 Pointer Expressions and Pointer Arithmetic
• A limited set of arithmetic operations (p. 296) may be performed on pointers. A pointer may be

incremented (++) or decremented (--), an integer may be added to a pointer (+ or +=), an integer
may be subtracted from a pointer (- or -=) and one pointer may be subtracted from another.

• When an integer is added to or subtracted from a pointer, the pointer is incremented or decre-
mented by that integer times the size of the object to which the pointer refers.

• Two pointers to elements of the same array may be subtracted from one another to determine
the number of elements between them.

• A pointer can be assigned to another pointer if both have the same type. An exception is the
pointer of type void * (p. 297) which can represent any pointer type. All pointer types can be
assigned a void * pointer, and a void * pointer can be assigned a pointer of any type.

• A void * pointer cannot be dereferenced.

• Pointers can be compared using equality and relational operators, but such comparisons are
meaningless unless the pointers point to elements of the same array. Pointer comparisons com-
pare the addresses stored in the pointers.

• A common use of pointer comparison is determining whether a pointer is NULL.

Section 7.9 Relationship between Pointers and Arrays
• Arrays and pointers are intimately related in C and often may be used interchangeably.

• An array name can be thought of as a constant pointer.

• Pointers can be used to do any operation involving array indexing.

• When a pointer points to the beginning of an array, adding an offset (p. 298) to the pointer in-
dicates which element of the array should be referenced, and the offset value is identical to the
array index. This is referred to as pointer/offset notation.

• An array name can be treated as a pointer and used in pointer arithmetic expressions that do not
attempt to modify the address of the pointer.

• Pointers can be indexed (p. 299) exactly as arrays can. This is referred to as pointer/index nota-
tion.

• A parameter of type const char * typically represents a constant string.

Section 7.10 Arrays of Pointers
• Arrays may contain pointers (p. 302). A common use of an array of pointers is to form an array

of strings (p. 302). Each entry in the array is a string, but in C a string is essentially a pointer to
its first character. So, each entry in an array of strings is actually a pointer to the first character of
a string.

316 Chapter 7 C Pointers

Section 7.12 Pointers to Functions
• A function pointer (p. 311) contains the address of the function in memory. A function name

is really the starting address in memory of the code that performs the function’s task.

• Pointers to functions can be passed to functions, returned from functions, stored in arrays and
assigned to other function pointers.

• A pointer to a function is dereferenced to call the function. A function pointer can be used di-
rectly as the function name when calling the function.

• A common use of function pointers is in text-based, menu-driven systems.

Self-Review Exercises
7.1 Answer each of the following:

a) A pointer variable contains as its value the of another variable.
b) The three values that can be used to initialize a pointer are , and

.
c) The only integer that can be assigned to a pointer is .

7.2 State whether the following are true or false. If the answer is false, explain why.
a) A pointer that’s declared to be void can be dereferenced.
b) Pointers of different types may not be assigned to one another without a cast operation.

7.3 Answer each of the following. Assume that single-precision floating-point numbers are
stored in 4 bytes, and that the starting address of the array is at location 1002500 in memory. Each
part of the exercise should use the results of previous parts where appropriate.

a) Define an array of type float called numbers with 10 elements, and initialize the ele-
ments to the values 0.0, 1.1, 2.2, …, 9.9. Assume the symbolic constant SIZE has been
defined as 10.

b) Define a pointer, nPtr, that points to an object of type float.
c) Print the elements of array numbers using array index notation. Use a for statement.

Print each number with 1 position of precision to the right of the decimal point.
d) Give two separate statements that assign the starting address of array numbers to the

pointer variable nPtr.
e) Print the elements of array numbers using pointer/offset notation with the pointer nPtr.
f) Print the elements of array numbers using pointer/offset notation with the array name

as the pointer.
g) Print the elements of array numbers by indexing pointer nPtr.
h) Refer to element 4 of array numbers using array index notation, pointer/offset notation

with the array name as the pointer, pointer index notation with nPtr and pointer/offset
notation with nPtr.

i) Assuming that nPtr points to the beginning of array numbers, what address is referenced
by nPtr + 8? What value is stored at that location?

j) Assuming that nPtr points to numbers[5], what address is referenced by nPtr –= 4?
What’s the value stored at that location?

7.4 For each of the following, write a statement that performs the indicated task. Assume that
floating-point variables number1 and number2 are defined and that number1 is initialized to 7.3.

a) Define the variable fPtr to be a pointer to an object of type float.
b) Assign the address of variable number1 to pointer variable fPtr.
c) Print the value of the object pointed to by fPtr.
d) Assign the value of the object pointed to by fPtr to variable number2.
e) Print the value of number2.

 Answers to Self-Review Exercises 317

f) Print the address of number1. Use the %p conversion specifier.
g) Print the address stored in fPtr. Use the %p conversion specifier. Is the value printed the

same as the address of number1?

7.5 Do each of the following:
a) Write the function header for a function called exchange that takes two pointers to

floating-point numbers x and y as parameters and does not return a value.
b) Write the function prototype for the function in part (a).
c) Write the function header for a function called evaluate that returns an integer and

that takes as parameters integer x and a pointer to function poly. Function poly takes
an integer parameter and returns an integer.

d) Write the function prototype for the function in part (c).

7.6 Find the error in each of the following program segments. Assume

int *zPtr; // zPtr will reference array z
int *aPtr = NULL;
void *sPtr = NULL;
int number;
int z[5] = {1, 2, 3, 4, 5};
sPtr = z;

a) ++zptr;
b) // use pointer to get first value of array; assume zPtr is initialized

number = zPtr;
c) // assign array element 2 (the value 3) to number;

 assume zPtr is initialized

number = *zPtr[2];
d) // print entire array z; assume zPtr is initialized

for (size_t i = 0; i <= 5; ++i) {
 printf("%d ", zPtr[i]);
}

e) // assign the value pointed to by sPtr to number

number = *sPtr;
f) ++z;

Answers to Self-Review Exercises
7.1 a) address. b) 0, NULL, an address. c) 0.

7.2 a) False. A pointer to void cannot be dereferenced, because there’s no way to know exactly
how many bytes of memory to dereference. b) False. Pointers of type void can be assigned pointers
of other types, and pointers of type void can be assigned to pointers of other types.

7.3 a) float numbers[SIZE] = {0.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9};
b) float *nPtr;
c) for (size_t i = 0; i < SIZE; ++i) {

 printf("%.1f ", numbers[i]);
}

d) nPtr = numbers;

nPtr = &numbers[0];
e) for (size_t i = 0; i < SIZE; ++i) {

 printf("%.1f ", *(nPtr + i));
}

318 Chapter 7 C Pointers

f) for (size_t i = 0; i < SIZE; ++i) {
 printf("%.1f ", *(numbers + i));
}

g) for (size_t i = 0; i < SIZE; ++i) {
 printf("%.1f ", nPtr[i]);
}

h) numbers[4]
*(numbers + 4)
nPtr[4]
*(nPtr + 4)

i) The address is 1002500 + 8 * 4 = 1002532. The value is 8.8.
j) The address of numbers[5] is 1002500 + 5 * 4 = 1002520.

The address of nPtr -= 4 is 1002520 - 4 * 4 = 1002504.
The value at that location is 1.1.

7.4 a) float *fPtr;
b) fPtr = &number1;
c) printf("The value of *fPtr is %f\n", *fPtr);
d) number2 = *fPtr;
e) printf("The value of number2 is %f\n", number2);
f) printf("The address of number1 is %p\n", &number1);
g) printf("The address stored in fptr is %p\n", fPtr);

Yes, the value is the same.

7.5 a) void exchange(float *x, float *y)
b) void exchange(float *x, float *y);
c) int evaluate(int x, int (*poly)(int))
d) int evaluate(int x, int (*poly)(int));

7.6 a) Error: zPtr has not been initialized.
Correction: Initialize zPtr with zPtr = z; before performing the pointer arithmetic.

b) Error: The pointer is not dereferenced.
Correction: Change the statement to number = *zPtr;

c) Error: zPtr[2] is not a pointer and should not be dereferenced.
Correction: Change *zPtr[2] to zPtr[2].

d) Error: Referring to an array element outside the array bounds with pointer indexing.
Correction: Change the operator <= in the for condition to <.

e) Error: Dereferencing a void pointer.
Correction: To dereference the pointer, it must first be cast to an integer pointer.
Change the statement to number = *((int *) sPtr);

f) Error: Trying to modify an array name with pointer arithmetic.
Correction: Use a pointer variable instead of the array name to accomplish pointer
arithmetic, or index the array name to refer to a specific element.

Exercises
7.7 Answer each of the following:

a) The operator returns the location in memory where its operand is stored.
b) The operator returns the value of the object to which its operand points.
c) To accomplish pass-by-reference when passing a nonarray variable to a function, it’s

necessary to pass the of the variable to the function.

7.8 State whether the following are true or false. If false, explain why.

 Exercises 319

a) Two pointers that point to different arrays cannot be compared meaningfully.
b) Because the name of an array is a pointer to the first element of the array, array names

may be manipulated in precisely the same manner as pointers.

7.9 Answer each of the following. Assume that unsigned integers are stored in 2 bytes and that
the starting address of the array is at location 1002500 in memory.

a) Define an array of type unsigned int called values with five elements, and initialize the
elements to the even integers from 2 to 10. Assume the symbolic constant SIZE has been
defined as 5.

b) Define a pointer vPtr that points to an object of type unsigned int.
c) Print the elements of array values using array index notation. Use a for statement and

assume integer control variable i has been defined.
d) Give two separate statements that assign the starting address of array values to pointer

variable vPtr.
e) Print the elements of array values using pointer/offset notation.
f) Print the elements of array values using pointer/offset notation with the array name as

the pointer.
g) Print the elements of array values by indexing the pointer to the array.
h) Refer to element 5 of array values using array index notation, pointer/offset notation

with the array name as the pointer, pointer index notation, and pointer/offset notation.
i) What address is referenced by vPtr + 3? What value is stored at that location?
j) Assuming vPtr points to values[4], what address is referenced by vPtr -= 4? What val-

ue is stored at that location?

7.10 For each of the following, write a single statement that performs the indicated task. Assume
that long integer variables value1 and value2 have been defined and that value1 has been initialized
to 200000.

a) Define the variable lPtr to be a pointer to an object of type long.
b) Assign the address of variable value1 to pointer variable lPtr.
c) Print the value of the object pointed to by lPtr.
d) Assign the value of the object pointed to by lPtr to variable value2.
e) Print the value of value2.
f) Print the address of value1.
g) Print the address stored in lPtr. Is the value printed the same as the address of value1?

7.11 Do each of the following:
a) Write the function header for function zero, which takes a long integer array parameter

bigIntegers and does not return a value.
b) Write the function prototype for the function in part (a).
c) Write the function header for function add1AndSum, which takes an integer array pa-

rameter oneTooSmall and returns an integer.
d) Write the function prototype for the function described in part (c).

Note: Exercises 7.12–7.15 are reasonably challenging. Once you have done these problems,
you ought to be able to implement most popular card games easily.
7.12 (Card Shuffling and Dealing) Modify the program in Fig. 7.24 so that the card-dealing
function deals a five-card poker hand. Then write the following additional functions:

a) Determine whether the hand contains a pair.
b) Determine whether the hand contains two pairs.

320 Chapter 7 C Pointers

c) Determine whether the hand contains three of a kind (e.g., three jacks).
d) Determine whether the hand contains four of a kind (e.g., four aces).
e) Determine whether the hand contains a flush (i.e., all five cards of the same suit).
f) Determine whether the hand contains a straight (i.e., five cards of consecutive face val-

ues).

7.13 (Project: Card Shuffling and Dealing) Use the functions developed in Exercise 7.12 to
write a program that deals two five-card poker hands, evaluates each, and determines which is the
better hand.

7.14 (Project: Card Shuffling and Dealing) Modify the program developed in Exercise 7.13 so
that it can simulate the dealer. The dealer’s five-card hand is dealt “face down” so the player cannot
see it. The program should then evaluate the dealer’s hand, and based on the quality of the hand,
the dealer should draw one, two or three more cards to replace the corresponding number of un-
needed cards in the original hand. The program should then reevaluate the dealer’s hand. [Caution:
This is a difficult problem!]

7.15 (Project: Card Shuffling and Dealing) Modify the program developed in Exercise 7.14 so
that it can handle the dealer’s hand automatically, but the player is allowed to decide which cards
of the player's hand to replace. The program should then evaluate both hands and determine who
wins. Now use this new program to play 20 games against the computer. Who wins more games,
you or the computer? Have one of your friends play 20 games against the computer. Who wins more
games? Based on the results of these games, make appropriate modifications to refine your poker-
playing program (this, too, is a difficult problem). Play 20 more games. Does your modified pro-
gram play a better game?

7.16 (Card Shuffling and Dealing Modification) In the card shuffling and dealing program of
Fig. 7.24, we intentionally used an inefficient shuffling algorithm that introduced the possibility of
indefinite postponement. In this problem, you’ll create a high-performance shuffling algorithm that
avoids indefinite postponement.

Modify the program of Fig. 7.24 as follows. Begin by initializing the deck array as shown in
Fig. 7.29. Modify the shuffle function to loop row-by-row and column-by-column through the
array, touching every element once. Each element should be swapped with a randomly selected ele-
ment of the array. Print the resulting array to determine whether the deck is satisfactorily shuffled
(as in Fig. 7.30, for example). You may want your program to call the shuffle function several
times to ensure a satisfactory shuffle.

Unshuffled deck array

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 14 15 16 17 18 19 20 21 22 23 24 25 26

2 27 28 29 30 31 32 33 34 35 36 37 38 39

3 40 41 42 43 44 45 46 47 48 49 50 51 52

Fig. 7.29 | Unshuffled deck array.

 Exercises 321

 Although the approach in this problem improves the shuffling algorithm, the dealing algo-
rithm still requires searching the deck array for card 1, then card 2, then card 3, and so on. Worse
yet, even after the dealing algorithm locates and deals the card, the algorithm still searches through
the remainder of the deck. Modify the program of Fig. 7.24 so that once a card is dealt, no further
attempts are made to match that card number, and the program immediately proceeds with dealing
the next card. In Chapter 10, we develop a dealing algorithm that requires only one operation per
card.

7.17 (Simulation: The Tortoise and the Hare) In this problem, you’ll recreate one of the truly
great moments in history, namely the classic race of the tortoise and the hare. You’ll use random
number generation to develop a simulation of this memorable event.

Our contenders begin the race at “square 1” of 70 squares. Each square represents a possible
position along the race course. The finish line is at square 70. The first contender to reach or pass
square 70 is rewarded with a pail of fresh carrots and lettuce. The course weaves its way up the side
of a slippery mountain, so occasionally the contenders lose ground.

There’s a clock that ticks once per second. With each tick of the clock, your program should
adjust the position of the animals according to the rules of Fig. 7.31.

Use variables to keep track of the positions of the animals (i.e., position numbers are 1–70).
Start each animal at position 1 (i.e., the “starting gate”). If an animal slips left before square 1,
move the animal back to square 1. Generate the percentages in the preceding table by producing a
random integer, i, in the range 1 ≤ i ≤10. For the tortoise, perform a “fast plod” when 1 ≤ i ≤5, a
“slip” when 6 ≤ i ≤7, or a “slow plod” when 8 ≤ i ≤10. Use a similar technique to move the hare.

Sample shuffled deck array

0 1 2 3 4 5 6 7 8 9 10 11 12

0 19 40 27 25 36 46 10 34 35 41 18 2 44

1 13 28 14 16 21 30 8 11 31 17 24 7 1

2 12 33 15 42 43 23 45 3 29 32 4 47 26

3 50 38 52 39 48 51 9 5 37 49 22 6 20

Fig. 7.30 | Sample shuffled deck array.

Animal Move type Percentage of the time Actual move

Tortoise Fast plod
Slip
Slow plod

50%
20%
30%

3 squares forward
6 squares backward
1 square forward

Hare Sleep
Big hop
Big slip
Small hop
Small slip

20%
20%
10%
30%
20%

No move at all
9 squares forward
12 squares backward
1 square forward
2 squares backward

Fig. 7.31 | Tortoise and hare rules for adjusting positions.

322 Chapter 7 C Pointers

Begin the race by printing

BANG !!!!!

AND THEY'RE OFF !!!!!

Then, for each tick of the clock (i.e., each iteration of a loop), print a 70-position line showing the
letter T in the position of the tortoise and the letter H in the position of the hare. Occasionally, the
contenders will land on the same square. In this case, the tortoise bites the hare and your program
should print OUCH!!! beginning at that position. All print positions other than the T, the H, or the
OUCH!!! (in case of a tie) should be blank.

After each line is printed, test whether either animal has reached or passed square 70. If so,
then print the winner and terminate the simulation. If the tortoise wins, print TORTOISE WINS!!!
YAY!!! If the hare wins, print Hare wins. Yuch. If both animals win on the same tick of the clock,
you may want to favor the turtle (the “underdog”), or you may want to print It's a tie. If neither
animal wins, perform the loop again to simulate the next tick of the clock. When you’re ready to
run your program, assemble a group of fans to watch the race. You’ll be amazed at how involved
your audience gets!

7.18 (Card Shuffling and Dealing Modification) Modify the card shuffling and dealing program
of Fig. 7.24 so the shuffling and dealing operations are performed by the same function (shuffle-
AndDeal). The function should contain one nested looping structure that’s similar to function shuf-
fle in Fig. 7.24.

7.19 What does this program do, assuming that the user enters two strings of the same length?

1 // ex07_19.c

2 // What does this program do?

3 #include <stdio.h>
4 #define SIZE 80
5
6 void mystery1(char *s1, const char *s2); // prototype
7
8 int main(void)
9 {

10 char string1[SIZE]; // create char array
11 char string2[SIZE]; // create char array
12
13 puts("Enter two strings: ");
14 scanf("%79s%79s" , string1, string2);
15 mystery1(string1, string2);

16 printf("%s", string1);
17 }

18
19 // What does this function do?

20 void mystery1(char *s1, const char *s2)
21 {

22 while (*s1 != '\0') {
23 ++s1;

24 }

25
26 for (; *s1 = *s2; ++s1, ++s2) {
27 ; // empty statement

28 }

29 }

 Exercises 323

7.20 What does this program do?

7.21 Find the error in each of the following program segments. If the error can be corrected, ex-
plain how.

a) int *number;
printf("%d\n", *number);

b) float *realPtr;
long *integerPtr;
integerPtr = realPtr;

c) int * x, y;
x = y;

d) char s[] = "this is a character array";
int count;
for (; *s != '\0'; ++s)
 printf("%c ", *s);

e) short *numPtr, result;
void *genericPtr = numPtr;
result = *genericPtr + 7;

f) float x = 19.34;
float xPtr = &x;
printf("%f\n", xPtr);

g) char *s;
printf("%s\n", s);

1 // ex07_20.c

2 // what does this program do?

3 #include <stdio.h>
4 #define SIZE 80
5
6 size_t mystery2(const char *s); // prototype
7
8 int main(void)
9 {

10 char string[SIZE]; // create char array
11
12 puts("Enter a string: ");
13 scanf("%79s", string);
14 printf("%d\n", mystery2(string));
15 }

16
17 // What does this function do?

18 size_t mystery2(const char *s)
19 {

20 size_t x;
21
22 // loop through string

23 for (x = 0; *s != '\0'; ++s) {
24 ++x;

25 }

26
27 return x;
28 }

324 Chapter 7 C Pointers

7.22 (Maze Traversal) The following grid is a two-dimensional array representation of a maze.

The # symbols represent the walls of the maze, and the periods (.) represent squares in the possible
paths through the maze.

There’s a simple algorithm for walking through a maze that guarantees finding the exit
(assuming there’s an exit). If there’s not an exit, you’ll arrive at the starting location again. Place
your right hand on the wall to your right and begin walking forward. Never remove your hand
from the wall. If the maze turns to the right, you follow the wall to the right. As long as you do not
remove your hand from the wall, eventually you’ll arrive at the exit of the maze. There may be a
shorter path than the one you have taken, but you’re guaranteed to get out of the maze.

Write recursive function mazeTraverse to walk through the maze. The function should
receive as arguments a 12-by-12 character array representing the maze and the starting location of
the maze. As mazeTraverse attempts to locate the exit from the maze, it should place the character
X in each square in the path. The function should display the maze after each move so the user can
watch as the maze is solved.

7.23 (Generating Mazes Randomly) Write a function mazeGenerator that takes as an argument
a two-dimensional 12-by-12 character array and randomly produces a maze. The function should
also provide the starting and ending locations of the maze. Try your function mazeTraverse from
Exercise 7.22 using several randomly generated mazes.

7.24 (Mazes of Any Size) Generalize functions mazeTraverse and mazeGenerator of
Exercises 7.22–7.23 to process mazes of any width and height.

7.25 (Arrays of Pointers to Functions) Rewrite the program of Fig. 6.22 to use a menu-driven
interface. The program should offer the user four options as follows:

One restriction on using arrays of pointers to functions is that all the pointers must have the same
type. The pointers must be to functions of the same return type that receive arguments of the same
type. For this reason, the functions in Fig. 6.22 must be modified so that they each return the same
type and take the same parameters. Modify functions minimum and maximum to print the minimum
or maximum value and return nothing. For option 3, modify function average of Fig. 6.22 to out-
put the average for each student (not a specific student). Function average should return nothing
and take the same parameters as printArray, minimum and maximum. Store the pointers to the four
functions in array processGrades and use the choice made by the user as the index into the array
for calling each function.

#
. . . #
. . # . # . # # # # . #
. # # .
. . . . # # # . # . .
. # . # . # .
. . # . # . # . # .
. # . # . # . # .
. # .
. # # # .
. # . . .
#

Enter a choice:
 0 Print the array of grades
 1 Find the minimum grade
 2 Find the maximum grade
 3 Print the average on all tests for each student
 4 End program

 Special Section: Building Your Own Computer 325

7.26 What does this program do, assuming that the user enters two strings of the same length?

Special Section: Building Your Own Computer
In the next several exercises, we take a temporary diversion away from the world of high-level lan-
guage programming. We “peel open” a computer and look at its internal structure. We introduce
machine-language programming and write several machine-language programs. To make this an
especially valuable experience, we then build a computer (through the technique of software-based
simulation) on which you can execute your machine-language programs!

7.27 (Machine-Language Programming) Let’s create a computer we’ll call the Simpletron. As its
name implies, it’s a simple machine, but as we’ll soon see, it’s a powerful one as well. The Simpletron
runs programs written in the only language it directly understands—that is, Simpletron Machine
Language, or SML for short.

The Simpletron contains an accumulator—a “special register” in which information is put
before the Simpletron uses that information in calculations or examines it in various ways. All
information in the Simpletron is handled in terms of words. A word is a signed four-digit decimal
number such as +3364, -1293, +0007, -0001 and so on. The Simpletron is equipped with a 100-
word memory, and these words are referenced by their location numbers 00, 01, …, 99.

Before running an SML program, we must load or place the program into memory. The first
instruction (or statement) of every SML program is always placed in location 00.

Each instruction written in SML occupies one word of the Simpletron’s memory, so instruc-
tions are signed four-digit decimal numbers. We assume that the sign of an SML instruction is
always plus, but the sign of a data word may be either plus or minus. Each location in the Sim-
pletron’s memory may contain either an instruction, a data value used by a program or an unused
(and hence undefined) area of memory. The first two digits of each SML instruction are the opera-

1 // ex07_26.c

2 // What does this program do?

3 #include <stdio.h>
4 #define SIZE 80
5
6 int mystery3(const char *s1, const char *s2); // prototype
7
8 int main(void)
9 {

10 char string1[SIZE]; // create char array
11 char string2[SIZE]; // create char array
12
13 puts("Enter two strings: ");
14 scanf("%79s%79s", string1 , string2);
15 printf("The result is %d\n", mystery3(string1, string2));
16 }

17
18 int mystery3(const char *s1, const char *s2)
19 {

20 int result = 1;
21
22 for (; *s1 != '\0' && *s2 != '\0'; ++s1, ++s2) {
23 if (*s1 != *s2) {
24 result = 0;
25 }

26 }

27
28 return result;
29 }

326 Chapter 7 C Pointers

tion code, which specifies the operation to be performed. SML operation codes are summarized in
Fig. 7.32.

The last two digits of an SML instruction are the operand, which is the address of the memory
location containing the word to which the operation applies. Now let’s consider several simple SML
programs. The following SML program reads two numbers from the keyboard, and computes and
prints their sum. The instruction +1007 reads the first number from the keyboard and places it into
location 07 (which has been initialized to zero). Then +1008 reads the next number into location 08.
The load instruction, +2007, puts the first number into the accumulator, and the add instruction,
+3008, adds the second number to the number in the accumulator. All SML arithmetic instructions
leave their results in the accumulator. The store instruction, +2109, places the result back into memory
location 09, from which the write instruction, +1109, takes the number and prints it (as a signed
four-digit decimal number). The halt instruction, +4300, terminates execution.

Operation code Meaning

Input/output operations:

 #define READ 10 Read a word from the terminal into a specific location in
memory.

 #define WRITE 11 Write a word from a specific location in memory to the termi-
nal.

Load/store operations:

 #define LOAD 20 Load a word from a specific location in memory into the
accumulator.

 #define STORE 21 Store a word from the accumulator into a specific location in
memory.

Arithmetic operations:

 #define ADD 30 Add a word from a specific location in memory to the word in
the accumulator (leave result in accumulator).

 #define SUBTRACT 31 Subtract a word from a specific location in memory from the
word in the accumulator (leave result in accumulator).

 #define DIVIDE 32 Divide a word from a specific location in memory into the
word in the accumulator (leave result in accumulator).

 #define MULTIPLY 33 Multiply a word from a specific location in memory by the
word in the accumulator (leave result in accumulator).

Transfer-of-control operations:

 #define BRANCH 40 Branch to a specific location in memory.

 #define BRANCHNEG 41 Branch to a specific location in memory if the accumulator is
negative.

 #define BRANCHZERO 42 Branch to a specific location in memory if the accumulator is
zero.

 #define HALT 43 Halt—i.e., the program has completed its task.

Fig. 7.32 | Simpletron Machine Language (SML) operation codes.

 Special Section: Building Your Own Computer 327

The following SML program reads two numbers from the keyboard, and determines and
prints the larger value. Note the use of the instruction +4107 as a conditional transfer of control,
much the same as C’s if statement.

Now write SML programs to accomplish each of the following tasks.
a) Use a sentinel-controlled loop to read positive integers and compute and print their

sum.
b) Use a counter-controlled loop to read seven numbers, some positive and some negative,

and compute and print their average.
c) Read a series of numbers and determine and print the largest number. The first number

read indicates how many numbers should be processed.

Example 1
Location Number Instruction

00 +1007 (Read A)
01 +1008 (Read B)
02 +2007 (Load A)
03 +3008 (Add B)
04 +2109 (Store C)
05 +1109 (Write C)
06 +4300 (Halt)
07 +0000 (Variable A)
08 +0000 (Variable B)
09 +0000 (Result C)

Example 2
Location Number Instruction

00 +1009 (Read A)
01 +1010 (Read B)
02 +2009 (Load A)
03 +3110 (Subtract B)
04 +4107 (Branch negative to 07)
05 +1109 (Write A)
06 +4300 (Halt)
07 +1110 (Write B)
08 +4300 (Halt)
09 +0000 (Variable A)
10 +0000 (Variable B)

328 Chapter 7 C Pointers

7.28 (A Computer Simulator) It may at first seem outrageous, but in this problem you’re going
to build your own computer. No, you won’t be soldering components together. Rather, you’ll use
the powerful technique of software-based simulation to create a software model of the Simpletron.
You’ll not be disappointed. Your Simpletron simulator will turn the computer you’re using into a
Simpletron, and you’ll actually be able to run, test and debug the SML programs you wrote in
Exercise 7.27.

When you run your Simpletron simulator, it should begin by printing:

*** Welcome to Simpletron! ***

*** Please enter your program one instruction ***

*** (or data word) at a time. I will type the ***

*** location number and a question mark (?). ***

*** You then type the word for that location. ***

*** Type the sentinel -99999 to stop entering ***

*** your program. ***

Simulate the memory of the Simpletron with a one-dimensional array memory that has 100
elements. Now assume that the simulator is running, and let’s examine the dialog as we enter the
program of Example 2 of Exercise 7.27:

 00 ? +1009

 01 ? +1010

 02 ? +2009

 03 ? +3110

 04 ? +4107

 05 ? +1109

 06 ? +4300

 07 ? +1110

 08 ? +4300

 09 ? +0000

 10 ? +0000

 11 ? -99999

 *** Program loading completed ***

 *** Program execution begins ***

The SML program has now been placed (or loaded) into the array memory. Now the Sim-
pletron executes the SML program. It begins with the instruction in location 00 and continues
sequentially, unless directed to some other part of the program by a transfer of control.

Use the variable accumulator to represent the accumulator register. Use the variable instruc-
tionCounter to keep track of the location in memory that contains the instruction being per-
formed. Use the variable operationCode to indicate the operation currently being performed—i.e.,
the left two digits of the instruction word. Use the variable operand to indicate the memory loca-
tion on which the current instruction operates. Thus, if an instrucion has an operand, it’s the right-
most two digits of the instruction currently being performed. Do not execute instructions directly
from memory. Rather, transfer the next instruction to be performed from memory to a variable
called instructionRegister. Then “pick off” the left two digits and place them in the variable
operationCode, and “pick off” the right two digits and place them in operand.

When Simpletron begins execution, the special registers are initialized as follows:

accumulator +0000

instructionCounter 00

instructionRegister +0000

operationCode 00

operand 00

Now let’s “walk through” the execution of the first SML instruction, +1009 in memory loca-
tion 00. This is called an instruction execution cycle.

 Special Section: Building Your Own Computer 329

The instructionCounter tells us the location of the next instruction to be performed. We
fetch the contents of that location from memory by using the C statement

instructionRegister = memory[instructionCounter];

The operation code and the operand are extracted from the instruction register by the statements

operationCode = instructionRegister / 100;
operand = instructionRegister % 100;

Now the Simpletron must determine that the operation code is actually a read (versus a write,
a load, and so on). A switch differentiates among the twelve operations of SML.

The switch statement simulates the behavior of various SML instructions as follows (we leave
the others to the reader):

read: scanf("%d", &memory[operand]);
load: accumulator = memory[operand];

add: accumulator += memory[operand];

Various branch instructions: We’ll discuss these shortly.
halt: This instruction prints the message

 *** Simpletron execution terminated ***

then prints the name and contents of each register as well as the complete contents of memory.
Such a printout is often called a computer dump. To help you program your dump function, a sam-
ple dump format is shown in Fig. 7.33. A dump after executing a Simpletron program would show
the actual values of instructions and data values at the moment execution terminated. You can
print leading 0s in front of an integer that is shorter than its field width by placing the 0 formatting
flag before the field width in the format specifier as in "%02d". You can place a + or - sign before a
value with the + formatting flag. So to produce a number of the form +0000, you can use the for-
mat specifier "%+05d".

Let’s proceed with the execution of our program’s first instruction, namely the +1009 in loca-
tion 00. As we’ve indicated, the switch statement simulates this by performing the C statement

scanf("%d", &memory[operand]);
A question mark (?) should be displayed on the screen before the scanf is executed to prompt

the user for input. The Simpletron waits for the user to type a value and then press the Return key.
The value is then read into location 09.

REGISTERS:
accumulator +0000
instructionCounter 00
instructionRegister +0000
operationCode 00
operand 00

MEMORY:
 0 1 2 3 4 5 6 7 8 9
 0 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
10 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
20 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
30 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
40 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
50 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
60 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
70 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
80 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
90 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000

Fig. 7.33 | Sample Simpletron dump format.

330 Chapter 7 C Pointers

At this point, simulation of the first instruction is completed. All that remains is to prepare
the Simpletron to execute the next instruction. Because the instruction just performed was not a
transfer of control, we need merely increment the instruction counter register as follows:

++instructionCounter;

This completes the simulated execution of the first instruction. The entire process (i.e., the
instruction execution cycle) begins anew with the fetch of the next instruction to be executed.

Now let’s consider how the branching instructions—the transfers of control—are simulated.
All we need to do is adjust the value in the instruction counter appropriately. Therefore, the
unconditional branch instruction (40) is simulated within the switch as

instructionCounter = operand;

The conditional “branch if accumulator is zero” instruction is simulated as

if (accumulator == 0) {
 instructionCounter = operand;

}

At this point, you should implement your Simpletron simulator and run the SML programs
you wrote in Exercise 7.27. You may embellish SML with additional features and provide for these
in your simulator.

Your simulator should check for various types of errors. During the program loading phase,
for example, each number the user types into the Simpletron’s memory must be in the range -9999
to +9999. Your simulator should use a while loop to test that each number entered is in this range,
and, if not, keep prompting the user to reenter the number until a correct number is entered.

During the execution phase, your simulator should check for serious errors, such as attempts
to divide by zero, attempts to execute invalid operation codes and accumulator overflows (i.e.,
arithmetic operations resulting in values larger than +9999 or smaller than -9999). Such serious
errors are called fatal errors. When a fatal error is detected, print an error message such as:

*** Attempt to divide by zero ***

*** Simpletron execution abnormally terminated ***

and print a full computer dump in the format we’ve discussed previously. This will help the user
locate the error in the program.

Implementation Note: When you implement the Simpletron Simulator, define the memory
array and all the registers as variables in main. The program should contain three other functions—
load, execute and dump. Function load reads the SML instructions from the user at the keyboard.
(Once you study file processing in Chapter 11, you’ll be able to read the SML instruction from a
file.) Function execute executes the SML program currently loaded in the memory array. Function
dump displays the contents of memory and all of the registers stored in main’s variables. Pass the mem-
ory array and registers to the other functions as necessary to complete their tasks. Functions load
and execute need to modify variables that are defined in main, so you’ll need to pass those variables
to the functions by reference using pointers. So, you’ll need to modify the statements we showed
throughout this problem description to use the appropriate pointer notations.

7.29 (Modifications to the Simpletron Simulator) In Exercise 7.28, you wrote a software simu-
lation of a computer that executes programs written in Simpletron Machine Language (SML). In
this exercise, we propose several modifications and enhancements to the Simpletron Simulator. In
Exercises 12.25 and 12.26, we propose building a compiler that converts programs written in a
high-level programming language (a variation of BASIC) to Simpletron Machine Language. Some
of the following modifications and enhancements may be required to execute the programs pro-
duced by the compiler.

a) Extend the Simpletron Simulator’s memory to contain 1000 memory locations to en-
able the Simpletron to handle larger programs.

 Array of Function Pointer Exercises 331

b) Allow the simulator to perform remainder calculations. This requires an additional
Simpletron Machine Language instruction.

c) Allow the simulator to perform exponentiation calculations. This requires an additional
Simpletron Machine Language instruction.

d) Modify the simulator to use hexadecimal values rather than integer values to represent
Simpletron Machine Language instructions.

e) Modify the simulator to allow output of a newline. This requires an additional Sim-
pletron Machine Language instruction.

f) Modify the simulator to process floating-point values in addition to integer values.
g) Modify the simulator to handle string input. [Hint: Each Simpletron word can be di-

vided into two groups, each holding a two-digit integer. Each two-digit integer repre-
sents the ASCII decimal equivalent of a character. Add a machine-language instruction
that will input a string and store it beginning at a specific Simpletron memory location.
The first half of the word at that location will be a count of the number of characters in
the string (i.e., the length of the string). Each succeeding half word contains one ASCII
character expressed as two decimal digits. The machine-language instruction converts
each character into its ASCII equivalent and assigns it to a half word.]

h) Modify the simulator to handle output of strings stored in the format of part (g). [Hint:
Add a machine-language instruction that prints a string beginning at a specified Sim-
pletron memory location. The first half of the word at that location is the length of the
string in characters. Each succeeding half word contains one ASCII character expressed
as two decimal digits. The machine-language instruction checks the length and prints
the string by translating each two-digit number into its equivalent character.]

Array of Function Pointer Exercises
7.30 (Calculating Circle Circumference, Circle Area or Sphere Volume Using Function Pointers)
Using the techniques you learned in Fig. 7.28, create a text-based, menu-driven program that allows
the user to choose whether to calculate the circumference of a circle, the area of a circle or the vol-
ume of a sphere. The program should then input a radius from the user, perform the appropriate
calculation and display the result. Use an array of function pointers in which each pointer represents
a function that returns void and receives a double parameter. The corresponding functions should
each display messages indicating which calculation was performed, the value of the radius and the
result of the calculation.

7.31 (Calculator Using Function Pointers) Using the techniques you learned in Fig. 7.28, create
a text-based, menu-driven program that allows the user to choose whether to add, subtract, multiply
or divide two numbers. The program should then input two double values from the user, perform
the appropriate calculation and display the result. Use an array of function pointers in which each
pointer represents a function that returns void and receives two double parameters. The corre-
sponding functions should each display messages indicating which calculation was performed, the
values of the parameters and the result of the calculation.

Making a Difference
7.32 (Polling) The Internet and the web are enabling more people to network, join a cause, voice
opinions, and so on. The U.S. presidential candidates in 2008 used the Internet intensively to get
out their messages and raise money for their campaigns. In this exercise, you’ll write a simple polling
program that allows users to rate five social-consciousness issues from 1 (least important) to 10
(most important). Pick five causes that are important to you (e.g., political issues, global environ-
mental issues). Use a one-dimensional array topics (of type char *) to store the five causes. To sum-
marize the survey responses, use a 5-row, 10-column two-dimensional array responses (of type

332 Chapter 7 C Pointers

int), each row corresponding to an element in the topics array. When the program runs, it should
ask the user to rate each issue. Have your friends and family respond to the survey. Then have the
program display a summary of the results, including:

a) A tabular report with the five topics down the left side and the 10 ratings across the top,
listing in each column the number of ratings received for each topic.

b) To the right of each row, show the average of the ratings for that issue.
c) Which issue received the highest point total? Display both the issue and the point total.
d) Which issue received the lowest point total? Display both the issue and the point total.

7.33 (Carbon Footprint Calculator: Arrays of Function Pointers) Using arrays of function point-
ers, as you learned in this chapter, you can specify a set of functions that are called with the same
types of arguments and return the same type of data. Governments and companies worldwide are
becoming increasingly concerned with carbon footprints (annual releases of carbon dioxide into the
atmosphere) from buildings burning various types of fuels for heat, vehicles burning fuels for power,
and the like. Many scientists blame these greenhouse gases for the phenomenon called global warm-
ing. Create three functions that help calculate the carbon footprint of a building, a car and a bicycle,
respectively. Each function should input appropriate data from the user, then calculate and display
the carbon footprint. (Check out a few websites that explain how to calculate carbon footprints.)
Each function should receive no parameters and return void. Write a program that prompts the user
to enter the type of carbon footprint to calculate, then calls the corresponding function in the array
of function pointers. For each type of carbon footprint, display some identifying information and
the object’s carbon footprint.

8C Characters and Strings

O b j e c t i v e s
In this chapter, you’ll:

■ Use the functions of the
character-handling library
(<ctype.h>).

■ Use the string-conversion
functions of the general
utilities library
(<stdlib.h>).

■ Use the string and character
input/output functions of the
standard input/output library
(<stdio.h>).

■ Use the string-processing
functions of the string-
handling library
(<string.h>).

■ Use the memory-processing
functions of the string-
handling library
(<string.h>).

334 Chapter 8 C Characters and Strings

8.1 Introduction
This chapter introduces the C standard library functions that help us process strings and
characters. The functions enable programs to process characters, strings, lines of text and
blocks of memory. The chapter discusses the techniques used to develop editors, word pro-
cessors, page-layout software, computerized typesetting systems and other kinds of text-
processing software. The text manipulations performed by formatted input/output func-
tions like printf and scanf can be implemented using the functions discussed in this
chapter.

C11 Annex K Functions
As we discuss in Section 8.11, C11’s optional Annex K describes more secure versions of
many functions that we present in this chapter. As with printf_s and scanf_s for printf
and scanf, the more secure Annex K versions should be used, if available for your compiler.

8.2 Fundamentals of Strings and Characters
Characters are the fundamental building blocks of source programs. Every program is
composed of a sequence of characters that—when grouped together meaningfully—is in-

8.1 Introduction
8.2 Fundamentals of Strings and

Characters
8.3 Character-Handling Library

8.3.1 Functions isdigit, isalpha,
isalnum and isxdigit

8.3.2 Functions islower, isupper,
tolower and toupper

8.3.3 Functions isspace, iscntrl,
ispunct, isprint and isgraph

8.4 String-Conversion Functions
8.4.1 Function strtod
8.4.2 Function strtol
8.4.3 Function strtoul

8.5 Standard Input/Output Library
Functions

8.5.1 Functions fgets and putchar
8.5.2 Function getchar
8.5.3 Function sprintf
8.5.4 Function sscanf

8.6 String-Manipulation Functions of the
String-Handling Library

8.6.1 Functions strcpy and strncpy
8.6.2 Functions strcat and strncat

8.7 Comparison Functions of the String-
Handling Library

8.8 Search Functions of the String-
Handling Library

8.8.1 Function strchr
8.8.2 Function strcspn
8.8.3 Function strpbrk
8.8.4 Function strrchr
8.8.5 Function strspn
8.8.6 Function strstr
8.8.7 Function strtok

8.9 Memory Functions of the String-
Handling Library

8.9.1 Function memcpy
8.9.2 Function memmove
8.9.3 Function memcmp
8.9.4 Function memchr
8.9.5 Function memset

8.10 Other Functions of the String-
Handling Library

8.10.1 Function strerror
8.10.2 Function strlen

8.11 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Special Section: Advanced String-Manipulation Exercises |

A Challenging String-Manipulation Project | Making a Difference

8.2 Fundamentals of Strings and Characters 335

terpreted by the computer as a series of instructions used to accomplish a task. A program
may contain character constants. A character constant is an int value represented as a
character in single quotes. The value of a character constant is the integer value of the char-
acter in the machine’s character set. For example, 'z' represents the integer value of the
letter z, and '\n' the integer value of newline (122 and 10 in ASCII, respectively).

A string is a series of characters treated as a single unit. A string may include letters,
digits and various special characters such as +, -, *, / and $. String literals, or string con-
stants, in C are written in double quotation marks as follows:

A string in C is an array of characters ending with the null character ('\0'). A string
is accessed via a pointer to the first character in the string. The value of a string is the
address of its first character. Thus, in C, it’s appropriate to say that a string is a pointer—
in fact, a pointer to the string’s first character. This is just like arrays, because strings are
simply arrays of characters.

A character array or a variable of type char * can be initialized with a string in a defi-
nition. The definitions

each initialize a variable to the string "blue". The first definition creates a 5-element array
color containing the characters 'b', 'l', 'u', 'e' and '\0'. The second definition creates
pointer variable colorPtr that points to the string "blue" somewhere in read-only memory.

The preceding array definition could also have been written

When defining a character array to contain a string, the array must be large enough to store
the string and its terminating null character. The preceding definition automatically de-
termines the size of the array based on the number of initializers (5) in the initializer list.

"John Q. Doe" (a name)
"99999 Main Street" (a street address)
"Waltham, Massachusetts" (a city and state)
"(201) 555-1212" (a telephone number)

char color[] = "blue";
const char *colorPtr = "blue";

Portability Tip 8.1
The C standard indicates that a a string literal is immutable (i.e., not modifiable), but some
compilers do not enforce this. If you might need to modify a string literal, it must be stored
in a character array.

char color[] = { 'b', 'l', 'u', 'e', '\0' };

Common Programming Error 8.1
Not allocating sufficient space in a character array to store the null character that termi-
nates a string is an error.

Common Programming Error 8.2
Printing a “string” that does not contain a terminating null character is an error. Printing
will continue past the end of the “string” until a null character is encountered.

336 Chapter 8 C Characters and Strings

A string can be stored in an array using scanf. For example, the following statement
stores a string in character array word[20]:

The string entered by the user is stored in word. Variable word is an array, which is a point-
er, so the & is not needed with argument word. Recall from Section 6.5.4 that function
scanf will read characters until a space, tab, newline or end-of-file indicator is encoun-
tered. So, it’s possible that, without the field width 19 in the conversion specifier %19s, the
user input could exceed 19 characters and that your program might crash! For this reason,
you should always use a field width when using scanf to read into a char array. The field
width 19 in the preceding statement ensures that scanf reads a maximum of 19 characters
and saves the last character for the string’s terminating null character. This prevents scanf
from writing characters into memory beyond the end of the character array. (For reading
input lines of arbitrary length, there’s a nonstandard—yet widely supported—function
readline, usually included in stdio.h.) For a character array to be printed properly as a
string, the array must contain a terminating null character.

8.3 Character-Handling Library
The character-handling library (<ctype.h>) includes several functions that perform use-
ful tests and manipulations of character data. Each function receives an unsigned char
(represented as an int) or EOF as an argument. As we discussed in Chapter 4, characters
are often manipulated as integers, because a character in C is a one-byte integer. EOF
normally has the value –1. Figure 8.1 summarizes the functions of the character-handling
library.

8.3.1 Functions isdigit, isalpha, isalnum and isxdigit
Figure 8.2 demonstrates functions isdigit, isalpha, isalnum and isxdigit. Function
isdigit determines whether its argument is a digit (0–9). Function isalpha determines
whether its argument is an uppercase (A–Z) or lowercase letter (a–z). Function isalnum

Error-Prevention Tip 8.1
When storing a string of characters in a character array, be sure that the array is large
enough to hold the largest string that will be stored. C allows strings of any length to be
stored. If a string is longer than the character array in which it’s to be stored, characters
beyond the end of the array will overwrite data in memory following the array.

scanf("%19s", word);

Common Programming Error 8.3
Processing a single character as a string. A string is a pointer—probably a respectably large
integer. However, a character is a small integer (ASCII values range 0–255). On many
systems this causes an error, because low memory addresses are reserved for special purposes
such as operating-system interrupt handlers—so “access violations” occur.

Common Programming Error 8.4
Passing a character as an argument to a function when a string is expected (and vice versa)
is a compilation error.

8.3 Character-Handling Library 337

determines whether its argument is an uppercase letter, a lowercase letter or a digit. Func-
tion isxdigit determines whether its argument is a hexadecimal digit (A–F, a–f, 0–9).

Prototype Function description

int isblank(int c); Returns a true value if c is a blank character that separates words in a line
of text and 0 (false) otherwise. [Note: This function is not available in
Microsoft Visual C++.]

int isdigit(int c); Returns a true value if c is a digit and 0 (false) otherwise.

int isalpha(int c); Returns a true value if c is a letter and 0 (false) otherwise.

int isalnum(int c); Returns a true value if c is a digit or a letter and 0 (false) otherwise.

int isxdigit(int c); Returns a true value if c is a hexadecimal digit character and 0 (false) oth-
erwise. (See Appendix C for a detailed explanation of binary numbers,
octal numbers, decimal numbers and hexadecimal numbers.)

int islower(int c); Returns a true value if c is a lowercase letter and 0 (false) otherwise.

int isupper(int c); Returns a true value if c is an uppercase letter and 0 (false) otherwise.

int tolower(int c); If c is an uppercase letter, tolower returns c as a lowercase letter. Otherwise,
tolower returns the argument unchanged.

int toupper(int c); If c is a lowercase letter, toupper returns c as an uppercase letter. Otherwise,
toupper returns the argument unchanged.

int isspace(int c); Returns a true value if c is a whitespace character—newline ('\n'), space
(' '), form feed ('\f'), carriage return ('\r'), horizontal tab ('\t') or
vertical tab ('\v')—and 0 (false) otherwise.

int iscntrl(int c); Returns a true value if c is a control character—horizontal tab ('\t'), ver-
tical tab ('\v'), form feed ('\f'), alert ('\a'), backspace ('\b'), carriage
return ('\r'), newline ('\n') and others—and 0 (false) otherwise.

int ispunct(int c); Returns a true value if c is a printing character other than a space, a digit,
or a letter—such as $, #, (,), [,], {, }, ;, : or %—and returns 0 other-
wise.

int isprint(int c); Returns a true value if c is a printing character (i.e., a character that’s visi-
ble on the screen) including a space and returns 0 (false) otherwise.

int isgraph(int c); Returns a true value if c is a printing character other than a space and
returns 0 (false) otherwise.

Fig. 8.1 | Character-handling library (<ctype.h>) functions.

1 // Fig. 8.2: fig08_02.c

2 // Using functions isdigit, isalpha, isalnum, and isxdigit

3 #include <stdio.h>
4 #include <ctype.h>
5

6 int main(void)
7 {

Fig. 8.2 | Using functions isdigit, isalpha, isalnum and isxdigit. (Part 1 of 2.)

338 Chapter 8 C Characters and Strings

8 printf("%s\n%s%s\n%s%s\n\n", "According to isdigit: ",
9 ? "8 is a " : "8 is not a ", "digit",

10 ? "# is a " : "# is not a ", "digit");
11
12 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n\n",
13 "According to isalpha:",
14 ? "A is a " : "A is not a ", "letter",
15 ? "b is a " : "b is not a ", "letter",
16 ? "& is a " : "& is not a ", "letter",
17 ? "4 is a " : "4 is not a ", "letter");
18
19 printf("%s\n%s%s\n%s%s\n%s%s\n\n",
20 "According to isalnum:",
21 ? "A is a " : "A is not a ",
22 "digit or a letter",
23 ? "8 is a " : "8 is not a ",
24 "digit or a letter",
25 ? "# is a " : "# is not a ",
26 "digit or a letter");
27
28 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n%s%s\n",
29 "According to isxdigit:",
30 ? "F is a " : "F is not a ",
31 "hexadecimal digit",
32 ? "J is a " : "J is not a ",
33 "hexadecimal digit",
34 ? "7 is a " : "7 is not a ",
35 "hexadecimal digit",
36 ? "$ is a " : "$ is not a ",
37 "hexadecimal digit",
38 ? "f is a " : "f is not a ",
39 "hexadecimal digit");
40 }

According to isdigit:
8 is a digit
is not a digit

According to isalpha:
A is a letter
b is a letter
& is not a letter
4 is not a letter

According to isalnum:
A is a digit or a letter
8 is a digit or a letter
is not a digit or a letter

According to isxdigit:
F is a hexadecimal digit
J is not a hexadecimal digit
7 is a hexadecimal digit
$ is not a hexadecimal digit
f is a hexadecimal digit

Fig. 8.2 | Using functions isdigit, isalpha, isalnum and isxdigit. (Part 2 of 2.)

isdigit('8')
isdigit('#')

isalpha('A')
isalpha('b')
isalpha('&')
isalpha('4')

isalnum('A')

isalnum('8')

isalnum('#')

isxdigit('F')

isxdigit('J')

isxdigit('7')

isxdigit('$')

isxdigit('f')

8.3 Character-Handling Library 339

Figure 8.2 uses the conditional operator (?:) to determine whether the string " is a "

or the string " is not a " should be printed in the output for each character tested. For
example, the expression

indicates that if '8' is a digit, the string "8 is a " is printed, and if '8' is not a digit (i.e.,
isdigit returns 0), the string "8 is not a " is printed.

8.3.2 Functions islower, isupper, tolower and toupper
Figure 8.3 demonstrates functions islower, isupper, tolower and toupper. Function
islower determines whether its argument is a lowercase letter (a–z). Function isupper
determines whether its argument is an uppercase letter (A–Z). Function tolower converts
an uppercase letter to a lowercase letter and returns the lowercase letter. If the argument is
not an uppercase letter, tolower returns the argument unchanged. Function toupper con-
verts a lowercase letter to an uppercase letter and returns the uppercase letter. If the argu-
ment is not a lowercase letter, toupper returns the argument unchanged.

isdigit('8') ? "8 is a " : "8 is not a "

1 // Fig. 8.3: fig08_03.c

2 // Using functions islower, isupper, tolower and toupper

3 #include <stdio.h>
4 #include <ctype.h>
5
6 int main(void)
7 {

8 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n\n",
9 "According to islower:",

10 ? "p is a " : "p is not a ",
11 "lowercase letter",
12 ? "P is a " : "P is not a ",
13 "lowercase letter",
14 ? "5 is a " : "5 is not a ",
15 "lowercase letter",
16 ? "! is a " : "! is not a ",
17 "lowercase letter");
18
19 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n\n",
20 "According to isupper:",
21 ? "D is an " : "D is not an ",
22 "uppercase letter",
23 ? "d is an " : "d is not an ",
24 "uppercase letter",
25 ? "8 is an " : "8 is not an ",
26 "uppercase letter",
27 ? "$ is an " : "$ is not an ",
28 "uppercase letter");
29
30 printf("%s%c\n%s%c\n%s%c\n%s%c\n",
31 "u converted to uppercase is ", ,

32 "7 converted to uppercase is ", ,

Fig. 8.3 | Using functions islower, isupper, tolower and toupper. (Part 1 of 2.)

islower('p')

islower('P')

islower('5')

islower('!')

isupper('D')

isupper('d')

isupper('8')

isupper('$')

toupper('u')
toupper('7')

340 Chapter 8 C Characters and Strings

8.3.3 Functions isspace, iscntrl, ispunct, isprint and isgraph
Figure 8.4 demonstrates functions isspace, iscntrl, ispunct, isprint and isgraph.
Function isspace determines whether a character is one of the following whitespace char-
acters: space (' '), form feed ('\f'), newline ('\n'), carriage return ('\r'), horizontal tab
('\t') or vertical tab ('\v'). Function iscntrl determines whether a character is one of
the following control characters: horizontal tab ('\t'), vertical tab ('\v'), form feed
('\f'), alert ('\a'), backspace ('\b'), carriage return ('\r') or newline ('\n'). Function
ispunct determines whether a character is a printing character other than a space, a digit
or a letter, such as $, #, (,), [,], {, }, ;, : or %. Function isprint determines whether a
character can be displayed on the screen (including the space character). Function isgraph
is the same as isprint, except that the space character is not included.

33 "$ converted to uppercase is ", ,

34 "L converted to lowercase is ",);

35 }

According to islower:
p is a lowercase letter
P is not a lowercase letter
5 is not a lowercase letter
! is not a lowercase letter

According to isupper:
D is an uppercase letter
d is not an uppercase letter
8 is not an uppercase letter
$ is not an uppercase letter

u converted to uppercase is U
7 converted to uppercase is 7
$ converted to uppercase is $
L converted to lowercase is l

1 // Fig. 8.4: fig08_04.c
2 // Using functions isspace, iscntrl, ispunct, isprint and isgraph

3 #include <stdio.h>
4 #include <ctype.h>
5
6 int main(void)
7 {
8 printf("%s\n%s%s%s\n%s%s%s\n%s%s\n\n",
9 "According to isspace:",

10 "Newline", ? " is a " : " is not a ",
11 "whitespace character", "Horizontal tab",
12 ? " is a " : " is not a ",
13 "whitespace character",

Fig. 8.4 | Using functions isspace, iscntrl, ispunct, isprint and isgraph. (Part 1 of 2.)

Fig. 8.3 | Using functions islower, isupper, tolower and toupper. (Part 2 of 2.)

toupper('$')
tolower('L')

isspace('\n')

isspace('\t')

8.3 Character-Handling Library 341

14 ? "% is a " : "% is not a ",
15 "whitespace character");
16
17 printf("%s\n%s%s%s\n%s%s\n\n", "According to iscntrl:",
18 "Newline", ? " is a " : " is not a ",
19 "control character", ? "$ is a " :
20 "$ is not a ", "control character");
21
22 printf("%s\n%s%s\n%s%s\n%s%s\n\n",
23 "According to ispunct:",
24 ? "; is a " : "; is not a ",
25 "punctuation character",
26 ? "Y is a " : "Y is not a ",
27 "punctuation character",
28 ? "# is a " : "# is not a ",
29 "punctuation character");
30
31 printf("%s\n%s%s\n%s%s%s\n\n", "According to isprint:",
32 ? "$ is a " : "$ is not a ",
33 "printing character",
34 "Alert", ? " is a " : " is not a ",
35 "printing character");
36
37 printf("%s\n%s%s\n%s%s%s\n", "According to isgraph:",
38 ? "Q is a " : "Q is not a ",
39 "printing character other than a space",
40 "Space", ? " is a " : " is not a ",
41 "printing character other than a space");
42 }

According to isspace:
Newline is a whitespace character
Horizontal tab is a whitespace character
% is not a whitespace character

According to iscntrl:
Newline is a control character
$ is not a control character

According to ispunct:
; is a punctuation character
Y is not a punctuation character
is a punctuation character

According to isprint:
$ is a printing character
Alert is not a printing character

According to isgraph:
Q is a printing character other than a space
Space is not a printing character other than a space

Fig. 8.4 | Using functions isspace, iscntrl, ispunct, isprint and isgraph. (Part 2 of 2.)

isspace('%')

iscntrl('\n')
iscntrl('$')

ispunct(';')

ispunct('Y')

ispunct('#')

isprint('$')

isprint('\a')

isgraph('Q')

isgraph(' ')

342 Chapter 8 C Characters and Strings

8.4 String-Conversion Functions
This section presents the string-conversion functions from the general utilities library
(<stdlib.h>). These functions convert strings of digits to integer and floating-point val-
ues. Figure 8.5 summarizes the string-conversion functions. The C standard also includes
strtoll and strtoull for converting strings to long long int and unsigned long long
int, respectively. Note the use of const to declare variable nPtr in the function headers
(read from right to left as “nPtr is a pointer to a character constant”); const specifies that
the argument value will not be modified.

8.4.1 Function strtod
Function strtod (Fig. 8.6) converts a sequence of characters representing a floating-point
value to double. The function returns 0 if it’s unable to convert any portion of its first ar-
gument to double. The function receives two arguments—a string (char *) and a pointer
to a string (char **). The string argument contains the character sequence to be converted
to double—any whitespace characters at the beginning of the string are ignored. The func-
tion uses the char ** argument to modify a char * in the calling function (stringPtr) so
that it points to the location of the first character after the converted portion of the string or to
the entire string if no portion can be converted. Line 11 indicates that d is assigned the
double value converted from string, and stringPtr is assigned the location of the first
character after the converted value (51.2) in string.

Function prototype Function description

double strtod(const char *nPtr, char **endPtr);

Converts the string nPtr to double.

long strtol(const char *nPtr, char **endPtr, int base);
Converts the string nPtr to long.

unsigned long strtoul(const char *nPtr, char **endPtr, int base);

Converts the string nPtr to unsigned long.

Fig. 8.5 | String-conversion functions of the general utilities library.

1 // Fig. 8.6: fig08_06.c

2 // Using function strtod
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 int main(void)
7 {

8
9 char *stringPtr; // create char pointer

10

11
12

Fig. 8.6 | Using function strtod. (Part 1 of 2.)

const char *string = "51.2% are admitted"; // initialize string

double d = strtod(string, &stringPtr);

8.4 String-Conversion Functions 343

8.4.2 Function strtol
Function strtol (Fig. 8.7) converts to long int a sequence of characters representing an in-
teger. The function returns 0 if it’s unable to convert any portion of its first argument to long
int. The function’s three arguments are a string (char *), a pointer to a string and an integer.
The string contains the character sequence to be converted to long—any whitespace charac-
ters at the beginning of the string are ignored. The function uses the char ** argument to
modify a char * in the calling function (remainderPtr) so that it points to the location of the
first character after the converted portion of the string or to the entire string if no portion can
be converted. The integer specifies the base of the value being converted.

Line 11 indicates that x is assigned the long value converted from string. The second
argument, remainderPtr, is assigned the remainder of string after the conversion. Using
NULL for the second argument causes the remainder of the string to be ignored. The third

13 printf("The string \"%s\" is converted to the\n", string);
14 printf("double value %.2f and the string \"%s\"\n", d, stringPtr);
15 }

The string "51.2% are admitted" is converted to the
double value 51.20 and the string "% are admitted"

1 // Fig. 8.7: fig08_07.c

2 // Using function strtol

3 #include <stdio.h>
4 #include <stdlib.h>
5
6 int main(void)
7 {

8

9 char *remainderPtr; // create char pointer
10

11

12
13 printf("%s\"%s\"\n%s%ld\n%s\"%s\"\n%s%ld\n",
14 "The original string is ", string,
15 "The converted value is ", x,
16 "The remainder of the original string is ",
17 remainderPtr,

18 "The converted value plus 567 is ", x + 567);
19 }

The original string is "-1234567abc"
The converted value is -1234567
The remainder of the original string is "abc"
The converted value plus 567 is -1234000

Fig. 8.7 | Using function strtol.

Fig. 8.6 | Using function strtod. (Part 2 of 2.)

const char *string = "-1234567abc"; // initialize string pointer

long x = strtol(string, &remainderPtr, 0);

344 Chapter 8 C Characters and Strings

argument, 0, indicates that the value to be converted can be in octal (base 8), decimal (base
10) or hexadecimal (base 16) format. The base can be specified as 0 or any value between
2 and 36. (See Appendix C for a detailed explanation of the octal, decimal and hexadec-
imal number systems.) Numeric representations of integers from base 11 to base 36 use
the characters A–Z to represent the values 10 to 35. For example, hexadecimal values can
consist of the digits 0–9 and the characters A–F. A base-11 integer can consist of the digits
0–9 and the character A. A base-24 integer can consist of the digits 0–9 and the characters
A–N. A base-36 integer can consist of the digits 0–9 and the characters A–Z.

8.4.3 Function strtoul
Function strtoul (Fig. 8.8) converts to unsigned long int a sequence of characters rep-
resenting an unsigned long int value. The function works identically to function strtol.
Line 11 indicates that x is assigned the unsigned long int value converted from string.
The second argument, &remainderPtr, is assigned the remainder of string after the con-
version. The third argument, 0, indicates that the value to be converted can be in octal,
decimal or hexadecimal format.

8.5 Standard Input/Output Library Functions
This section presents several functions from the standard input/output library (<st-
dio.h>) specifically for manipulating character and string data. Figure 8.9 summarizes the
character and string input/output functions of the standard input/output library.

1 // Fig. 8.8: fig08_08.c

2 // Using function strtoul

3 #include <stdio.h>
4 #include <stdlib.h>
5
6 int main(void)
7 {

8

9 char *remainderPtr; // create char pointer
10
11

12
13 printf("%s\"%s\"\n%s%lu\n%s\"%s\"\n%s%lu\n",
14 "The original string is ", string,
15 "The converted value is ", x,
16 "The remainder of the original string is ",
17 remainderPtr,

18 "The converted value minus 567 is ", x - 567);
19 }

The original string is "1234567abc"
The converted value is 1234567
The remainder of the original string is "abc"
The converted value minus 567 is 1234000

Fig. 8.8 | Using function strtoul.

const char *string = "1234567abc"; // initialize string pointer

unsigned long int x = strtoul(string, &remainderPtr, 0);

8.5 Standard Input/Output Library Functions 345

8.5.1 Functions fgets and putchar
Figure 8.10 uses functions fgets and putchar to read a line of text from the standard in-
put (keyboard) and recursively output the characters of the line in reverse order. Function
fgets reads characters from the standard input into its first argument—an array of chars—
until a newline or the end-of-file indicator is encountered, or until the maximum number
of characters is read. The maximum number of characters is one fewer than the value spec-
ified in fgets’s second argument. The third argument specifies the stream from which to
read characters—in this case, we use the standard input stream (stdin). A null character
('\0') is appended to the array when reading terminates. Function putchar prints its char-
acter argument. The program calls recursive function reverse1 to print the line of text
backward. If the first character of the array received by reverse is the null character '\0',
reverse returns. Otherwise, reverse is called again with the address of the subarray be-

Function prototype Function description

int getchar(void); Inputs the next character from the standard input and returns it as
an integer.

char *fgets(char *s, int n, FILE *stream);

Inputs characters from the specified stream into the array s until a
newline or end-of-file character is encountered, or until n - 1 bytes
are read. In this chapter, we specify the stream as stdin—the stan-
dard input stream, which is typically used to read characters from
the keyboard. A terminating null character is appended to the
array. Returns the string that was read into s. If a newline is
encountered, it’s included in the string stored in s.

int putchar(int c); Prints the character stored in c and returns it as an integer.

int puts(const char *s); Prints the string s followed by a newline character. Returns a non-
zero integer if successful, or EOF if an error occurs.

int sprintf(char *s, const char *format, ...);

Equivalent to printf, except the output is stored in the array s
instead of printed on the screen. Returns the number of characters
written to s, or EOF if an error occurs. [Note: We mention the
more secure related functions in the Secure C Programming sec-
tion of this chapter.]

int sscanf(char *s, const char *format, ...);

Equivalent to scanf, except the input is read from the array s
rather than from the keyboard. Returns the number of items suc-
cessfully read by the function, or EOF if an error occurs. [Note: We
mention the more secure related functions in the Secure C Pro-
gramming section of this chapter.]

Fig. 8.9 | Standard input/output library character and string functions.

1. We use recursion here for demonstration purposes. It’s usually more efficient to use a loop to iterate
from a string’s last character (the one at the position one less than the string’s length) to its first char-
acter (the one at position 0).

346 Chapter 8 C Characters and Strings

ginning at element sPtr[1], and character sPtr[0] is output with putchar when the re-
cursive call is completed. The order of the two statements in the else portion of the if
statement causes reverse to walk to the terminating null character of the string before a
character is printed. As the recursive calls are completed, the characters are output in re-
verse order.

8.5.2 Function getchar
Figure 8.11 uses functions getchar and puts to read characters from the standard input
into character array sentence and display the characters as a string. Function getchar
reads a character from the standard input and returns the character as an integer—recall

1 // Fig. 8.10: fig08_10.c
2 // Using functions fgets and putchar

3 #include <stdio.h>
4 #define SIZE 80
5
6
7
8 int main(void)
9 {

10 char sentence[SIZE]; // create char array
11
12 puts("Enter a line of text:");
13
14
15

16
17 printf("\n%s", "The line printed backward is:");
18

19 }

20
21 // recursively outputs characters in string in reverse order

22 void reverse(const char * const sPtr)
23 {
24 // if end of the string

25 if ('\0' == sPtr[0]) { // base case
26 return;
27 }

28 else { // if not end of the string
29
30

31 }

32 }

Enter a line of text:
Characters and Strings

The line printed backward is:
sgnirtS dna sretcarahC

Fig. 8.10 | Using functions fgets and putchar.

void reverse(const char * const sPtr); // prototype

// use fgets to read line of text
fgets(sentence, SIZE, stdin);

reverse(sentence);

reverse(&sPtr[1]); // recursion step
putchar(sPtr[0]); // use putchar to display character

8.5 Standard Input/Output Library Functions 347

from Section 4.7 that an integer is returned to support the end-of-file indicator. As you
know, function puts takes a string as an argument and displays the string followed by a
newline character. The program stops inputting characters either when 79 characters have
been read or when getchar reads the newline character entered by the user to end the line
of text. A null character is appended to array sentence (line 20) so that the array may be
treated as a string. Then line 24 uses puts to display the string contained in sentence.

8.5.3 Function sprintf
Figure 8.12 uses function sprintf to print formatted data into array s—an array of char-
acters. The function uses the same conversion specifiers as printf (see Chapter 9 for a de-
tailed discussion of formatting). The program inputs an int value and a double value to
be formatted and printed to array s. Array s is the first argument of sprintf. [Note: If your
system supports C11’s snprintf_s, then use that in preference to sprintf. If your system
doesn’t support snprintf_s but does support snprintf, then use that in preference to
sprintf.]

1 // Fig. 8.11: fig08_11.c
2 // Using function getchar.

3 #include <stdio.h>
4 #define SIZE 80
5
6 int main(void)
7 {
8 int c; // variable to hold character input by user
9 char sentence[SIZE]; // create char array

10 int i = 0; // initialize counter i
11
12 // prompt user to enter line of text

13

14
15

16

17
18

19
20
21

22 // use puts to display sentence

23 puts("\nThe line entered was:");
24

25 }

Enter a line of text:
This is a test.

The line entered was:
This is a test.

Fig. 8.11 | Using function getchar.

puts("Enter a line of text:");

// use getchar to read each character
while ((i < SIZE - 1) && (c = getchar()) != '\n') {
 sentence[i++] = c;

}

sentence[i] = '\0'; // terminate string

puts(sentence);

348 Chapter 8 C Characters and Strings

8.5.4 Function sscanf
Figure 8.13 uses function sscanf to read formatted data from character array s. The func-
tion uses the same conversion specifiers as scanf. The program reads an int and a double
from array s and stores the values in x and y, respectively. The values of x and y are printed.
Array s is the first argument of sscanf.

1 // Fig. 8.12: fig08_12.c

2 // Using function sprintf

3 #include <stdio.h>
4 #define SIZE 80
5
6 int main(void)
7 {

8 int x; // x value to be input
9 double y; // y value to be input

10
11 puts("Enter an integer and a double:");
12 scanf("%d%lf", &x, &y);
13
14 char s[SIZE]; // create char array
15
16

17

18

19 }

Enter an integer and a double:
298 87.375
The formatted output stored in array s is:
integer: 298
double: 87.38

Fig. 8.12 | Using function sprintf.

1 // Fig. 8.13: fig08_13.c

2 // Using function sscanf
3 #include <stdio.h>
4
5 int main(void)
6 {

7 char s[] = "31298 87.375"; // initialize array s
8 int x; // x value to be input
9 double y; // y value to be input

10
11
12 printf("%s\n%s%6d\n%s%8.3f\n",
13 "The values stored in character array s are:",
14 "integer:", x, "double:", y);
15 }

Fig. 8.13 | Using function sscanf. (Part 1 of 2.)

sprintf(s, "integer:%6d\ndouble:%7.2f", x, y);

printf("%s\n%s\n", "The formatted output stored in array s is:", s);

sscanf(s, "%d%lf", &x, &y);

8.6 String-Manipulation Functions of the String-Handling Library 349

8.6 String-Manipulation Functions of the String-
Handling Library
The string-handling library (<string.h>) provides many useful functions for manipulat-
ing string data (copying strings and concatenating strings), comparing strings, searching
strings for characters and other strings, tokenizing strings (separating strings into logical
pieces) and determining the length of strings. This section presents the string-manipula-
tion functions of the string-handling library. The functions are summarized in Fig. 8.14.
Every function—except for strncpy—appends the null character to its result. [Note: Each
of these functions has a more secure version described in the optional Annex K of the C11
standard. We mention these in the Secure C Programming section of this chapter.]

 Functions strncpy and strncat specify a parameter of type size_t. Function
strcpy copies its second argument (a string) into its first argument—a character array that
you must ensure is large enough to store the string and its terminating null character, which
is also copied. Function strncpy is equivalent to strcpy, except that strncpy specifies the
number of characters to be copied from the string into the array. Function strncpy does
not necessarily copy the terminating null character of its second argument. This occurs only if
the number of characters to be copied is more than the length of the string. For example, if
"test" is the second argument, a terminating null character is written only if the third
argument to strncpy is at least 5 (four characters in "test" plus a terminating null char-
acter). If the third argument is larger than 5, some implementations append null characters
to the array until the total number of characters specified by the third argument are written
and others stop after writing the first null character.

The values stored in character array s are:
integer: 31298
double: 87.375

Function prototype Function description

char *strcpy(char *s1, const char *s2)
Copies string s2 into array s1. The value of s1 is returned.

char *strncpy(char *s1, const char *s2, size_t n)
Copies at most n characters of string s2 into array s1 and returns s1.

char *strcat(char *s1, const char *s2)
Appends string s2 to array s1. The first character of s2 overwrites the
terminating null character of s1. The value of s1 is returned.

char *strncat(char *s1, const char *s2, size_t n)
Appends at most n characters of string s2 to array s1. The first char-
acter of s2 overwrites the terminating null character of s1. The value
of s1 is returned.

Fig. 8.14 | String-manipulation functions of the string-handling library.

Fig. 8.13 | Using function sscanf. (Part 2 of 2.)

350 Chapter 8 C Characters and Strings

8.6.1 Functions strcpy and strncpy
Figure 8.15 uses strcpy to copy the entire string in array x into array y and uses strncpy
to copy the first 14 characters of array x into array z. A null character ('\0') is appended
to array z, because the call to strncpy in the program does not write a terminating null char-
acter (the third argument is less than the string length of the second argument).

8.6.2 Functions strcat and strncat
Function strcat appends its second argument (a string) to its first argument (a character
array containing a string). The first character of the second argument replaces the null ('\0')
that terminates the string in the first argument. You must ensure that the array used to store the
first string is large enough to store the first string, the second string and the terminating null char-
acter copied from the second string. Function strncat appends a specified number of charac-
ters from the second string to the first string. A terminating null character is automatically
appended to the result. Figure 8.16 demonstrates function strcat and function strncat.

Common Programming Error 8.5
Not appending a terminating null character to the first argument of a strncpy when the
third argument is less than or equal to the length of the string in the second argument.

1 // Fig. 8.15: fig08_15.c

2 // Using functions strcpy and strncpy
3 #include <stdio.h>
4 #include <string.h>
5 #define SIZE1 25
6 #define SIZE2 15
7
8 int main(void)
9 {

10 char x[] = "Happy Birthday to You"; // initialize char array x
11 char y[SIZE1]; // create char array y
12 char z[SIZE2]; // create char array z
13

14 // copy contents of x into y

15 printf("%s%s\n%s%s\n",
16 "The string in array x is: ", x,
17 "The string in array y is: ",
18
19

20

21
22

23

24 printf("The string in array z is: %s\n", z);
25 }

The string in array x is: Happy Birthday to You
The string in array y is: Happy Birthday to You
The string in array z is: Happy Birthday

Fig. 8.15 | Using functions strcpy and strncpy.

strcpy(y, x));

// copy first 14 characters of x into z. Does not copy null
// character

strncpy(z, x, SIZE2 - 1);

z[SIZE2 - 1] = '\0'; // terminate string in z

8.7 Comparison Functions of the String-Handling Library 351

8.7 Comparison Functions of the String-Handling Library
This section presents the string-handling library’s string-comparison functions, strcmp
and strncmp. Figure 8.17 contains their prototypes and a brief description of each func-
tion.

1 // Fig. 8.16: fig08_16.c

2 // Using functions strcat and strncat

3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {

8 char s1[20] = "Happy "; // initialize char array s1
9 char s2[] = "New Year "; // initialize char array s2

10 char s3[40] = ""; // initialize char array s3 to empty
11

12 printf("s1 = %s\ns2 = %s\n", s1, s2);
13
14 // concatenate s2 to s1

15 printf("strcat(s1, s2) = %s\n",);
16
17

18

19
20
21 // concatenate s1 to s3

22 printf("strcat(s3, s1) = %s\n",);
23 }

s1 = Happy
s2 = New Year
strcat(s1, s2) = Happy New Year
strncat(s3, s1, 6) = Happy
strcat(s3, s1) = Happy Happy New Year

Fig. 8.16 | Using functions strcat and strncat.

Function prototype Function description

int strcmp(const char *s1, const char *s2);
Compares the string s1 with the string s2. The function returns 0,
less than 0 or greater than 0 if s1 is equal to, less than or greater
than s2, respectively.

int strncmp(const char *s1, const char *s2, size_t n);
Compares up to n characters of the string s1 with the string s2. The
function returns 0, less than 0 or greater than 0 if s1 is equal to, less
than or greater than s2, respectively.

Fig. 8.17 | String-comparison functions of the string-handling library.

strcat(s1, s2)

// concatenate first 6 characters of s1 to s3. Place '\0'

// after last character

printf("strncat(s3, s1, 6) = %s\n", strncat(s3, s1, 6));

strcat(s3, s1)

352 Chapter 8 C Characters and Strings

Figure 8.18 compares three strings using strcmp and strncmp. Function strcmp com-
pares its first string argument with its second string argument, character by character. The
function returns 0 if the strings are equal, a negative value if the first string is less than the
second string and a positive value if the first string is greater than the second string. Func-
tion strncmp is equivalent to strcmp, except that strncmp compares up to a specified
number of characters. Function strncmp does not compare characters following a null
character in a string. The program prints the integer value returned by each function call.

1 // Fig. 8.18: fig08_18.c

2 // Using functions strcmp and strncmp

3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {

8 const char *s1 = "Happy New Year"; // initialize char pointer
9 const char *s2 = "Happy New Year"; // initialize char pointer

10 const char *s3 = "Happy Holidays"; // initialize char pointer
11

12 printf("%s%s\n%s%s\n%s%s\n\n%s%2d\n%s%2d\n%s%2d\n\n",
13 "s1 = ", s1, "s2 = ", s2, "s3 = ", s3,
14 "strcmp(s1, s2) = ", ,

15 "strcmp(s1, s3) = ", ,

16 "strcmp(s3, s1) = ",);
17
18 printf("%s%2d\n%s%2d\n%s%2d\n",
19 "strncmp(s1, s3, 6) = ", ,
20 "strncmp(s1, s3, 7) = ", ,

21 "strncmp(s3, s1, 7) = ",);

22 }

s1 = Happy New Year
s2 = Happy New Year
s3 = Happy Holidays

strcmp(s1, s2) = 0
strcmp(s1, s3) = 1
strcmp(s3, s1) = -1

strncmp(s1, s3, 6) = 0
strncmp(s1, s3, 7) = 1
strncmp(s3, s1, 7) = -1

Fig. 8.18 | Using functions strcmp and strncmp.

Common Programming Error 8.6
Assuming that strcmp and strncmp return 1 when their arguments are equal is a logic
error. Both functions return 0 (strangely, the equivalent of C's false value) for equality.
Therefore, when comparing two strings for equality, the result of function strcmp or
strncmp should be compared with 0 to determine whether the strings are equal.

strcmp(s1, s2)
strcmp(s1, s3)

strcmp(s3, s1)

strncmp(s1, s3, 6)
strncmp(s1, s3, 7)
strncmp(s3, s1, 7)

8.8 Search Functions of the String-Handling Library 353

To understand just what it means for one string to be “greater than” or “less than”
another, consider the process of alphabetizing a series of last names. The reader would, no
doubt, place “Jones” before “Smith,” because the first letter of “Jones” comes before the first
letter of “Smith” in the alphabet. But the alphabet is more than just a list of 26 letters—it’s
an ordered list of characters. Each letter occurs in a specific position within the list. “Z” is
more than merely a letter of the alphabet; “Z” is specifically the 26th letter of the alphabet.

How do the string-comparison functions know that one particular letter comes before
another? All characters are represented inside the computer as numeric codes in character
sets such as ASCII and Unicode; when the computer compares two strings, it actually
compares the numeric codes of the characters in the strings—this is called a lexicographical
comparison. See Appendix B for the numeric values of ASCII characters.

The negative and positive values returned by functions strcmp and strncmp differ by
compiler. For some (e.g, Visual C++ and GNU gcc), these values are -1 or 1 (as shown in
Fig. 8.18). For other compilers (e.g., Xcode LLVM), the values returned represent the differ-
ence between the numeric codes of the first characters that differ in each string. For the com-
parisons in this program, that’s the difference betweeen the numeric codes of "N" in "New"
and "H" in "Happy" (6 or -6, depending on which string is the first argument in each call).

8.8 Search Functions of the String-Handling Library
This section presents the functions of the string-handling library used to search strings for
characters and other strings. The functions are summarized in Fig. 8.19. The functions
strcspn and strspn return size_t. [Note: Function strtok has a more secure version de-
scribed in optional Annex K of the C11 standard. We mention this in the Secure C Pro-
gramming section of this chapter.]

Function prototypes and descriptions

char *strchr(const char *s, int c);
Locates the first occurrence of character c in string s. If c is found, a pointer to c in s is
returned. Otherwise, a NULL pointer is returned.

size_t strcspn(const char *s1, const char *s2);
Determines and returns the length of the initial segment of string s1 consisting of char-
acters not contained in string s2.

size_t strspn(const char *s1, const char *s2);
Determines and returns the length of the initial segment of string s1 consisting only of
characters contained in string s2.

char *strpbrk(const char *s1, const char *s2);
Locates the first occurrence in string s1 of any character in string s2. If a character from
string s2 is found, a pointer to the character in string s1 is returned. Otherwise, a NULL
pointer is returned.

char *strrchr(const char *s, int c);
Locates the last occurrence of c in string s. If c is found, a pointer to c in string s is
returned. Otherwise, a NULL pointer is returned.

Fig. 8.19 | Search functions of the string-handling library. (Part 1 of 2.)

354 Chapter 8 C Characters and Strings

8.8.1 Function strchr
Function strchr searches for the first occurrence of a character in a string. If the character
is found, strchr returns a pointer to the character in the string; otherwise, strchr returns
NULL. Figure 8.20 searches for the first occurrences of 'a' and 'z' in "This is a test".

char *strstr(const char *s1, const char *s2);
Locates the first occurrence in string s1 of string s2. If the string is found, a pointer to the
string in s1 is returned. Otherwise, a NULL pointer is returned.

char *strtok(char *s1, const char *s2);
A sequence of calls to strtok breaks string s1 into tokens—logical pieces such as words
in a line of text—separated by characters contained in string s2. The first call contains
s1 as the first argument, and subsequent calls to continue tokenizing the same string
contain NULL as the first argument. A pointer to the current token is returned by each
call. If there are no more tokens when the function is called, NULL is returned.

1 // Fig. 8.20: fig08_20.c

2 // Using function strchr
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {

8 const char *string = "This is a test"; // initialize char pointer
9 char character1 = 'a'; // initialize character1

10 char character2 = 'z'; // initialize character2
11
12 // if character1 was found in string

13 // can remove "!= NULL"

14 printf("\'%c\' was found in \"%s\".\n",
15 character1, string);

16 }

17 else { // if character1 was not found
18 printf("\'%c\' was not found in \"%s\".\n",
19 character1, string);

20 }
21
22 // if character2 was found in string

23 // can remove "!= NULL"
24 printf("\'%c\' was found in \"%s\".\n",
25 character2, string);

26 }
27 else { // if character2 was not found

Fig. 8.20 | Using function strchr. (Part 1 of 2.)

Function prototypes and descriptions

Fig. 8.19 | Search functions of the string-handling library. (Part 2 of 2.)

if (strchr(string, character1) != NULL) {

if (strchr(string, character2) != NULL) {

8.8 Search Functions of the String-Handling Library 355

8.8.2 Function strcspn
Function strcspn (Fig. 8.21) determines the length of the initial part of the string in its
first argument that does not contain any characters from the string in its second argument.
The function returns the length of the segment.

8.8.3 Function strpbrk
Function strpbrk searches its first string argument for the first occurrence of any character
in its second string argument. If a character from the second argument is found, strpbrk
returns a pointer to the character in the first argument; otherwise, strpbrk returns NULL.
Figure 8.22 shows a program that locates the first occurrence in string1 of any character
from string2.

28 printf("\'%c\' was not found in \"%s\".\n",
29 character2, string);

30 }
31 }

'a' was found in "This is a test".
'z' was not found in "This is a test".

1 // Fig. 8.21: fig08_21.c

2 // Using function strcspn
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {

8 // initialize two char pointers
9 const char *string1 = "The value is 3.14159";

10 const char *string2 = "1234567890";
11
12 printf("%s%s\n%s%s\n\n%s\n%s%u\n",
13 "string1 = ", string1, "string2 = ", string2,
14 "The length of the initial segment of string1",
15 "containing no characters from string2 = ",
16);

17 }

string1 = The value is 3.14159
string2 = 1234567890

The length of the initial segment of string1
containing no characters from string2 = 13

Fig. 8.21 | Using function strcspn.

Fig. 8.20 | Using function strchr. (Part 2 of 2.)

strcspn(string1, string2)

356 Chapter 8 C Characters and Strings

8.8.4 Function strrchr
Function strrchr searches for the last occurrence of the specified character in a string. If
the character is found, strrchr returns a pointer to the character in the string; otherwise,
strrchr returns NULL. Figure 8.23 shows a program that searches for the last occurrence
of the character 'z' in the string "A zoo has many animals including zebras".

1 // Fig. 8.22: fig08_22.c

2 // Using function strpbrk

3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {

8 const char *string1 = "This is a test"; // initialize char pointer
9 const char *string2 = "beware"; // initialize char pointer

10

11 printf("%s\"%s\"\n'%c'%s\n\"%s\"\n",
12 "Of the characters in ", string2,
13 ,

14 " appears earliest in ", string1);
15 }

Of the characters in "beware"
'a' appears earliest in
"This is a test"

Fig. 8.22 | Using function strpbrk.

1 // Fig. 8.23: fig08_23.c

2 // Using function strrchr
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {

8 // initialize char pointer
9 const char *string1 = "A zoo has many animals including zebras";

10

11 int c = 'z'; // character to search for
12

13 printf("%s\n%s'%c'%s\"%s\"\n",
14 "The remainder of string1 beginning with the",
15 "last occurrence of character ", c,
16 " is: ",);

17 }

The remainder of string1 beginning with the
last occurrence of character 'z' is: "zebras"

Fig. 8.23 | Using function strrchr.

*strpbrk(string1, string2)

strrchr(string1, c)

8.8 Search Functions of the String-Handling Library 357

8.8.5 Function strspn
Function strspn (Fig. 8.24) determines the length of the initial part of the string in its
first argument that contains only characters from the string in its second argument. The
function returns the length of the segment.

8.8.6 Function strstr
Function strstr searches for the first occurrence of its second string argument in its first
string argument. If the second string is found in the first string, a pointer to the location
of the string in the first argument is returned. Figure 8.25 uses strstr to find the string
"def" in the string "abcdefabcdef".

1 // Fig. 8.24: fig08_24.c

2 // Using function strspn
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {

8 // initialize two char pointers
9 const char *string1 = "The value is 3.14159";

10 const char *string2 = "aehi lsTuv";
11
12 printf("%s%s\n%s%s\n\n%s\n%s%u\n",
13 "string1 = ", string1, "string2 = ", string2,
14 "The length of the initial segment of string1",
15 "containing only characters from string2 = ",
16);

17 }

string1 = The value is 3.14159
string2 = aehi lsTuv

The length of the initial segment of string1
containing only characters from string2 = 13

Fig. 8.24 | Using function strspn.

1 // Fig. 8.25: fig08_25.c

2 // Using function strstr

3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {

8 const char *string1 = "abcdefabcdef"; // string to search
9 const char *string2 = "def"; // string to search for

10

Fig. 8.25 | Using function strstr. (Part 1 of 2.)

strspn(string1, string2)

358 Chapter 8 C Characters and Strings

8.8.7 Function strtok
Function strtok (Fig. 8.26) is used to break a string into a series of tokens. A token is a se-
quence of characters separated by delimiters (usually spaces or punctuation marks, but a de-
limiter can be any character). For example, in a line of text, each word can be considered a
token, and the spaces and punctuation separating the words can be considered delimiters.

11 printf("%s%s\n%s%s\n\n%s\n%s%s\n",
12 "string1 = ", string1, "string2 = ", string2,
13 "The remainder of string1 beginning with the",
14 "first occurrence of string2 is: ",
15);

16 }

string1 = abcdefabcdef
string2 = def

The remainder of string1 beginning with the
first occurrence of string2 is: defabcdef

1 // Fig. 8.26: fig08_26.c

2 // Using function strtok
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {

8 // initialize array string
9 char string[] = "This is a sentence with 7 tokens";

10

11 printf("%s\n%s\n\n%s\n",
12 "The string to be tokenized is:", string,
13 "The tokens are:");
14
15

16
17 // continue tokenizing sentence until tokenPtr becomes NULL
18 while (tokenPtr != NULL) {
19 printf("%s\n", tokenPtr);
20
21 }

22 }

The string to be tokenized is:
This is a sentence with 7 tokens

Fig. 8.26 | Using function strtok. (Part 1 of 2.)

Fig. 8.25 | Using function strstr. (Part 2 of 2.)

strstr(string1, string2)

char *tokenPtr = strtok(string, " "); // begin tokenizing sentence

tokenPtr = strtok(NULL, " "); // get next token

8.9 Memory Functions of the String-Handling Library 359

Multiple calls to strtok are required to tokenize a string—i.e., break it into tokens
(assuming that the string contains more than one token). The first call to strtok (line 15)
contains two arguments: a string to be tokenized, and a string containing characters that
separate the tokens. In line 15, the statement

assigns tokenPtr a pointer to the first token in string. The second argument, " ", indi-
cates that tokens are separated by spaces. Function strtok searches for the first character
in string that’s not a delimiting character (space). This begins the first token. The func-
tion then finds the next delimiting character in the string and replaces it with a null ('\0')
character to terminate the current token. Function strtok saves a pointer to the next char-
acter following the token in string and returns a pointer to the current token.

Subsequent strtok calls in line 20 continue tokenizing string. These calls contain
NULL as their first argument. The NULL argument indicates that the call to strtok should
continue tokenizing from the location in string saved by the last call to strtok. If no
tokens remain when strtok is called, strtok returns NULL. You can change the delimiter
string in each new call to strtok. Figure 8.26 uses strtok to tokenize the string "This is
a sentence with 7 tokens". Each token is printed separately. Function strtok modifies
the input string by placing '\0' at the end of each token; therefore, a copy of the string
should be made if the string will be used after the calls to strtok. [Note: Also see CERT
recommendation STR06-C, which discusses the problems with assuming that strtok
does not modify the string in its first argument.]

8.9 Memory Functions of the String-Handling Library
The string-handling library functions presented in this section manipulate, compare and
search blocks of memory. The functions treat blocks of memory as character arrays and can
manipulate any block of data. Figure 8.27 summarizes the memory functions of the string-
handling library. In the function discussions, “object” refers to a block of data. [Note: Each
of these functions has a more secure version described in optional Annex K of the C11 stan-
dard. We mention these in the Secure C Programming section of this chapter.]

The pointer parameters are declared void * so they can be used to manipulate
memory for any data type. Recall from Chapter 7 that any pointer can be assigned directly
to a pointer of type void *, and a pointer of type void * can be assigned directly to a
pointer of any other type. Because a void * pointer cannot be dereferenced, each function
receives a size argument that specifies the number of bytes the function will process. For

The tokens are:
This
is
a
sentence
with
7
tokens

char * tokenPtr = strtok(string, " "); // begin tokenizing sentence

Fig. 8.26 | Using function strtok. (Part 2 of 2.)

360 Chapter 8 C Characters and Strings

simplicity, the examples in this section manipulate character arrays (blocks of characters).
The functions in Fig. 8.27 do not check for terminating null characters, because they
manipulate blocks of memory that are not necessarily strings.

8.9.1 Function memcpy
Function memcpy copies a specified number of bytes from the object pointed to by its sec-
ond argument into the object pointed to by its first argument. The function can receive a
pointer to any type of object. The result of this function is undefined if the two objects
overlap in memory (i.e., if they are parts of the same object)—in such cases, use memmove.
Figure 8.28 uses memcpy to copy the string in array s2 to array s1.

Function prototype Function description

void *memcpy(void *s1, const void *s2, size_t n);
Copies n bytes from the object pointed to by s2 into the object
pointed to by s1. A pointer to the resulting object is returned.

void *memmove(void *s1, const void *s2, size_t n);
Copies n bytes from the object pointed to by s2 into the object
pointed to by s1. The copy is performed as if the bytes were first
copied from the object pointed to by s2 into a temporary array and
then from the temporary array into the object pointed to by s1. A
pointer to the resulting object is returned.

int memcmp(const void *s1, const void *s2, size_t n);
Compares the first n bytes of the objects pointed to by s1 and s2.
The function returns 0, less than 0 or greater than 0 if s1 is equal
to, less than or greater than s2.

void *memchr(const void *s, int c, size_t n);
Locates the first occurrence of c (converted to unsigned char) in the
first n bytes of the object pointed to by s. If c is found, a pointer to
c in the object is returned. Otherwise, NULL is returned.

void *memset(void *s, int c, size_t n);

Copies c (converted to unsigned char) into the first n bytes of the
object pointed to by s. A pointer to the result is returned.

Fig. 8.27 | Memory functions of the string-handling library.

Performance Tip 8.1
memcpy is more efficient than strcpy when you know the size of the string you are copying.

1 // Fig. 8.28: fig08_28.c

2 // Using function memcpy
3 #include <stdio.h>
4 #include <string.h>

Fig. 8.28 | Using function memcpy. (Part 1 of 2.)

8.9 Memory Functions of the String-Handling Library 361

8.9.2 Function memmove
Function memmove, like memcpy, copies a specified number of bytes from the object pointed
to by its second argument into the object pointed to by its first argument. Copying is per-
formed as if the bytes were copied from the second argument into a temporary array, then
copied from the temporary array into the first argument. This allows bytes from one part
of a string to be copied into another part of the same string, even if the two portions over-
lap. Figure 8.29 uses memmove to copy the last 10 bytes of array x into the first 10 bytes of
array x.

5
6 int main(void)
7 {
8 char s1[17]; // create char array s1
9 char s2[] = "Copy this string"; // initialize char array s2

10
11

12 printf("%s\n%s\"%s\"\n",
13 "After s2 is copied into s1 with memcpy,",
14 "s1 contains ", s1);
15 }

After s2 is copied into s1 with memcpy,
s1 contains "Copy this string"

Common Programming Error 8.7
String-manipulation functions other than memmove that copy characters have undefined
results when copying takes place between parts of the same string.

1 // Fig. 8.29: fig08_29.c

2 // Using function memmove

3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {

8 char x[] = "Home Sweet Home"; // initialize char array x
9

10 printf("%s%s\n", "The string in array x before memmove is: ", x);
11 printf("%s%s\n", "The string in array x after memmove is: ",
12 (char *));
13 }

The string in array x before memmove is: Home Sweet Home
The string in array x after memmove is: Sweet Home Home

Fig. 8.29 | Using function memmove.

Fig. 8.28 | Using function memcpy. (Part 2 of 2.)

memcpy(s1, s2, 17);

memmove(x, &x[5], 10)

362 Chapter 8 C Characters and Strings

8.9.3 Function memcmp
Function memcmp (Fig. 8.30) compares the specified number of bytes of its first argument with
the corresponding bytes of its second argument. The function returns a value greater than
0 if the first argument is greater than the second, returns 0 if the arguments are equal and
returns a value less than 0 if the first argument is less than the second.

8.9.4 Function memchr
Function memchr searches for the first occurrence of a byte, represented as unsigned char,
in the specified number of bytes of an object. If the byte is found, a pointer to the byte in
the object is returned; otherwise, a NULL pointer is returned. Figure 8.31 searches for the
byte containing 'r' in the string "This is a string".

1 // Fig. 8.30: fig08_30.c

2 // Using function memcmp

3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {

8 char s1[] = "ABCDEFG"; // initialize char array s1
9 char s2[] = "ABCDXYZ"; // initialize char array s2

10
11 printf("%s%s\n%s%s\n\n%s%2d\n%s%2d\n%s%2d\n",
12 "s1 = ", s1, "s2 = ", s2,
13 "memcmp(s1, s2, 4) = ", ,
14 "memcmp(s1, s2, 7) = ", ,

15 "memcmp(s2, s1, 7) = ",);

16 }

s1 = ABCDEFG
s2 = ABCDXYZ

memcmp(s1, s2, 4) = 0
memcmp(s1, s2, 7) = -1
memcmp(s2, s1, 7) = 1

Fig. 8.30 | Using function memcmp.

1 // Fig. 8.31: fig08_31.c

2 // Using function memchr

3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {

Fig. 8.31 | Using function memchr. (Part 1 of 2.)

memcmp(s1, s2, 4)
memcmp(s1, s2, 7)
memcmp(s2, s1, 7)

8.10 Other Functions of the String-Handling Library 363

8.9.5 Function memset
Function memset copies the value of the byte in its second argument into the first n bytes
of the object pointed to by its first argument, where n is specified by the third argument.
Figure 8.32 uses memset to copy 'b' into the first 7 bytes of string1.

8.10 Other Functions of the String-Handling Library
The two remaining functions of the string-handling library are strerror and strlen.
Figure 8.33 summarizes the strerror and strlen functions.

8 const char *s = "This is a string"; // initialize char pointer
9

10 printf("%s\'%c\'%s\"%s\"\n",
11 "The remainder of s after character ", 'r',
12 " is found is ", (char *));

13 }

The remainder of s after character 'r' is found is "ring"

Performance Tip 8.2
Use memset to set an array’s elements to 0 rather than looping through them and assigning
0 to each element. For example, Fig. 6.3 could have initialized the five-element array n with
memset(n, 0, 5);. Many hardware architectures have a block copy or clear instruction that
the compiler can use to optimize memset for high-performance zeroing of memory.

1 // Fig. 8.32: fig08_32.c

2 // Using function memset
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {

8 char string1[15] = "BBBBBBBBBBBBBB"; // initialize string1
9

10 printf("string1 = %s\n", string1);
11 printf("string1 after memset = %s\n",
12 (char *));

13 }

string1 = BBBBBBBBBBBBBB
string1 after memset = bbbbbbbBBBBBBB

Fig. 8.32 | Using function memset.

Fig. 8.31 | Using function memchr. (Part 2 of 2.)

memchr(s, 'r', 16)

memset(string1, 'b', 7)

364 Chapter 8 C Characters and Strings

8.10.1 Function strerror
Function strerror takes an error number and creates an error message string. A pointer
to the string is returned. Figure 8.34 demonstrates strerror.

8.10.2 Function strlen
Function strlen takes a string as an argument and returns the number of characters in the
string—the terminating null character is not included in the length. Figure 8.35 demon-
strates function strlen.

Function prototype Function description

char *strerror(int errornum);

Maps errornum into a full text string in a compiler- and locale-
specific manner (e.g. the message may appear in different spoken
languages based on the computer’s locale). A pointer to the string is
returned. Error numbers are defined in errno.h.

size_t strlen(const char *s);

Determines the length of string s. The number of characters preced-
ing the terminating null character is returned.

Fig. 8.33 | Other functions of the string-handling library.

1 // Fig. 8.34: fig08_34.c
2 // Using function strerror

3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {
8 printf("%s\n",);

9 }

No such file or directory

Fig. 8.34 | Using function strerror.

1 // Fig. 8.35: fig08_35.c
2 // Using function strlen

3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void)
7 {
8 // initialize 3 char pointers

9 const char *string1 = "abcdefghijklmnopqrstuvwxyz";

Fig. 8.35 | Using function strlen. (Part 1 of 2.)

strerror(2)

8.11 Secure C Programming 365

8.11 Secure C Programming

Secure String-Processing Functions
Earlier Secure C Programming sections in this book covered C11’s more secure functions
printf_s and scanf_s. In this chapter, we presented functions sprintf, strcpy,
strncpy, strcat, strncat, strtok, strlen, memcpy, memmove and memset. More secure
versions of these and many other string-processing and input/output functions are de-
scribed by the C11 standard’s optional Annex K. If your C compiler supports Annex K,
you should use the secure versions of these functions. Among other things, the more secure
versions help prevent buffer overflows by requiring additional parameters that specify the
number of elements in a target array and by ensuring that pointer arguments are non-NULL.

Reading Numeric Inputs and Input Validation
It’s important to validate the data that you input into a program. For example, when you
ask the user to enter an int in the range 1–100, then attempt to read that int using scanf,
there are several possible problems. The user could enter:

• an int that’s outside the program’s required range (such as 102).

• an int that’s outside the allowed range for ints on that computer (such as
8,000,000,000 on a machine with 32-bit ints).

• a noninteger numeric value (such as 27.43).

• a nonnumeric value (such as FOVR).

You can use various functions that you learned in this chapter to fully validate such
input. For example, you could

• use fgets to read the input as a line of text,

• convert the string to a number using strtol and ensure that the conversion was
successful, then

• ensure that the value is in range.

For more information and techniques for converting input to numeric values, see CERT
guideline INT05-C at www.securecoding.cert.org.

10 const char *string2 = "four";
11 const char *string3 = "Boston";
12
13 printf("%s\"%s\"%s%u\n%s\"%s\"%s%u\n%s\"%s\"%s%u\n",
14 "The length of ", string1, " is ", ,

15 "The length of ", string2, " is ", ,
16 "The length of ", string3, " is ",);

17 }

The length of "abcdefghijklmnopqrstuvwxyz" is 26
The length of "four" is 4
The length of "Boston" is 6

Fig. 8.35 | Using function strlen. (Part 2 of 2.)

strlen(string1)

strlen(string2)

strlen(string3)

366 Chapter 8 C Characters and Strings

Summary
Section 8.2 Fundamentals of Strings and Characters
• Characters are the fundamental building blocks of source programs. Every program is composed

of a sequence of characters that—when grouped together meaningfully—is interpreted by the
computer as a series of instructions used to accomplish a task.

• A character constant (p. 335) is an int value represented as a character in single quotes. The val-
ue of a character constant is the character’s integer value in the machine’s character set (p. 335).

• A string (p. 335) is a series of characters treated as a single unit. A string may include letters, dig-
its and various special characters (p. 335) such as +, -, *, / and $. String literals, or string con-
stants, in C are written in double quotation marks.

• A string in C is an array of characters ending in the null character (p. 335; '\0').

• A string is accessed via a pointer to its first character (p. 335). The value of a string is the address
of its first character.

• A character array or a variable of type char * can be initialized with a string in a definition.

• When defining a character array to contain a string, the array must be large enough to store the
string and its terminating null character.

• A string can be stored in an array using scanf. Function scanf will read characters until a space,
tab, newline or end-of-file indicator is encountered.

• For a character array to be printed as a string, the array must contain a terminating null character.

Section 8.3 Character-Handling Library
• Function isdigit (p. 336) determines whether its argument is a digit (0–9).

• Function isalpha (p. 336) determines whether its argument is an uppercase letter (A–Z) or a
lowercase letter (a–z).

• Function isalnum (p. 336) determines whether its argument is an uppercase letter (A–Z), a low-
ercase letter (a–z) or a digit (0–9).

• Function isxdigit (p. 336) determines whether its argument is a hexadecimal digit (p. 337; A–F,
a–f, 0–9).

• Function islower (p. 339) determines whether its argument is a lowercase letter (a–z).

• Function isupper (p. 339) determines whether its argument is an uppercase letter (A–Z).

• Function toupper (p. 339) converts a lowercase letter to uppercase and returns the uppercase let-
ter.

• Function tolower (p. 339) converts an uppercase letter to lowercase and returns the lowercase
letter.

• Function isspace (p. 340) determines whether its argument is one of the following whitespace
characters: ' ' (space), '\f', '\n', '\r', '\t' or '\v'.

• Function iscntrl (p. 340) determines whether its argument is one of the following control char-
acters: '\t', '\v', '\f', '\a', '\b', '\r' or '\n'.

• Function ispunct (p. 340) determines whether its argument is a printing character other than a
space, a digit or a letter.

• Function isprint (p. 340) determines whether its argument is any printing character including
the space character.

• Function isgraph (p. 340) determines whether its argument is a printing character other than
the space character.

 Summary 367

Section 8.4 String-Conversion Functions
• Function strtod (p. 342) converts a sequence of characters representing a floating-point value

to double. The function receives two arguments—a string (char *) and a pointer to char *. The
string contains the character sequence to be converted, and the location specified by the pointer
to char * is assigned the address of the remainder of the string after the conversion, or to the en-
tire string if no portion of the string can be converted.

• Function strtol (p. 343) converts a sequence of characters representing an integer to long. The
function receives three arguments—a string (char *), a pointer to char * and an integer. The
string contains the character sequence to be converted, the location specified by the pointer to
char * is assigned the address of the remainder of the string after the conversion, or to the entire
string if no portion of the string can be converted. The integer specifies the base of the value be-
ing converted.

• Function strtoul (p. 344) converts a sequence of characters representing an integer to unsigned
long int. The function works identically to strtol.

Section 8.5 Standard Input/Output Library Functions
• Function fgets (p. 345) reads characters until a newline character or the end-of-file indicator is

encountered. The arguments to fgets are an array of type char, the maximum number of char-
acters that can be read and the stream from which to read. A null character ('\0') is appended
to the array after reading terminates. If a newline is encountered, it’s included in the input string.

• Function putchar (p. 345) prints its character argument.

• Function getchar (p. 346) reads a single character from the standard input and returns it as an
integer. If the end-of-file indicator is encountered, getchar returns EOF.

• Function puts (p. 347) takes a string (char *) as an argument and prints the string followed by
a newline character.

• Function sprintf (p. 347) uses the same conversion specifications as function printf to print
formatted data into an array of type char.

• Function sscanf (p. 348) uses the same conversion specifications as function scanf to read for-
matted data from a string.

Section 8.6 String-Manipulation Functions of the String-Handling Library
• Function strcpy copies its second argument (a string) into its first argument (a character array).

You must ensure that the array is large enough to store the string and its terminating null character.

• Function strncpy (p. 349) is equivalent to strcpy, except that strncpy specifies the maximum num-
ber of characters to be copied from the string into the array. The terminating null character will be
copied only if the number of characters to be copied is one more than the length of the string.

• Function strcat (p. 350) appends its second string argument—including the terminating null
character—to its first string argument. The first character of the second string replaces the null
('\0') character of the first string. You must ensure that the array used to store the first string is
large enough to store both the first string and the second string.

• Function strncat (p. 349) appends a specified number of characters from the second string to
the first string. A terminating null character is appended to the result.

Section 8.7 Comparison Functions of the String-Handling Library
• Function strcmp (p. 351) compares its first string argument to its second string argument, char-

acter by character. It returns 0 if the strings are equal, returns a negative value if the first string is
less than the second and returns a positive value if the first string is greater than the second.

368 Chapter 8 C Characters and Strings

• Function strncmp (p. 351) is equivalent to strcmp, except that strncmp compares a specified
number of characters. If one of the strings is shorter than the number of characters specified,
strncmp compares characters until the null character in the shorter string is encountered.

Section 8.8 Search Functions of the String-Handling Library
• Function strchr (p. 354) searches for the first occurrence of a character in a string. If the character

is found, strchr returns a pointer to the character in the string; otherwise, strchr returns NULL.

• Function strcspn (p. 355) determines the length of the initial part of the string in its first ar-
gument that does not contain any characters from the string in its second argument. The func-
tion returns the length of the segment.

• Function strpbrk (p. 355) searches for the first occurrence in its first argument of any character
in its second argument. If a character from the second argument is found, strpbrk returns a
pointer to the character; otherwise, strpbrk returns NULL.

• Function strrchr (p. 356) searches for the last occurrence of a character in a string. If the character
is found, strrchr returns a pointer to the character in the string; otherwise, strrchr returns NULL.

• Function strspn (p. 357) determines the length of the initial part of the string in its first ar-
gument that contains only characters from the string in its second argument. The function re-
turns the length of the segment.

• Function strstr (p. 357) searches for the first occurrence of its second string argument in its first
string argument. If the second string is found in the first string, a pointer to the location of the
string in the first argument is returned.

• A sequence of calls to strtok (p. 358) breaks the first string s1 into tokens (p. 358) that are sep-
arated by characters contained in the second string s2. The first call contains s1 as the first argu-
ment, and subsequent calls to continue tokenizing the same string contain NULL as the first
argument. A pointer to the current token is returned by each call. If there are no more tokens
when the function is called, a NULL pointer is returned.

Section 8.9 Memory Functions of the String-Handling Library
• Function memcpy (p. 360) copies a specified number of bytes from the object to which its second

argument points into the object to which its first argument points. The function can receive a
pointer to any type of object.

• Function memmove (p. 361) copies a specified number of bytes from the object pointed to by its
second argument to the object pointed to by its first argument. Copying is accomplished as if the
bytes were copied from the second argument to a temporary array and then copied from the tem-
porary array to the first argument.

• Function memcmp (p. 362) compares the specified number of bytes of its first and second argu-
ments.

• Function memchr (p. 362) searches for the first occurrence of a byte, represented as unsigned
char, in the specified number of bytes of an object. If the byte is found, a pointer to the byte is
returned; otherwise, a NULL pointer is returned.

• Function memset (p. 363) copies its second argument, treated as an unsigned char, to a specified
number of bytes of the object pointed to by the first argument.

Section 8.10 Other Functions of the String-Handling Library
• Function strerror (p. 364) maps an integer error number into a full text string in a locale spe-

cific manner. A pointer to the string is returned.

• Function strlen (p. 364) takes a string as an argument and returns the number of characters in
the string—the terminating null character is not included in the length of the string.

 Self-Review Exercises 369

Self-Review Exercises
8.1 Write a single statement to accomplish each of the following. Assume that variables c
(which stores a character), x, y and z are of type int, variables d, e and f are of type double, variable
ptr is of type char * and arrays s1[100] and s2[100] are of type char.

a) Convert the character stored in variable c to an uppercase letter. Assign the result to
variable c.

b) Determine whether the value of variable c is a digit. Use the conditional operator as
shown in Figs. 8.2–8.4 to print " is a " or " is not a " when the result is displayed.

c) Determine whether the value of variable c is a control character. Use the conditional
operator to print " is a " or " is not a " when the result is displayed.

d) Read a line of text into array s1 from the keyboard. Do not use scanf.
e) Print the line of text stored in array s1. Do not use printf.
f) Assign ptr the location of the last occurrence of c in s1.
g) Print the value of variable c. Do not use printf.
h) Determine whether the value of c is a letter. Use the conditional operator to print

" is a " or " is not a " when the result is displayed.
i) Read a character from the keyboard and store the character in variable c.
j) Assign ptr the location of the first occurrence of s2 in s1.
k) Determine whether the value of variable c is a printing character. Use the conditional

operator to print " is a " or " is not a " when the result is displayed.
l) Read three double values into variables d, e and f from the string "1.27 10.3 9.432".
m) Copy the string stored in array s2 into array s1.
n) Assign ptr the location of the first occurrence in s1 of any character from s2.
o) Compare the string in s1 with the string in s2. Print the result.
p) Assign ptr the location of the first occurrence of c in s1.
q) Use sprintf to print the values of integer variables x, y and z into array s1. Each value

should be printed with a field width of 7.
r) Append 10 characters from the string in s2 to the string in s1.
s) Determine the length of the string in s1. Print the result.
t) Assign ptr to the location of the first token in s2. Tokens in the string s2 are separated

by commas (,).

8.2 Show two different ways to initialize character array vowel with the string of vowels "AEIOU".

8.3 What, if anything, prints when each of the following C statements is performed? If the
statement contains an error, describe the error and indicate how to correct it. Assume the following
variable definitions:

char s1[50] = "jack", s2[50] = "jill", s3[50];
a) printf("%c%s", toupper(s1[0]), &s1[1]);
b) printf("%s", strcpy(s3, s2));
c) printf("%s", strcat(strcat(strcpy(s3, s1), " and "), s2));
d) printf("%u", strlen(s1) + strlen(s2));
e) printf("%u", strlen(s3)); // using s3 after part (c) executes

8.4 Find the error in each of the following program segments and explain how to correct it:
a) char s[10];

strncpy(s, "hello", 5);
printf("%s\n", s);

b) printf("%s", 'a');
c) char s[12];

strcpy(s, "Welcome Home");

370 Chapter 8 C Characters and Strings

d) if (strcmp(string1, string2)) {
 puts("The strings are equal");
}

Answers to Self-Review Exercises
8.1 a) c = toupper(c);

b) printf("'%c'%sdigit\n", c, isdigit(c) ? " is a " : " is not a ");
c) printf("'%c'%scontrol character\n",

 c, iscntrl(c) ? " is a " : " is not a ");
d) fgets(s1, 100, stdin);
e) puts(s1);
f) ptr = strrchr(s1, c);
g) putchar(c);
h) printf("'%c'%sletter\n", c, isalpha(c) ? " is a " : " is not a ");
i) c = getchar();
j) ptr = strstr(s1, s2);
k) printf("'%c'%sprinting character\n",

 c, isprint(c) ? " is a " : " is not a ");
l) sscanf("1.27 10.3 9.432", "%f%f%f", &d, &e, &f);
m) strcpy(s1, s2);
n) ptr = strpbrk(s1, s2);
o) printf("strcmp(s1, s2) = %d\n", strcmp(s1, s2));
p) ptr = strchr(s1, c);
q) sprintf(s1, "%7d%7d%7d", x, y, z);
r) strncat(s1, s2, 10);
s) printf("strlen(s1) = %u\n", strlen(s1));
t) ptr = strtok(s2, ",");

8.2 char vowel[] = "AEIOU";
char vowel[] = { 'A', 'E', 'I', 'O', 'U', '\0' };

8.3 a) Jack
b) jill
c) jack and jill
d) 8
e) 13

8.4 a) Error: Function strncpy does not write a terminating null character to array s, because
its third argument is equal to the length of the string "hello".
Correction: Make the third argument of strncpy 6, or assign '\0' to s[5].

b) Error: Attempting to print a character constant as a string.
Correction: Use %c to output the character, or replace 'a' with "a".

c) Error: Character array s is not large enough to store the terminating null character.
Correction: Declare the array with more elements.

d) Error: Function strcmp returns 0 if the strings are equal; therefore, the condition in the
if statement is false, and the printf will not be executed.
Correction: Compare the result of strcmp with 0 in the condition.

Exercises
8.5 (Character Testing) Write a program that inputs a character from the keyboard and tests it
with each of the functions in the character-handling library. The program should print the value
returned by each function.

 Exercises 371

8.6 (Displaying Strings in Uppercase and Lowercase) Write a program that inputs a line of text
into char array s[100]. Output the line in uppercase letters and in lowercase letters.

8.7 (Converting Strings to Integers for Calculations) Write a program that inputs four strings
that represent integers, converts the strings to integers, sums the values and prints the total of the
four values.

8.8 (Converting Strings to Floating Point for Calculations) Write a program that inputs four
strings that represent floating-point values, converts the strings to double values, sums the values
and prints the total of the four values.

8.9 (Comparing Strings) Write a program that uses function strcmp to compare two strings in-
put by the user. The program should state whether the first string is less than, equal to or greater
than the second string.

8.10 (Comparing Portions of Strings) Write a program that uses function strncmp to compare
two strings input by the user. The program should input the number of characters to be compared,
then display whether the first string is less than, equal to or greater than the second string.

8.11 (Random Sentences) Write a program that uses random-number generation to create sen-
tences. The program should use four arrays of pointers to char called article, noun, verb and prep-
osition. The program should create a sentence by selecting a word at random from each array in
the following order: article, noun, verb, preposition, article and noun. As each word is picked,
it should be concatenated to the previous words in an array large enough to hold the entire sentence.
The words should be separated by spaces. When the final sentence is output, it should start with a
capital letter and end with a period. The program should generate 20 such sentences. The arrays
should be filled as follows: The article array should contain the articles "the", "a", "one", "some"
and "any"; the noun array should contain the nouns "boy", "girl", "dog", "town" and "car"; the
verb array should contain the verbs "drove", "jumped", "ran", "walked" and "skipped"; the prep-
osition array should contain the prepositions "to", "from", "over", "under" and "on".

After the preceding program is written and working, modify it to produce a short story con-
sisting of several of these sentences. (How about the possibility of a random term-paper writer?)

8.12 (Limericks) A limerick is a humorous five-line verse in which the first and second lines
rhyme with the fifth, and the third line rhymes with the fourth. Using techniques similar to those
developed in Exercise 8.11, write a program that produces random limericks. Polishing this pro-
gram to produce good limericks is a challenging problem, but the result will be worth the effort!

8.13 (Pig Latin) Write a program that encodes English-language phrases into pig Latin. Pig Lat-
in is a form of coded language often used for amusement. Many variations exist in the methods used
to form pig-Latin phrases. For simplicity, use the following algorithm:

To form a pig-Latin phrase from an English-language phrase, tokenize the phrase into words
with function strtok. To translate each English word into a pig-Latin word, place the first letter of
the English word at the end of the English word and add the letters "ay". Thus the word "jump"
becomes "umpjay", the word "the" becomes "hetay" and the word "computer" becomes "omputer-
cay". Blanks between words remain as blanks. Assume the following: The English phrase consists
of words separated by blanks, there are no punctuation marks, and all words have two or more let-
ters. Function printLatinWord should display each word. [Hint: Each time a token is found in a
call to strtok, pass the token pointer to function printLatinWord, and print the pig-Latin word.
Note: We’ve provided simplified rules for converting words to pig Latin here. For more detailed
rules and variations, visit en.wikipedia.org/wiki/Pig_latin.]

8.14 (Tokenizing Telephone Numbers) Write a program that inputs a telephone number as a
string in the form (555) 555-5555. The program should use function strtok to extract the area code
as a token, the first three digits of the phone number as a token and the last four digits of the phone
number as a token. The seven digits of the phone number should be concatenated into one string.

372 Chapter 8 C Characters and Strings

The program should convert the area-code string to int and convert the phone-number string to
long. Both the area code and the phone number should be printed.

8.15 (Displaying a Sentence with Its Words Reversed) Write a program that inputs a line of text,
tokenizes the line with function strtok and outputs the tokens in reverse order.

8.16 (Searching for Substrings) Write a program that inputs a line of text and a search string
from the keyboard. Using function strstr, locate the first occurrence of the search string in the line
of text, and assign the location to variable searchPtr of type char *. If the search string is found,
print the remainder of the line of text beginning with the search string. Then, use strstr again to
locate the next occurrence of the search string in the line of text. If a second occurrence is found,
print the remainder of the line of text beginning with the second occurrence. [Hint: The second call
to strstr should contain searchPtr + 1 as its first argument.]

8.17 (Counting the Occurrences of a Substring) Write a program based on the program of
Exercise 8.16 that inputs several lines of text and a search string and uses function strstr to deter-
mine the total occurrences of the string in the lines of text. Print the result.

8.18 (Counting the Occurrences of a Character) Write a program that inputs several lines of text
and a search character and uses function strchr to determine the total occurrences of the character
in the lines of text.

8.19 (Counting the Letters of the Alphabet in a String) Write a program based on the program
of Exercise 8.18 that inputs several lines of text and uses function strchr to determine the total oc-
currences of each letter of the alphabet in the lines of text. Uppercase and lowercase letters should
be counted together. Store the totals for each letter in an array and print the values in tabular format
after the totals have been determined.

8.20 (Counting the Number of Words in a String) Write a program that inputs several lines of
text and uses strtok to count the total number of words. Assume that the words are separated by
either spaces or newline characters.

8.21 (Alphabetizing a List of Strings) Use the string-comparison functions and the techniques
for sorting arrays to write a program that alphabetizes a list of strings. Use the names of 10 or 15
towns in your area as data for your program.

8.22 The chart in Appendix B shows the numeric code representations for the characters in the
ASCII character set. Study this chart and then state whether each of the following is true or false.

a) The letter "A" comes before the letter "B".
b) The digit “9” comes before the digit "0".
c) The commonly used symbols for addition, subtraction, multiplication and division all

come before any of the digits.
d) The digits come before the letters.
e) If a sort program sorts strings into ascending sequence, then the program will place the

symbol for a right parenthesis before the symbol for a left parenthesis.

8.23 (Strings Starting with "b") Write a program that reads a series of strings and prints only
those beginning with the letter "b".

8.24 (Strings Ending with "ed") Write a program that reads a series of strings and prints only
those that end with the letters "ed".

8.25 (Printing Letters for Various ASCII Codes) Write a program that inputs an ASCII code and
prints the corresponding character.

8.26 (Write Your Own Character-Handling Functions) Using the ASCII character chart in
Appendix B as a guide, write your own versions of the character-handling functions in Fig. 8.1.

 Special Section: Advanced String-Manipulation Exercises 373

8.27 (Write Your String-Conversion Functions) Write your own versions of the functions in
Fig. 8.5 for converting strings to numbers.

8.28 (Write Your Own String-Copy and String-Concatenation Functions) Write two versions of
each of the string-copy and string-concatenation functions in Fig. 8.14. The first version should use
array indexing, and the second should use pointers and pointer arithmetic.

8.29 (Write Your Own String-Comparison Functions) Write two versions of each string-com-
parison function in Fig. 8.17. The first version should use array indexing, and the second should
use pointers and pointer arithmetic.

8.30 (Write Your Own String-Length Function) Write two versions of function strlen in
Fig. 8.33. The first version should use array indexing, and the second should use pointers and point-
er arithmetic.

Special Section: Advanced String-Manipulation Exercises
The preceding exercises are keyed to the text and designed to test the reader’s understanding of fun-
damental string-manipulation concepts. This section contains intermediate and advanced prob-
lems that you should find challenging yet enjoyable. They vary considerably in difficulty. Some
require an hour or two of programming. Others are useful for lab assignments that might require
two or three weeks of study and implementation. Some are challenging term projects.

8.31 (Text Analysis) The availability of computers with string-manipulation capabilities has re-
sulted in some rather interesting approaches to analyzing the writings of great authors. Much atten-
tion has been focused on whether William Shakespeare ever lived. Some scholars find substantial
evidence that Christopher Marlowe actually penned the masterpieces attributed to Shakespeare. Re-
searchers have used computers to find similarities in the writings of these two authors. This exercise
examines three methods for analyzing texts with a computer.

a) Write a program that reads several lines of text and prints a table indicating the number
of occurrences of each letter of the alphabet in the text. For example, the phrase

To be, or not to be: that is the question:

contains one “a,” two “b’s,” no “c’s,” and so on.
b) Write a program that reads several lines of text and prints a table indicating the number

of one-letter words, two-letter words, three-letter words, and so on, appearing in the
text. For example, the phrase

Whether 'tis nobler in the mind to suffer

contains

Word length Occurrences

1 0

2 2

3 1

4 2 (including ’tis)

5 0

6 2

7 1

374 Chapter 8 C Characters and Strings

c) Write a program that reads several lines of text and prints a table indicating the number
of occurrences of each different word in the text. The program should include the words
in the table in the same order in which they appear in the text. For example, the lines

To be, or not to be: that is the question:

Whether 'tis nobler in the mind to suffer

contain the words "to" three times, "be" two times, "or" once, and so on.

8.32 (Printing Dates in Various Formats) Dates are commonly printed in several different for-
mats in business correspondence. Two of the more common formats are

07/21/2003 and July 21, 2003

Write a program that reads a date in the first format and prints it in the second format.

8.33 (Check Protection) Computers are frequently used in check-writing systems, such as payroll
and accounts payable applications. Many stories circulate regarding weekly paychecks being printed
(by mistake) for amounts in excess of $1 million. Weird amounts are printed by computerized
check-writing systems because of human error and/or machine failure. Systems designers, of course,
make every effort to build controls into their systems to prevent erroneous checks from being issued.

Another serious problem is the intentional alteration of a check amount by someone who
intends to cash it fraudulently. To prevent a dollar amount from being altered, most computerized
check-writing systems employ a technique called check protection.

Checks designed for imprinting by computer contain a fixed number of spaces in which the
computer may print an amount. Suppose a paycheck contains nine blank spaces in which the com-
puter is supposed to print the amount of a weekly paycheck. If the amount is large, then all nine of
those spaces will be filled—for example:

11,230.60 (check amount)

123456789 (position numbers)

On the other hand, if the amount is less than $1,000, then several of the spaces will ordinarily
be left blank—for example,

 99.87

123456789

contains four blank spaces. If a check is printed with blank spaces, it’s easier for someone to alter
the amount of the check. To prevent such alteration, many check-writing systems insert leading
asterisks to protect the amount as follows:

****99.87

123456789

Write a program that inputs a dollar amount to be printed on a check and then prints the
amount in check-protected format with leading asterisks if necessary. Assume that nine spaces are
available for printing an amount.

8.34 (Writing the Word Equivalent of a Check Amount) Continuing the discussion of the previ-
ous exercise, we reiterate the importance of designing check-writing systems to prevent alteration of
check amounts. One common security method requires that the check amount be both written in
numbers and “spelled out” in words. Even if someone is able to alter the numerical amount of the
check, it’s extremely difficult to change the amount in words. Write a program that inputs a numer-
ic check amount and writes the word equivalent of the amount. For example, the amount 52.43
should be written as

FIFTY TWO and 43/100

 A Challenging String-Manipulation Project 375

8.35 (Project: A Metric Conversion Program) Write a program that will assist the user with met-
ric conversions. Your program should allow the user to specify the names of the units as strings (i.e.,
centimeters, liters, grams, and so on for the metric system and inches, quarts, pounds, and so on for
the English system) and should respond to simple questions such as

"How many inches are in 2 meters?"

"How many liters are in 10 quarts?"

Your program should recognize invalid conversions. For example, the question

"How many feet are in 5 kilograms?"

is not meaningful, because "feet" are units of length while "kilograms" are units of mass.

A Challenging String-Manipulation Project
8.36 (Project: A Crossword-Puzzle Generator) Most people have worked a crossword puzzle at
one time or another, but few have ever attempted to generate one. Generating a crossword puzzle is
a difficult problem. It’s suggested here as a string-manipulation project requiring substantial
sophistication and effort. There are many issues you must resolve to get even the simplest crossword-
puzzle generator program working. For example, how does one represent the grid of a crossword
puzzle inside the computer? Should one use a series of strings, or perhaps two-dimensional arrays?
You need a source of words (i.e., a computerized dictionary) that can be directly referenced by the
program. In what form should these words be stored to facilitate the complex manipulations re-
quired by the program? The really ambitious reader will want to generate the “clues” portion of the
puzzle in which the brief hints for each “across” word and each “down” word are printed for the
puzzle worker. Merely printing a version of the blank puzzle itself is not a simple problem.

Making a Difference
8.37 (Cooking with Healthier Ingredients) Obesity in the United States is increasing at an alarm-
ing rate. Check the Centers for Disease Control and Prevention (CDC) webpage at www.cdc.gov/
obesity/data/index.html, which contains United States obesity data and facts. As obesity increas-
es, so do occurrences of related problems (e.g., heart disease, high blood pressure, high cholesterol,
type 2 diabetes). Write a program that helps users choose healthier ingredients when cooking, and
helps those allergic to certain foods (e.g., nuts, gluten) find substitutes. The program should read a
recipe from the user and suggest healthier replacements for some of the ingredients. For simplicity,
your program should assume the recipe has no abbreviations for measures such as teaspoons, cups,
and tablespoons, and uses numerical digits for quantities (e.g., 1 egg, 2 cups) rather than spelling
them out (one egg, two cups). Some common substitutions are shown in Fig. 8.36. Your program
should display a warning such as, “Always consult your physician before making significant changes
to your diet.”

Your program should take into consideration that replacements are not always one-for-one.
For example, if a cake recipe calls for three eggs, it might reasonably use six egg whites instead.
Conversion data for measurements and substitutes can be obtained at websites such as:

chinesefood.about.com/od/recipeconversionfaqs/f/usmetricrecipes.htm

www.pioneerthinking.com/eggsub.html

www.gourmetsleuth.com/conversions.htm

Your program should consider the user’s health concerns, such as high cholesterol, high blood pres-
sure, weight loss, gluten allergy, and so on. For high cholesterol, the program should suggest substi-
tutes for eggs and dairy products; if the user wishes to lose weight, low-calorie substitutes for
ingredients such as sugar should be suggested.

376 Chapter 8 C Characters and Strings

8.38 (Spam Scanner) Spam (or junk e-mail) costs U.S. organizations billions of dollars a year in
spam-prevention software, equipment, network resources, bandwidth, and lost productivity.
Research online some of the most common spam e-mail messages and words, and check your own
junk e-mail folder. Create a list of 30 words and phrases commonly found in spam messages. Write
a program in which the user enters an e-mail message. Read the message into a large character array
and ensure that the program does not attempt to insert characters past the end of the array. Then
scan the message for each of the 30 keywords or phrases. For each occurrence of one of these within
the message, add a point to the message’s “spam score.” Next, rate the likelihood that the message
is spam, based on the number of points it received.

8.39 (SMS Language) Short Message Service (SMS) is a communications service that allows
sending text messages of 160 or fewer characters between mobile phones. With the proliferation of
mobile phone use worldwide, SMS is being used in many developing nations for political purposes
(e.g., voicing opinions and opposition), reporting news about natural disasters, and so on. For ex-
ample, check out comunica.org/radio2.0/archives/87. Because the length of SMS messages is lim-
ited, SMS Language—abbreviations of common words and phrases in mobile text messages, e-mails,
instant messages, etc.—is often used. For example, “in my opinion” is “IMO” in SMS Language.
Research SMS Language online. Write a program that lets the user enter a message using SMS Lan-
guage, then translates it into English (or your own language). Also provide a mechanism to translate
text written in English (or your own language) into SMS Language. One potential problem is that
one SMS abbreviation could expand into a variety of phrases. For example, IMO (as used above)
could also stand for “International Maritime Organization,” “in memory of,” etc.

8.40 (Gender Neutrality) In Exercise 1.14, you researched eliminating sexism in all forms of
communication. You then described the algorithm you’d use to read through a paragraph of text
and replace gender-specific words with gender-neutral equivalents. Create a program that reads a
paragraph of text, then replaces gender-specific words with gender-neutral ones. Display the result-
ing gender-neutral text.

Ingredient Substitution

1 cup sour cream 1 cup yogurt

1 cup milk 1/2 cup evaporated milk and 1/2 cup water

1 teaspoon lemon juice 1/2 teaspoon vinegar

1 cup sugar 1/2 cup honey, 1 cup molasses
or 1/4 cup agave nectar

1 cup butter 1 cup margarine or yogurt

1 cup flour 1 cup rye or rice flour

1 cup mayonnaise 1 cup cottage cheese
or 1/8 cup mayonnaise and 7/8 cup yogurt

1 egg 2 tablespoons cornstarch, arrowroot flour
or potato starch or 2 egg whites
or 1/2 of a large banana (mashed)

1 cup milk 1 cup soy milk

1/4 cup oil 1/4 cup applesauce

white bread whole-grain bread

Fig. 8.36 | Common ingredient substitutions.

9

C Formatted Input/Output

O b j e c t i v e s
In this chapter, you’ll:

■ Use input and output
streams.

■ Use print formatting
capabilities.

■ Use input formatting
capabilities.

■ Print integers, floating-point
numbers, strings and
characters.

■ Print with field widths and
precisions.

■ Use formatting flags in the
printf format control
string.

■ Output literals and escape
sequences.

■ Read formatted input using
scanf.

378 Chapter 9 C Formatted Input/Output

9.1 Introduction
An important part of the solution to any problem is the presentation of the results. In this
chapter, we discuss in depth the formatting features of printf and scanf, which input data
from the standard input stream and output data to the standard output stream, respectively.
Include the header <stdio.h> in programs that call these functions. Chapter 11 discusses
several additional functions included in the standard input/output (<stdio.h>) library.

9.2 Streams
All input and output is performed with streams, which are sequences of bytes. In input
operations, the bytes flow from a device (e.g., a keyboard, a hard disk, a network connec-
tion) to main memory. In output operations, bytes flow from main memory to a device (e.g.,
a display screen, a printer, a hard disk, a network connection, and so on).

When program execution begins, three streams are connected to the program auto-
matically. Normally, the standard input stream is connected to the keyboard and the stan-
dard output stream is connected to the screen. A third stream, the standard error stream,
also is connected to the screen. Operating systems often allow these streams to be redirected
to other devices. We’ll show how to output error messages to the standard error stream in
Chapter 11. Streams are also discussed in detail in Chapter 11.

9.3 Formatting Output with printf
Precise output formatting is accomplished with printf. Every printf call contains a for-
mat control string that describes the output format. The format control string consists of

9.1 Introduction
9.2 Streams
9.3 Formatting Output with printf
9.4 Printing Integers
9.5 Printing Floating-Point Numbers

9.5.1 Conversion Specifiers e, E and f
9.5.2 Conversion Specifiers g and G
9.5.3 Demonstrating Floating-Point

Conversion Specifiers
9.6 Printing Strings and Characters
9.7 Other Conversion Specifiers
9.8 Printing with Field Widths and

Precision
9.8.1 Specifying Field Widths for Printing

Integers
9.8.2 Specifying Precisions for Integers,

Floating-Point Numbers and Strings
9.8.3 Combining Field Widths and

Precisions

9.9 Using Flags in the printf Format
Control String

9.9.1 Right and Left Justification
9.9.2 Printing Positive and Negative

Numbers with and without the + Flag
9.9.3 Using the Space Flag
9.9.4 Using the # Flag
9.9.5 Using the 0 Flag

9.10 Printing Literals and Escape Sequences
9.11 Reading Formatted Input with scanf

9.11.1 scanf Syntax
9.11.2 scanf Conversion Specifiers
9.11.3 Reading Integers with scanf
9.11.4 Reading Floating-Point Numbers with

scanf

9.11.5 Reading Characters and Strings with
scanf

9.11.6 Using Scan Sets with scanf
9.11.7 Using Field Widths with scanf
9.11.8 Skipping Characters in an Input Stream

9.12 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

9.4 Printing Integers 379

conversion specifiers, flags, field widths, precisions and literal characters. Together with
the percent sign (%), these form conversion specifications. Function printf can perform
the following formatting capabilities, each of which is discussed in this chapter:

1. Rounding floating-point values to an indicated number of decimal places.

2. Aligning a column of numbers with decimal points appearing one above the other.

3. Right justification and left justification of outputs.

4. Inserting literal characters at precise locations in a line of output.

5. Representing floating-point numbers in exponential format.

6. Representing unsigned integers in octal and hexadecimal format. See
Appendix C for more information on octal and hexadecimal values.

7. Displaying all types of data with fixed-size field widths and precisions.

The printf function has the form

format-control-string describes the output format, and other-arguments (which are optional)
correspond to each conversion specification in format-control-string. Each conversion spec-
ification begins with a percent sign and ends with a conversion specifier. There can be
many conversion specifications in one format control string.

9.4 Printing Integers
An integer is a whole number, such as 776, 0 or –52. Integer values are displayed in one
of several formats. Figure 9.1 describes the integer conversion specifiers.

printf(format-control-string, other-arguments);

Common Programming Error 9.1
Forgetting to enclose a format-control-string in quotation marks is a syntax error.

Conversion specifier Description

d Display as a signed decimal integer.
i Display as a signed decimal integer. [Note: The i and d specifiers are

different when used with scanf.]
o Display as an unsigned octal integer.
u Display as an unsigned decimal integer.

x or X Display as an unsigned hexadecimal integer. X causes the digits 0-9
and the uppercase letters A-F to be used in the display and x causes
the digits 0-9 and the lowercase letters a-f to be used in the display.

h, l or ll (letter “ell”) Place before any integer conversion specifier to indicate that a short,
long or long long integer is displayed, respectively. These are called
length modifiers.

Fig. 9.1 | Integer conversion specifiers.

380 Chapter 9 C Formatted Input/Output

Figure 9.2 prints an integer using each of the integer conversion specifiers. Only the
minus sign prints; plus signs are normally suppressed—we’ll see how to force plus signs to
print. Also, the value -455, when printed with %u (line 15), is interpreted as an unsigned
value 4294966841.

9.5 Printing Floating-Point Numbers
A floating-point value contains a decimal point as in 33.5, 0.0 or -657.983. Floating-
point values are displayed in one of several formats. Figure 9.3 describes the floating-point
conversion specifiers. The conversion specifiers e and E display floating-point values in
exponential notation—the computer equivalent of scientific notation used in math-
ematics. For example, the value 150.4582 is represented in scientific notation as

Common Programming Error 9.2
Printing a negative value with a conversion specifier that expects an unsigned value.

1 // Fig. 9.2: fig09_02.c
2 // Using the integer conversion specifiers

3 #include <stdio.h>
4
5 int main(void)
6 {

7 printf("%d\n", 455);
8 printf("%i\n", 455); // i same as d in printf
9 printf("%d\n", +455); // plus sign does not print

10 printf("%d\n", -455); // minus sign prints
11 printf("%hd\n", 32000);
12 printf("%ld\n", 2000000000L); // L suffix makes literal a long int
13 printf("%o\n", 455); // octal
14 printf("%u\n", 455);
15 printf("%u\n", -455);
16 printf("%x\n", 455); // hexadecimal with lowercase letters
17 printf("%X\n", 455); // hexadecimal with uppercase letters
18 }

455
455
455
-455
32000
2000000000
707
455
4294966841
1c7
1C7

Fig. 9.2 | Using the integer conversion specifiers.

1.504582 × 102

9.5 Printing Floating-Point Numbers 381

and in exponential notation as

by the computer. This notation indicates that 1.504582 is multiplied by 10 raised to the
second power (E+02). The E stands for “exponent.”

9.5.1 Conversion Specifiers e, E and f
Values displayed with the conversion specifiers e, E and f show six digits of precision to the
right of the decimal point by default (e.g., 1.045927); other precisions can be specified ex-
plicitly. Conversion specifier f always prints at least one digit to the left of the decimal
point. Conversion specifiers e and E print lowercase e and uppercase E, respectively, preced-
ing the exponent, and print exactly one digit to the left of the decimal point.

9.5.2 Conversion Specifiers g and G
Conversion specifier g (or G) prints in either e (E) or f format with no trailing zeros
(1.234000 is printed as 1.234). Values are printed with e (E) if, after conversion to expo-
nential notation, the value’s exponent is less than -4, or the exponent is greater than or
equal to the specified precision (six significant digits by default for g and G). Otherwise,
conversion specifier f is used to print the value. At least one decimal digit is required for
the decimal point to be output. For example, the values 0.0000875, 8750000.0, 8.75 and
87.50 are printed as 8.75e-05, 8.75e+06, 8.75 and 87.5 with the conversion specifier g.
The value 0.0000875 uses e notation because, when it’s converted to exponential notation,
its exponent (-5) is less than -4. The value 8750000.0 uses e notation because its exponent
(6) is equal to the default precision.

The precision for conversion specifiers g and G indicates the maximum number of sig-
nificant digits printed, including the digit to the left of the decimal point. The value
1234567.0 is printed as 1.23457e+06, using conversion specifier %g (remember that all
floating-point conversion specifiers have a default precision of 6). There are six significant
digits in the result. The difference between g and G is identical to the difference between
e and E when the value is printed in exponential notation—lowercase g causes a lowercase
e to be output, and uppercase G causes an uppercase E to be output.

1.504582E+02

Conversion specifier Description

e or E Display a floating-point value in exponential notation.

f or F Display floating-point values in fixed-point notation (F is supported
in the Microsoft Visual C++ compiler in Visual Studio 2015 and
higher).

g or G Display a floating-point value in either the floating-point form f or
the exponential form e (or E), based on the magnitude of the value.

L Place before any floating-point conversion specifier to indicate that
a long double floating-point value should be displayed.

Fig. 9.3 | Floating-point conversion specifiers.

382 Chapter 9 C Formatted Input/Output

9.5.3 Demonstrating Floating-Point Conversion Specifiers
Figure 9.4 demonstrates each of the floating-point conversion specifiers. The %E, %e and
%g conversion specifiers cause the value to be rounded in the output and the conversion
specifier %f does not.

9.6 Printing Strings and Characters
The c and s conversion specifiers are used to print individual characters and strings, re-
spectively. Conversion specifier c requires a char argument. Conversion specifier s re-
quires a pointer to char as an argument. Conversion specifier s causes characters to be
printed until a terminating null ('\0') character is encountered. If for some reason the
string being printed does not have a null terminator, the printf will continue printing un-
til it is eventually stopped by a zero byte. The program in Fig. 9.5 displays characters and
strings with conversion specifiers c and s.

Error-Prevention Tip 9.1
When outputting data, be sure that the user is aware of situations in which data may be
imprecise due to formatting (e.g., rounding errors from specifying precisions).

Portability Tip 9.1
With some compilers, the exponent in the outputs will be shown with two digits
to the right of the + sign.

1 // Fig. 9.4: fig09_04.c

2 // Using the floating-point conversion specifiers
3 #include <stdio.h>
4
5 int main(void)
6 {

7 printf("%e\n", 1234567.89);
8 printf("%e\n", +1234567.89); // plus does not print
9 printf("%e\n", -1234567.89); // minus prints

10 printf("%E\n", 1234567.89);
11 printf("%f\n", 1234567.89); // six digits to right of decimal point
12 printf("%g\n", 1234567.89); // prints with lowercase e
13 printf("%G\n", 1234567.89); // prints with uppercase E
14 }

1.234568e+006
1.234568e+006
-1.234568e+006
1.234568E+006
1234567.890000
1.23457e+006
1.23457E+006

Fig. 9.4 | Using the floating-point conversion specifiers.

9.7 Other Conversion Specifiers 383

Most compilers do not catch errors in the format-control string, so you typically will
not become aware of such errors until a program produces incorrect results at runtime.

9.7 Other Conversion Specifiers
Figure 9.6 shows the p and % conversion specifiers. Figure 9.7’s %p prints the value of ptr
and the address of x; these values are identical because ptr is assigned the address of x. The
last printf statement uses %% to print the % character in a character string.

1 // Fig. 9.5: fig09_05c

2 // Using the character and string conversion specifiers

3 #include <stdio.h>
4
5 int main(void)
6 {
7 char character = 'A'; // initialize char
8 printf();

9
10 printf();

11
12 char string[] = "This is a string"; // initialize char array
13 printf();

14
15 const char *stringPtr = "This is also a string"; // char pointer
16 printf();

17 }

A
This is a string
This is a string
This is also a string

Fig. 9.5 | Using the character and string conversion specifiers.

Common Programming Error 9.3
Using %c to print a string is an error. The conversion specifier %c expects a char argument.
A string is a pointer to char (i.e., a char *).

Common Programming Error 9.4
Using %s to print a char argument often causes a fatal execution-time error called an ac-
cess violation. The conversion specifier %s expects an argument of type pointer to char.

Common Programming Error 9.5
Using single quotes around the characters you want to form into a string is a syntax error.
Character strings must be enclosed in double quotes.

Common Programming Error 9.6
Using double quotes around a character constant creates a pointer to a string consisting of
two characters, the second of which is the terminating null.

"%c\n", character

"%s\n", "This is a string"

"%s\n", string

"%s\n", stringPtr

384 Chapter 9 C Formatted Input/Output

9.8 Printing with Field Widths and Precision
The exact size of a field in which data is printed is specified by a field width. If the field
width is larger than the data being printed, the data will normally be right justified within
that field. An integer representing the field width is inserted between the percent sign (%)
and the conversion specifier (e.g., %4d).

9.8.1 Specifying Field Widths for Printing Integers
Figure 9.8 prints two groups of five numbers each, right justifying those numbers that con-
tain fewer digits than the field width. The field width is increased to print values wider

Portability Tip 9.2
The conversion specifier p displays an address in an implementation-defined manner (on
many systems, hexadecimal notation is used rather than decimal notation).

Common Programming Error 9.7
Trying to print a literal percent character using % rather than %% in the format control
string—when % appears in a format control string, it must be followed by a conversion
specifier.

Conversion specifier Description

p Display a pointer value in an implementation-defined manner.
% Display the percent character.

Fig. 9.6 | Other conversion specifiers.

1 // Fig. 9.7: fig09_07.c

2 // Using the p and % conversion specifiers
3 #include <stdio.h>
4
5 int main(void)
6 {

7 int x = 12345; // initialize int x
8 int *ptr = &x; // assign address of x to ptr
9

10 printf("The value of ptr is %p\n", ptr);
11
12
13 printf("Printing a in a format control string\n");
14 }

The value of ptr is 002EF778
The address of x is 002EF778

Printing a % in a format control string

Fig. 9.7 | Using the p and % conversion specifiers.

printf("The address of x is %p\n\n", &x);

%%

9.8 Printing with Field Widths and Precision 385

than the field. Note that the minus sign for a negative value uses one character position in
the field width. Field widths can be used with all conversion specifiers.

9.8.2 Specifying Precisions for Integers, Floating-Point Numbers and
Strings
Function printf also enables you to specify the precision with which data is printed. Pre-
cision has different meanings for different data types. When used with integer conversion
specifiers, precision indicates the minimum number of digits to be printed. If the printed val-
ue contains fewer digits than the specified precision and the precision value has a leading
zero or decimal point, zeros are prefixed to the printed value until the total number of dig-
its is equivalent to the precision. If neither a zero nor a decimal point is present in the pre-
cision value, spaces are inserted instead. The default precision for integers is 1. When used
with floating-point conversion specifiers e, E and f, the precision is the number of digits to
appear after the decimal point. When used with conversion specifiers g and G, the precision

Common Programming Error 9.8
Not providing a sufficiently large field width to handle a value to be printed can offset
other data being printed, producing confusing outputs. Know your data!

1 // Fig. 9.8: fig09_08.c

2 // Right justifying integers in a field

3 #include <stdio.h>
4
5 int main(void)
6 {
7 printf("%4d\n", 1);
8 printf("%4d\n", 12);
9 printf("%4d\n", 123);

10 printf("%4d\n", 1234);
11 printf("%4d\n\n", 12345);
12
13 printf("%4d\n", -1);
14 printf("%4d\n", -12);
15 printf("%4d\n", -123);
16 printf("%4d\n", -1234);
17 printf("%4d\n", -12345);
18 }

 1
 12
 123
1234
12345

 -1
 -12
-123
-1234
-12345

Fig. 9.8 | Right justifying integers in a field.

386 Chapter 9 C Formatted Input/Output

is the maximum number of significant digits to be printed. When used with conversion spec-
ifier s, the precision is the maximum number of characters to be written from the beginning
of the string.

To use precision, place a decimal point (.), followed by an integer representing the
precision between the percent sign and the conversion specifier. Figure 9.9 demonstrates
the use of precision in format control strings. When a floating-point value is printed with
a precision smaller than the original number of decimal places in the value, the value is
rounded.

9.8.3 Combining Field Widths and Precisions
The field width and the precision can be combined by placing the field width, followed
by a decimal point, followed by a precision between the percent sign and the conversion
specifier, as in the statement

which displays 123.457 with three digits to the right of the decimal point right justified in
a nine-digit field.

1 // Fig. 9.9: fig09_09.c

2 // Printing integers, floating-point numbers and strings with precisions
3 #include <stdio.h>
4
5 int main(void)
6 {

7 puts("Using precision for integers");
8 int i = 873; // initialize int i
9

10
11 puts("Using precision for floating-point numbers");
12 double f = 123.94536; // initialize double f
13

14

15 puts("Using precision for strings");
16 char s[] = "Happy Birthday"; // initialize char array s
17

18 }

Using precision for integers
 0873
 000000873

Using precision for floating-point numbers
 123.945
 1.239e+002
 124

Using precision for strings
 Happy Birth

Fig. 9.9 | Printing integers, floating-point numbers and strings with precisions.

printf("%9.3f", 123.456789);

printf("\t%.4d\n\t%.9d\n\n", i, i);

printf("\t%.3f\n\t%.3e\n\t%.3g\n\n", f, f, f);

printf("\t%.11s\n", s);

9.9 Using Flags in the printf Format Control String 387

It’s possible to specify the field width and the precision using integer expressions in
the argument list following the format control string. To use this feature, insert an asterisk
(*) in place of the field width or precision (or both). The matching int argument in the
argument list is evaluated and used in place of the asterisk. A field width’s value may be
either positive or negative (which causes the output to be left justified in the field, as
described in the next section). The statement

uses 7 for the field width, 2 for the precision and outputs the value 98.74 right justified.

9.9 Using Flags in the printf Format Control String
Function printf also provides flags to supplement its output formatting capabilities. Five
flags are available for use in format control strings (Fig. 9.10). To use a flag in a format
control string, place the flag immediately to the right of the percent sign. Several flags may
be combined in one conversion specifier.

9.9.1 Right and Left Justification
Figure 9.11 demonstrates right justification and left justification of a string, an integer, a
character and a floating-point number. Line 7 outputs a line of numbers representing the
column positions, so you can confirm that the right and left justification worked correctly.

printf("%*.*f", 7, 2, 98.736);

Flag Description

- (minus sign) Left justify the output within the specified field.

+ Display a plus sign preceding positive values and a minus sign preceding
negative values.

space Print a space before a positive value not printed with the + flag.
Prefix 0 to the output value when used with the octal conversion specifier

o.

Prefix 0x or 0X to the output value when used with the hexadecimal
conversion specifiers x or X.

Force a decimal point for a floating-point number printed with e, E, f, g or
G that does not contain a fractional part. (Normally the decimal point is
printed only if a digit follows it.) For g and G specifiers, trailing zeros are
not eliminated.

0 (zero) Pad a field with leading zeros.

Fig. 9.10 | Format-control-string flags.

1 // Fig. 9.11: fig09_11.c

2 // Right justifying and left justifying values
3 #include <stdio.h>
4

Fig. 9.11 | Right justifying and left justifying values. (Part 1 of 2.)

388 Chapter 9 C Formatted Input/Output

9.9.2 Printing Positive and Negative Numbers with and without the +
Flag
Figure 9.12 prints a positive number and a negative number, each with and without the +
flag. The minus sign is displayed in both cases, but the plus sign is displayed only when
the + flag is used.

9.9.3 Using the Space Flag
Figure 9.13 prefixes a space to the positive number with the space flag. This is useful for
aligning positive and negative numbers with the same number of digits. The value -547 is
not preceded by a space in the output because of its minus sign.

5 int main(void)
6 {

7 puts("1234567890123456789012345678901234567890\n");
8

9

10 }

1234567890123456789012345678901234567890
 hello 7 a 1.230000

hello 7 a 1.230000

1 // Fig. 9.12: fig09_12.c

2 // Printing positive and negative numbers with and without the + flag
3 #include <stdio.h>
4
5 int main(void)
6 {

7 printf("%d\n%d\n", 786, -786);
8
9 }

786
-786
+786
-786

Fig. 9.12 | Printing positive and negative numbers with and without the + flag.

1 // Fig. 9.13: fig09_13.c

2 // Using the space flag
3 // not preceded by + or -

4 #include <stdio.h>
5

Fig. 9.13 | Using the space flag. (Part 1 of 2.)

Fig. 9.11 | Right justifying and left justifying values. (Part 2 of 2.)

printf("%10s%10d%10c%10f\n\n", "hello", 7, 'a', 1.23);
printf("%-10s%-10d%-10c%-10f\n", "hello", 7, 'a', 1.23);

printf("%+d\n%+d\n", 786, -786);

9.9 Using Flags in the printf Format Control String 389

9.9.4 Using the # Flag
Figure 9.14 uses the # flag to prefix 0 to the octal value and 0x and 0X to the hexadecimal
values, and to force the decimal point on a value printed with g.

9.9.5 Using the 0 Flag
Figure 9.15 combines the + flag and the 0 (zero) flag to print 452 in a nine-space field with
a + sign and leading zeros, then prints 452 again using only the 0 flag and a nine-space field.

6 int main(void)
7 {

8
9 }

 547
-547

1 // Fig. 9.14: fig09_14.c

2 // Using the # flag with conversion specifiers
3 // o, x, X and any floating-point specifier

4 #include <stdio.h>
5
6 int main(void)
7 {

8 int c = 1427; // initialize c
9 printf("%#o\n", c);

10 printf("%#x\n", c);
11 printf("%#X\n", c);
12

13 double p = 1427.0; // initialize p
14 printf("\n%g\n", p);
15 printf("%#g\n", p);
16 }

02623
0x593
0X593

1427
1427.00

Fig. 9.14 | Using the # flag with conversion specifiers.

1 // Fig. 9.15: fig09_15.c

2 // Using the 0 (zero) flag
3 #include <stdio.h>

Fig. 9.15 | Using the 0 (zero) flag. (Part 1 of 2.)

Fig. 9.13 | Using the space flag. (Part 2 of 2.)

printf("% d\n% d\n", 547, -547);

390 Chapter 9 C Formatted Input/Output

9.10 Printing Literals and Escape Sequences
As you’ve seen throughout the book, literal characters included in the format control
string are simply output by printf. However, there are several “problem” characters, such
as the quotation mark (") that delimits the format control string itself. Various control
characters, such as newline and tab, must be represented by escape sequences. An escape
sequence is represented by a backslash (\), followed by a particular escape character.
Figure 9.16 lists the escape sequences and the actions they cause.

9.11 Reading Formatted Input with scanf
Precise input formatting can be accomplished with scanf. Every scanf statement contains
a format control string that describes the format of the data to be input. The format con-
trol string consists of conversion specifiers and literal characters. Function scanf has the
following input formatting capabilities:

1. Inputting all types of data.

4
5 int main(void)
6 {
7 printf("%+09d\n", 452);
8 printf("%09d\n", 452);
9 }

+00000452
000000452

Escape sequence Description

\' (single quote) Output the single quote (') character.

\" (double quote) Output the double quote (") character.

\? (question mark) Output the question mark (?) character.

\\ (backslash) Output the backslash (\) character.

\a (alert or bell) Cause an audible (bell) or visual alert (typically, flashing the
window in which the program is running).

\b (backspace) Move the cursor back one position on the current line.

\f (new page or form feed) Move the cursor to the start of the next logical page.

\n (newline) Move the cursor to the beginning of the next line.

\r (carriage return) Move the cursor to the beginning of the current line.

\t (horizontal tab) Move the cursor to the next horizontal tab position.

\v (vertical tab) Move the cursor to the next vertical tab position.

Fig. 9.16 | Escape sequences.

Fig. 9.15 | Using the 0 (zero) flag. (Part 2 of 2.)

9.11 Reading Formatted Input with scanf 391

2. Inputting specific characters from an input stream.

3. Skipping specific characters in the input stream.

9.11.1 scanf Syntax
Function scanf is written in the following form:

format-control-string describes the formats of the input, and other-arguments are pointers
to variables in which the input will be stored.

9.11.2 scanf Conversion Specifiers
Figure 9.17 summarizes the conversion specifiers used to input all types of data. The re-
mainder of this section provides programs that demonstrate reading data with the various
scanf conversion specifiers. Note that the d and i conversion specifiers have different
meanings for input with scanf, whereas they’re interchangeable for output with printf.

scanf(format-control-string, other-arguments);

Good Programming Practice 9.1
When inputting data, prompt the user for one data item or a few data items at a time.
Avoid asking the user to enter many data items in response to a single prompt.

Good Programming Practice 9.2
Always consider what the user and your program will do when (not if) incorrect data is
entered—for example, a value for an integer that’s nonsensical in a program’s context, or
a string with missing punctuation or spaces.

Conversion specifier Description

Integers
d Read an optionally signed decimal integer. The corresponding argu-

ment is a pointer to an int.
i Read an optionally signed decimal, octal or hexadecimal integer. The

corresponding argument is a pointer to an int.
o Read an octal integer. The corresponding argument is a pointer to an

unsigned int.
u Read an unsigned decimal integer. The corresponding argument is a

pointer to an unsigned int.

x or X Read a hexadecimal integer. The corresponding argument is a pointer
to an unsigned int.

h, l and ll Place before any of the integer conversion specifiers to indicate that a
short, long or long long integer is to be input, respectively.

Floating-point numbers

e, E, f, g or G Read a floating-point value. The corresponding argument is a pointer
to a floating-point variable.

Fig. 9.17 | Conversion specifiers for scanf. (Part 1 of 2.)

392 Chapter 9 C Formatted Input/Output

9.11.3 Reading Integers with scanf
Figure 9.18 reads integers with the various integer conversion specifiers and displays the
integers as decimal numbers. Conversion specifier %i can input decimal, octal and hexa-
decimal integers.

l or L Place before any of the floating-point conversion specifiers to indi-
cate that a double or long double value is to be input. The corre-
sponding argument is a pointer to a double or long double variable.

Characters and strings
c Read a character. The corresponding argument is a pointer to a char;

no null ('\0') is added.
s Read a string. The corresponding argument is a pointer to an array

of type char that’s large enough to hold the string and a terminating
null ('\0') character—which is automatically added.

Scan set

[scan characters] Scan a string for a set of characters that are stored in an array.

Miscellaneous
p Read an address of the same form produced when an address is out-

put with %p in a printf statement.
n Store the number of characters input so far in this call to scanf. The

corresponding argument must be a pointer to an int.
% Skip a percent sign (%) in the input.

1 // Fig. 9.18: fig09_18.c

2 // Reading input with integer conversion specifiers

3 #include <stdio.h>
4
5 int main(void)
6 {
7 int a;
8 int b;
9 int c;

10 int d;
11 int e;
12 int f;
13 int g;
14
15 puts("Enter seven integers: ");
16

17
18 puts("\nThe input displayed as decimal integers is:");

Fig. 9.18 | Reading input with integer conversion specifiers. (Part 1 of 2.)

Conversion specifier Description

Fig. 9.17 | Conversion specifiers for scanf. (Part 2 of 2.)

scanf("%d%i%i%i%o%u%x", &a, &b, &c, &d, &e, &f, &g);

9.11 Reading Formatted Input with scanf 393

9.11.4 Reading Floating-Point Numbers with scanf
When inputting floating-point numbers, any of the floating-point conversion specifiers e,
E, f, g or G can be used. Figure 9.19 reads three floating-point numbers, one with each of
the three types of floating conversion specifiers, and displays all three numbers with con-
version specifier f.

9.11.5 Reading Characters and Strings with scanf
Characters and strings are input using the conversion specifiers c and s, respectively.
Figure 9.20 prompts the user to enter a string. The program inputs the first character of

19

20 }

Enter seven integers:
-70 -70 070 0x70 70 70 70

The input displayed as decimal integers is:
-70 -70 56 112 56 70 112

1 // Fig. 9.19: fig09_19.c

2 // Reading input with floating-point conversion specifiers

3 #include <stdio.h>
4
5 // function main begins program execution

6 int main(void)
7 {

8 double a;
9 double b;

10 double c;
11
12 puts("Enter three floating-point numbers:");
13

14
15 printf("\nHere are the numbers entered in plain:");
16 puts("floating-point notation:\n");
17

18 }

Enter three floating-point numbers:
1.27987 1.27987e+03 3.38476e-06

Here are the numbers entered in plain floating-point notation:
1.279870
1279.870000
0.000003

Fig. 9.19 | Reading input with floating-point conversion specifiers.

Fig. 9.18 | Reading input with integer conversion specifiers. (Part 2 of 2.)

printf("%d %d %d %d %d %d %d\n", a, b, c, d, e, f, g);

scanf("%le%lf%lg", &a, &b, &c);

printf("%f\n%f\n%f\n", a, b, c);

394 Chapter 9 C Formatted Input/Output

the string with %c and stores it in the character variable x, then inputs the remainder of the
string with %s and stores it in character array y.

9.11.6 Using Scan Sets with scanf
A sequence of characters can be input using a scan set. A scan set is a set of characters en-
closed in square brackets, [], and preceded by a percent sign in the format control string.
A scan set scans the characters in the input stream, looking only for those characters that
match characters contained in the scan set. Each time a character is matched, it’s stored in
the scan set’s corresponding argument—a pointer to a character array. The scan set stops
inputting characters when a character that’s not contained in the scan set is encountered.
If the first character in the input stream does not match a character in the scan set, the array
is not modified. Figure 9.21 uses the scan set [aeiou] to scan the input stream for vowels.
Notice that the first seven letters of the input are read. The eighth letter (h) is not in the
scan set and therefore the scanning is terminated.

1 // Fig. 9.20: fig09_20.c

2 // Reading characters and strings

3 #include <stdio.h>
4
5 int main(void)
6 {
7 char x;
8 char y[9];
9

10 printf("%s", "Enter a string: ");
11

12
13 puts("The input was:\n");
14 printf("the character \"%c\" and the string \"%s\"\n", x, y);
15 }

Enter a string: Sunday
The input was:
the character "S" and the string "unday"

Fig. 9.20 | Reading characters and strings.

1 // Fig. 9.21: fig09_21.c

2 // Using a scan set
3 #include <stdio.h>
4
5 // function main begins program execution
6 int main(void)
7 {

8 char z[9]; // define array z
9

10 printf("%s", "Enter string: ");
11

Fig. 9.21 | Using a scan set. (Part 1 of 2.)

scanf("%c%8s", &x, y);

scanf("%8[aeiou]", z); // search for set of characters

9.11 Reading Formatted Input with scanf 395

The scan set can also be used to scan for characters not contained in the scan set by
using an inverted scan set. To create an inverted scan set, place a caret (^) in the square
brackets before the scan characters. This causes characters not appearing in the scan set to
be stored. When a character contained in the inverted scan set is encountered, input ter-
minates. Figure 9.22 uses the inverted scan set [^aeiou] to search for consonants—more
properly to search for “nonvowels.”

9.11.7 Using Field Widths with scanf
A field width can be used in a scanf conversion specifier to read a specific number of char-
acters from the input stream. Figure 9.23 inputs a series of consecutive digits as a two-digit
integer and an integer consisting of the remaining digits in the input stream.

12
13 printf("The input was \"%s\"\n", z);
14 }

Enter string: ooeeooahah
The input was "ooeeooa"

1 // Fig. 9.22: fig09_22.c
2 // Using an inverted scan set

3 #include <stdio.h>
4
5 int main(void)
6 {

7 char z[9];
8
9 printf("%s", "Enter a string: ");

10
11
12 printf("The input was \"%s\"\n", z);
13 }

Enter a string: String
The input was "Str"

Fig. 9.22 | Using an inverted scan set.

1 // Fig. 9.23: fig09_23.c

2 // inputting data with a field width
3 #include <stdio.h>
4
5 int main(void)
6 {

Fig. 9.23 | Inputting data with a field width. (Part 1 of 2.)

Fig. 9.21 | Using a scan set. (Part 2 of 2.)

scanf("%8[^aeiou]", z); // inverted scan set

396 Chapter 9 C Formatted Input/Output

9.11.8 Skipping Characters in an Input Stream
Often it’s necessary to skip certain characters in the input stream. For example, a date
could be entered as

Each number in the date needs to be stored, but the dashes that separate the numbers
can be discarded. To eliminate unnecessary characters, include them in the format control
string of scanf—whitespace characters, such as space, newline and tab, skip all leading
whitespace. For example, to discard the dashes in the input, use the statement

Although this scanf does eliminate the dashes in the preceding input, it’s possible that
the date could be entered as

In this case, the preceding scanf would not eliminate the unnecessary characters. For this
reason, scanf provides the assignment suppression character *. This character enables
scanf to read any type of data from the input and discard it without assigning it to a vari-
able. Figure 9.24 uses the assignment suppression character in the %c conversion specifier
to indicate that a character appearing in the input stream should be read and discarded.
Only the month, day and year are stored. The values of the variables are printed to dem-
onstrate that they’re in fact input correctly. The argument lists for each scanf call do not
contain variables for the conversion specifiers that use the assignment suppression charac-
ter. The corresponding characters are simply discarded.

7 int x;
8 int y;
9

10 printf("%s", "Enter a six digit integer: ");
11

12
13 printf("The integers input were %d and %d\n", x, y);
14 }

Enter a six digit integer: 123456
The integers input were 12 and 3456

11-10-1999

scanf("%d-%d-%d", &month, &day, &year);

10/11/1999

1 // Fig. 9.24: fig09_24.c
2 // Reading and discarding characters from the input stream

3 #include <stdio.h>
4
5 int main(void)
6 {

7 int month = 0;

Fig. 9.24 | Reading and discarding characters from the input stream. (Part 1 of 2.)

Fig. 9.23 | Inputting data with a field width. (Part 2 of 2.)

scanf("%2d%d", &x, &y);

9.12 Secure C Programming 397

9.12 Secure C Programming
The C standard lists many cases in which using incorrect library-function arguments can
result in undefined behaviors. These can cause security vulnerabilities, so they should be
avoided. Such problems can occur when using printf (or any of its variants, such as
sprintf, fprintf, printf_s, etc.) with improperly formed conversion specifications.
CERT rule FIO00-C (www.securecoding.cert.org) discusses these issues and presents a
table showing the valid combinations of formatting flags, length modifiers and conver-
sion-specifier characters that can be used to form conversion specifications. The table also
shows the proper argument type for each valid conversion specification. In general, as you
study any programming language, if the language specification says that doing something
can lead to undefined behavior, avoid doing it to prevent security vulnerabilities.

8 int day = 0;
9 int year = 0;

10 printf("%s", "Enter a date in the form mm-dd-yyyy: ");
11

12 printf("month = %d day = %d year = %d\n\n", month, day, year);
13
14 printf("%s", "Enter a date in the form mm/dd/yyyy: ");
15

16 printf("month = %d day = %d year = %d\n", month, day, year);
17 }

Enter a date in the form mm-dd-yyyy: 11-18-2012
month = 11 day = 18 year = 2012

Enter a date in the form mm/dd/yyyy: 11/18/2012
month = 11 day = 18 year = 2012

Fig. 9.24 | Reading and discarding characters from the input stream. (Part 2 of 2.)

scanf("%d%*c%d%*c%d", &month, &day, &year);

scanf("%d%*c%d%*c%d", &month, &day, &year);

Summary
Section 9.2 Streams
• All input and output is performed with streams (, 378)—which are sequences of bytes.

• Normally, the standard input stream is connected to the keyboard, and the standard output and
error streams are connected to the computer screen (, 378).

• Operating systems often allow the standard input and standard output streams to be redirected
to other devices.

Section 9.3 Formatting Output with printf
• A format control string (, 378) describes the formats in which the output values appear. The for-

mat control string consists of conversion specifiers, flags, field widths, precisions and literal
characters.

• A conversion specification (, 379) consists of a % (, 379) and a conversion specifier.

398 Chapter 9 C Formatted Input/Output

Section 9.4 Printing Integers
• Integers are printed with the following conversion specifiers (, 379): d or i for optionally signed

integers, o for unsigned integers in octal form, u for unsigned integers in decimal form and x or
X for unsigned integers in hexadecimal form. The modifier h, l or ll is prefixed to the preceding
conversion specifiers to indicate a short, long or long long integer, respectively.

Section 9.5 Printing Floating-Point Numbers
• Floating-point values are printed with the following conversion specifiers: e or E (, 380) for ex-

ponential notation, f (, 381) for regular floating-point notation, and g or G for either e (or E)
notation or f notation. When the g (or G, , 381) conversion specifier is indicated, the e (or E)
conversion specifier is used if the value’s exponent is less than -4 or greater than or equal to the
precision with which the value is printed.

• The precision for the g and G conversion specifiers indicates the maximum number of significant
digits printed.

Section 9.6 Printing Strings and Characters
• The conversion specifier c (, 382) prints a character.

• The conversion specifier s (, 382) prints a string of characters ending in the null character.

Section 9.7 Other Conversion Specifiers
• The conversion specifier p (, 383) displays an address in an implementation-defined manner (on

many systems, hexadecimal notation is used).

• The conversion specifier %% (, 384) causes a literal % to be output.

Section 9.8 Printing with Field Widths and Precision
• If the field width (, 379) is larger than the object being printed, the object is right justified by

default.

• Field widths can be used with all conversion specifiers.

• Precision used with integer conversion specifiers indicates the minimum number of digits
printed. Zeros are prefixed to the printed value until the number of digits is equivalent to the
precision.

• Precision used with floating-point conversion specifiers e, E and f indicates the number of digits
that appear after the decimal point. Precision used with floating-point conversion specifiers g and
G indicates the number of significant digits to appear.

• Precision used with conversion specifier s indicates the number of characters to be printed.

• The field width and the precision can be combined by placing the field width, followed by a dec-
imal point, followed by the precision between the percent sign and the conversion specifier.

• It’s possible to specify the field width and the precision through integer expressions in the ar-
gument list following the format control string. To do so, use an asterisk (*) for the field width
or precision. The matching argument in the argument list is used in place of the asterisk.

Section 9.9 Using Flags in the printf Format Control String
• The - flag left justifies its argument in a field.

• The + flag (, 388) prints a plus sign for positive values and a minus sign for negative values.

• The space flag (, 388) prints a space preceding a positive value that’s not displayed with the + flag.

• The # flag (, 389) prefixes 0 to octal values and 0x or 0X to hexadecimal values and forces the
decimal point to be printed for floating-point values printed with e, E, f, g or G.

 Self-Review Exercises 399

• The 0 flag (, 389) prints leading zeros for a value that does not occupy its entire field width.

Section 9.10 Printing Literals and Escape Sequences
• Most literal characters to be printed in a printf statement can simply be included in the format

control string. However, there are several “problem” characters, such as the quotation mark (", ,
390) that delimits the format control string itself. Various control characters, such as newline
and tab, must be represented by escape sequences. An escape sequence is represented by a back-
slash (\), followed by a particular escape character.

Section 9.11 Reading Formatted Input with scanf
• Input formatting is accomplished with the scanf library function.

• Integers are input with scanf with the conversion specifiers d and i (, 392) for optionally signed
integers and o, u, x or X for unsigned integers. The modifiers h, l and ll are placed before an
integer conversion specifier to input a short, long and long long integer, respectively.

• Floating-point values are input with scanf with the conversion specifiers e, E, f, g or G. The mod-
ifiers l and L are placed before any of the floating-point conversion specifiers to indicate that the
input value is a double or long double value, respectively.

• Characters are input with scanf with the conversion specifier c (, 394).

• Strings are input with scanf with the conversion specifier s (, 394).

• A scanf with a scan set (, 394) scans the characters in the input, looking only for those characters
that match characters contained in the scan set. When a character is matched, it’s stored in a char-
acter array. The scan set stops inputting characters when a character not contained in the scan
set is encountered.

• To create an inverted scan set (, 395), place a caret (^) in the square brackets before the scan char-
acters. This causes characters input with scanf and not appearing in the scan set to be stored until
a character contained in the inverted scan set is encountered.

• Address values are input with scanf with the conversion specifier p.

• Conversion specifier n stores the number of characters input so far in the current scanf. The
corresponding argument is a pointer to int.

• The assignment suppression character (*, , 396) reads data from the input stream and discards
the data.

• A field width is used in scanf to read a specific number of characters from the input stream.

Self-Review Exercises
9.1 Fill in the blanks in each of the following:

a) All input and output is dealt with in the form of .
b) The stream is normally connected to the keyboard.
c) The stream is normally connected to the computer screen.
d) Precise output formatting is accomplished with the function.
e) The format control string may contain , , , and

.
f) The conversion specifier or may be used to output a signed decimal

integer.
g) The conversion specifiers , and are used to display un-

signed integers in octal, decimal and hexadecimal form, respectively.
h) The modifiers and are placed before the integer conversion specifi-

ers to indicate that short or long integer values are to be displayed.

400 Chapter 9 C Formatted Input/Output

i) The conversion specifier is used to display a floating-point value in expo-
nential notation.

j) The modifier is placed before any floating-point conversion specifier to indi-
cate that a long double value is to be displayed.

k) The conversion specifiers e, E and f are displayed with digits of precision to
the right of the decimal point if no precision is specified.

l) The conversion specifiers and are used to print strings and charac-
ters, respectively.

m) All strings end in the character.
n) The field width and precision in a printf conversion specifier can be controlled with

integer expressions by substituting a(n) for the field width or for the precision
and placing an integer expression in the corresponding argument of the argument list.

o) The flag causes output to be left justified in a field.
p) The flag causes values to be displayed with either a plus sign or a minus sign.
q) Precise input formatting is accomplished with the function.
r) A(n) is used to scan a string for specific characters and store the characters in

an array.
s) The conversion specifier can be used to input optionally signed octal, decimal

and hexadecimal integers.
t) The conversion specifiers can be used to input a double value.
u) The is used to read data from the input stream and discard it without as-

signing it to a variable.
v) A(n) can be used in a scanf conversion specifier to indicate that a specific

number of characters or digits should be read from the input stream.

9.2 Find the error in each of the following and explain how it can be corrected.
a) The following statement should print the character 'c'.

 printf("%s\n", 'c');
b) The following statement should print 9.375%.

 printf("%.3f%", 9.375);
c) The following statement should print the first character of the string "Monday".

 printf("%c\n", "Monday");
d) puts(""A string in quotes"");
e) printf(%d%d, 12, 20);
f) printf("%c", "x");
g) printf("%s\n", 'Richard');

9.3 Write a statement for each of the following:
a) Print 1234 right justified in a 10-digit field.
b) Print 123.456789 in exponential notation with a sign (+ or -) and 3 digits of precision.
c) Read a double value into variable number.
d) Print 100 in octal form preceded by 0.
e) Read a string into character array string.
f) Read characters into array n until a nondigit character is encountered.
g) Use integer variables x and y to specify the field width and precision used to display the

double value 87.4573.
h) Read a value of the form 3.5%. Store the percentage in float variable percent and elim-

inate the % from the input stream. Do not use the assignment suppression character.
i) Print 3.333333 as a long double value with a sign (+ or -) in a field of 20 characters with

a precision of 3.

 Answers to Self-Review Exercises 401

Answers to Self-Review Exercises
9.1 a) streams. b) standard input. c) standard output. d) printf. e) conversion specifiers,
flags, field widths, precisions, literal characters. f) d, i. g) o, u, x (or X). h) h, l. i) e (or E). j) L.
k) 6. l) s, c. m) NULL ('\0'). n) asterisk (*). o) - (minus). p) + (plus). q) scanf. r) scan set. s) i.
t) le, lE, lf, lg or lG. u) assignment suppression character (*). v) field width.

9.2 a) Error: Conversion specifier s expects an argument of type pointer to char.
Correction: To print the character 'c', use the conversion specifier %c or change
'c' to "c".

b) Error: Trying to print the literal character % without using the conversion specifier %%.
Correction: Use %% to print a literal % character.

c) Error: Conversion specifier c expects an argument of type char.
Correction: To print the first character of "Monday" use the conversion specifier %1s.

d) Error: Trying to print the literal character " without using the \" escape sequence.
Correction: Replace each quote in the inner set of quotes with \".

e) Error: The format control string is not enclosed in double quotes.
Correction: Enclose %d%d in double quotes.

f) Error: The character x is enclosed in double quotes.
Correction: Character constants to be printed with %c must be enclosed in single
quotes.

g) Error: The string to be printed is enclosed in single quotes.
Correction: Use double quotes instead of single quotes to represent a string.

9.3 a) printf("%10d\n", 1234);
b) printf("%+.3e\n", 123.456789);
c) scanf("%lf", &number);
d) printf("%#o\n", 100);
e) scanf("%s", string);
f) scanf("%[0123456789]", n);
g) printf("%*.*f\n", x, y, 87.4573);
h) scanf("%f%%", &percent);
i) printf("%+20.3Lf\n", 3.333333);

Exercises
9.4 Write a printf or scanf statement for each of the following:

a) Print unsigned integer 40000 left justified in a 15-digit field with 8 digits.
b) Read a hexadecimal value into variable hex.
c) Print 200 with and without a sign.
d) Print 100 in hexadecimal form preceded by 0x.
e) Read characters into array s until the letter p is encountered.
f) Print 1.234 in a 9-digit field with preceding zeros.
g) Read a time of the form hh:mm:ss, storing the parts of the time in the integer variables

hour, minute and second. Skip the colons (:) in the input stream. Use the assignment
suppression character.

h) Read a string of the form "characters" from the standard input. Store the string in
character array s. Eliminate the quotation marks from the input stream.

i) Read a time of the form hh:mm:ss, storing the parts of the time in the integer variables
hour, minute and second. Skip the colons (:) in the input stream. Do not use the as-
signment suppression character.

402 Chapter 9 C Formatted Input/Output

9.5 Show what each of the following statements prints. If a statement is incorrect, indicate why.
a) printf("%-10d\n", 10000);
b) printf("%c\n", "This is a string");
c) printf("%*.*lf\n", 8, 3, 1024.987654);
d) printf("%#o\n%#X\n%#e\n", 17, 17, 1008.83689);
e) printf("% ld\n%+ld\n", 1000000, 1000000);
f) printf("%10.2E\n", 444.93738);
g) printf("%10.2g\n", 444.93738);
h) printf("%d\n", 10.987);

9.6 Find the error(s) in each of the following program segments. Explain how each error can be
corrected.

a) printf("%s\n", 'Happy Birthday');
b) printf("%c\n", 'Hello');
c) printf("%c\n", "This is a string");
d) The following statement should print "Bon Voyage":

printf(""%s"", "Bon Voyage");
e) char day[] = "Sunday";

printf("%s\n", day[3]);
f) puts('Enter your name: ');
g) printf(%f, 123.456);
h) The following statement should print the characters 'O' and 'K':

printf("%s%s\n", 'O', 'K');
i) char s[10];

scanf("%c", s[7]);

9.7 (Differences Between %d and %i) Write a program to test the difference between the %d and
%i conversion specifiers when used in scanf statements. Ask the user to enter two integers separated
by a space. Use the statements

scanf("%i%d", &x, &y);
printf("%d %d\n", x, y);

to input and print the values. Test the program with the following sets of input data:

 10 10

 -10 -10

 010 010

0x10 0x10

9.8 (Printing Numbers in Various Field Widths) Write a program to test the results of printing
the integer value 12345 and the floating-point value 1.2345 in fields of various sizes. What happens
when the values are printed in fields containing fewer digits than the values?

9.9 (Rounding Floating-Point Numbers) Write a program that prints the value 100.453627
rounded to the nearest digit, tenth, hundredth, thousandth and ten-thousandth.

9.10 (Temperature Conversions) Write a program that converts integer Fahrenheit temperatures
from 0 to 212 degrees to floating-point Celsius temperatures with 3 digits of precision. Perform the
calculation using the formula

celsius = 5.0 / 9.0 * (fahrenheit - 32);
The output should be printed in two right-justified columns of 10 characters each, and the Celsius
temperatures should be preceded by a sign for both positive and negative values.

 Exercises 403

9.11 (Escape Sequences) Write a program to test the escape sequences \', \", \?, \\, \a, \b, \n,
\r and \t. For the escape sequences that move the cursor, print a character before and after printing
the escape sequence so it’s clear where the cursor has moved.

9.12 (Printing a Question Mark) Write a program that determines whether ? can be printed as
part of a printf format control string as a literal character rather than using the \? escape sequence.

9.13 (Reading an Integer with Each scanf Conversion Specifier) Write a program that inputs the
value 437 using each of the scanf integer conversion specifiers. Print each input value using all the
integer conversion specifiers.

9.14 (Outputting a Number with the Floating-Point Conversion Specifiers) Write a program
that uses each of the conversion specifiers e, f and g to input the value 1.2345. Print the values of
each variable to prove that each conversion specifier can be used to input this same value.

9.15 (Reading Strings in Quotes) In some programming languages, strings are entered surround-
ed by either single or double quotation marks. Write a program that reads the three strings suzy,
"suzy" and 'suzy'. Are the single and double quotes ignored by C or read as part of the string?

9.16 (Printing a Question Mark as a Character Constant) Write a program that determines
whether ? can be printed as the character constant '?' rather than the character constant escape se-
quence '\?' using conversion specifier %c in the format control string of a printf statement.

9.17 (Using %g with Various Precisions) Write a program that uses the conversion specifier g to
output the value 9876.12345. Print the value with precisions ranging from 1 to 9.

10 C Structures, Unions, Bit
Manipulation and
Enumerations

O b j e c t i v e s
In this chapter, you’ll:

■ Create and use structs,
unions and enums.

■ Understand self-referential
structs.

■ Learn about the operations
that can be performed on
struct instances.

■ Initialize struct members.

■ Access struct members.

■ Pass struct instances to
functions by value and by
reference.

■ Use typedefs to create
aliases for existing type
names.

■ Learn about the operations
that can be performed on
unions.

■ Initialize unions.

■ Manipulate integer data with
the bitwise operators.

■ Create bit fields for storing
data compactly.

■ Use enum constants.

■ Consider the security issues
of working with structs, bit
manipulation and enums.

10.1 Introduction 405

10.1 Introduction
Structures—sometimes referred to as aggregates in the C standard—are collections of re-
lated variables under one name. Structures may contain variables of many different data
types—in contrast to arrays, which contain only elements of the same data type. Structures
are commonly used to define records to be stored in files (see Chapter 11). Pointers and
structures facilitate the formation of more complex data structures such as linked lists,
queues, stacks and trees (see Chapter 12). We’ll also discuss:

• typedefs—for creating aliases for previously defined data types.

• unions—similar to structures, but with members that share the same storage space.

• bitwise operators—for manipulating the bits of integral operands.

• bit fields—unsigned int or int members of structures or unions for which you
specify the number of bits in which the members are stored, helping you pack in-
formation tightly.

• enumerations—sets of integer constants represented by identifiers.

10.2 Structure Definitions
Structures are derived data types—they’re constructed using objects of other types. Con-
sider the following structure definition:

10.1 Introduction
10.2 Structure Definitions

10.2.1 Self-Referential Structures
10.2.2 Defining Variables of Structure Types
10.2.3 Structure Tag Names
10.2.4 Operations That Can Be Performed on

Structures
10.3 Initializing Structures
10.4 Accessing Structure Members with .

and ->
10.5 Using Structures with Functions
10.6 typedef
10.7 Example: High-Performance Card

Shuffling and Dealing Simulation
10.8 Unions

10.8.1 Union Declarations
10.8.2 Operations That Can Be Performed on

Unions

10.8.3 Initializing Unions in Declarations
10.8.4 Demonstrating Unions

10.9 Bitwise Operators
10.9.1 Displaying an Unsigned Integer in Bits
10.9.2 Making Function displayBits

More Generic and Portable
10.9.3 Using the Bitwise AND, Inclusive OR,

Exclusive OR and Complement
Operators

10.9.4 Using the Bitwise Left- and Right-
Shift Operators

10.9.5 Bitwise Assignment Operators
10.10 Bit Fields

10.10.1 Defining Bit Fields
10.10.2 Using Bit Fields to Represent a Card’s

Face, Suit and Color
10.10.3 Unnamed Bit Fields

10.11 Enumeration Constants
10.12 Anonymous Structures and Unions
10.13 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

struct card {
 char *face;
 char *suit;
};

406 Chapter 10 C Structures, Unions, Bit Manipulation and Enumerations

Keyword struct introduces a structure definition. The identifier card is the structure tag,
which names the structure definition and is used with struct to declare variables of the
structure type—e.g., struct card. Variables declared within the braces of the structure
definition are the structure’s members. Members of the same structure type must have
unique names, but two different structure types may contain members of the same name
without conflict (we’ll soon see why). Each structure definition must end with a semicolon.

The definition of struct card contains members face and suit, each of type char *.
Structure members can be variables of the primitive data types (e.g., int, float, etc.), or
aggregates, such as arrays and other structures. As we saw in Chapter 6, each element of an
array must be of the same type. Structure members, however, can be of different types. For
example, the following struct contains character array members for an employee’s first
and last names, an unsigned int member for the employee’s age, a char member that
would contain 'M' or 'F' for the employee’s gender and a double member for the employ-
ee’s hourly salary:

10.2.1 Self-Referential Structures
A variable of a struct type cannot be declared in the definition of that same struct type.
A pointer to that struct type, however, may be included. For example, in struct
employee2:

the instance of itself (teamLeader) is an error. Because teamLeaderPtr is a pointer (to type
struct employee2), it’s permitted in the definition. A structure containing a member that’s
a pointer to the same structure type is referred to as a self-referential structure. Self-referential
structures are used in Chapter 12, to build linked data structures.

Common Programming Error 10.1
Forgetting the semicolon that terminates a structure definition is a syntax error.

struct employee {
 char firstName[20];
 char lastName[20];
 unsigned int age;
 char gender;
 double hourlySalary;
};

struct employee2 {
 char firstName[20];
 char lastName[20];
 unsigned int age;
 char gender;
 double hourlySalary;
 struct employee2 teamLeader; // ERROR
 struct employee2 *teamLeaderPtr; // pointer
};

Common Programming Error 10.2
A structure cannot contain an instance of itself.

10.2 Structure Definitions 407

10.2.2 Defining Variables of Structure Types
Structure definitions do not reserve any space in memory; rather, each definition creates a
new data type that’s used to define variables—like a blueprint of how to build instances of
that struct. Structure variables are defined like variables of other types. The definition

declares aCard to be a variable of type struct card, declares deck to be an array with 52
elements of type struct card and declares cardPtr to be a pointer to struct card. After
the preceding statement, we’ve reserved memory for one struct card object named
aCard, 52 struct card objects in the deck array and an uninitialized pointer of type
struct card. Variables of a given structure type may also be declared by placing a comma-
separated list of the variable names between the closing brace of the structure definition
and the semicolon that ends the structure definition. For example, the preceding defini-
tion could have been incorporated into the struct card definition as follows:

10.2.3 Structure Tag Names
The structure tag name is optional. If a structure definition does not contain a structure
tag name, variables of the structure type may be declared only in the structure definition—
not in a separate declaration.

10.2.4 Operations That Can Be Performed on Structures
The only valid operations that may be performed on structures are:

• assigning struct variables to struct variables of the same type (see Section 10.7)—
for a pointer member, this copies only the address stored in the pointer.

• taking the address (&) of a struct variable (see Section 10.4).

• accessing the members of a struct variable (see Section 10.4).

• using the sizeof operator to determine the size of a struct variable.

Structures may not be compared using operators == and !=, because structure members
are not necessarily stored in consecutive bytes of memory. Sometimes there are “holes” in a
structure, because computers may store specific data types only on certain memory bound-
aries such as half-word, word or double-word boundaries. A word is a memory unit used to
store data in a computer—usually 4 bytes or 8 bytes. Consider the following structure defi-
nition, in which sample1 and sample2 of type struct example are declared:

struct card aCard, deck[52], *cardPtr;

struct card {
 char *face;
 char *suit;
} aCard, deck[52], *cardPtr;

Good Programming Practice 10.1
Always provide a structure tag name when creating a structure type. The structure tag
name is required for declaring new variables of the structure type later in the program.

Common Programming Error 10.3
Assigning a structure of one type to a structure of a different type is a compilation error.

408 Chapter 10 C Structures, Unions, Bit Manipulation and Enumerations

A computer with 4-byte words might require that each member of struct example be
aligned on a word boundary, i.e., at the beginning of a word—this is machine dependent.
Figure 10.1 shows a sample storage alignment for a variable of type struct example that
has been assigned the character 'a' and the integer 97 (the bit representations of the values
are shown). If the members are stored beginning at word boundaries, there’s a three-byte
hole (bytes 1–3 in the figure) in the storage for variables of type struct example. The value
in the three-byte hole is undefined. Even if the member values of sample1 and sample2 are
in fact equal, the structures are not necessarily equal, because the undefined three-byte
holes are not likely to contain identical values.

10.3 Initializing Structures
Structures can be initialized using initializer lists as with arrays. To initialize a structure,
follow the variable name in the definition with an equals sign and a brace-enclosed, com-
ma-separated list of initializers. For example, the declaration

creates variable aCard to be of type struct card (as defined in Section 10.2) and initializes
member face to "Three" and member suit to "Hearts". If there are fewer initializers in
the list than members in the structure, the remaining members are automatically initial-
ized to 0 (or NULL if the member is a pointer). Structure variables defined outside a func-
tion definition (i.e., externally) are initialized to 0 or NULL if they’re not explicitly
initialized in the external definition. Structure variables may also be initialized in assign-
ment statements by assigning a structure variable of the same type, or by assigning values
to the individual members of the structure.

10.4 Accessing Structure Members with . and ->
Two operators are used to access members of structures: the structure member operator
(.)—also called the dot operator—and the structure pointer operator (->)—also called
the arrow operator. The structure member operator accesses a structure member via the

struct example {
 char c;
 int i;
} sample1, sample2;

Fig. 10.1 | Possible storage alignment for a variable of type struct example showing an
undefined area in memory.

Portability Tip 10.1
Because the size of data items of a particular type is machine dependent and because storage
alignment considerations are machine dependent, so too is the representation of a structure.

struct card aCard = { "Three", "Hearts" };

00000000 0110000100000000 0000000001100001

0 1 2 3
Byte

4 765

10.4 Accessing Structure Members with . and -> 409

structure variable name. For example, to print member suit of structure variable aCard
defined in Section 10.3, use the statement

The structure pointer operator—consisting of a minus (-) sign and a greater than (>) sign
with no intervening spaces—accesses a structure member via a pointer to the structure.
Assume that the pointer cardPtr has been declared to point to struct card and that the
address of structure aCard has been assigned to cardPtr. To print member suit of struc-
ture aCard with pointer cardPtr, use the statement

The expression cardPtr->suit is equivalent to (*cardPtr).suit, which dereferences the
pointer and accesses the member suit using the structure member operator. The paren-
theses are needed here because the structure member operator (.) has a higher precedence
than the pointer dereferencing operator (*). The structure pointer operator and structure
member operator, along with parentheses (for calling functions) and brackets ([]) used for
array indexing, have the highest operator precedence and associate from left to right.

The program of Fig. 10.2 demonstrates the use of the structure member and structure
pointer operators. Using the structure member operator, the members of structure aCard
are assigned the values "Ace" and "Spades", respectively (lines 17 and 18). Pointer
cardPtr is assigned the address of structure aCard (line 20). Function printf prints the
members of structure variable aCard using the structure member operator with variable
name aCard, the structure pointer operator with pointer cardPtr and the structure
member operator with dereferenced pointer cardPtr (lines 22–24).

printf("%s", aCard.suit); // displays Hearts

printf("%s", cardPtr->suit); // displays Hearts

Good Programming Practice 10.2
Do not put spaces around the -> and . operators. Omitting spaces helps emphasize that
the expressions the operators are contained in are essentially single variable names.

Common Programming Error 10.4
Inserting space between the - and > components of the structure pointer operator or be-
tween the components of any other multiple-keystroke operator except ?: is a syntax error.

Common Programming Error 10.5
Attempting to refer to a structure member by using only the member’s name is a syntax error.

Common Programming Error 10.6
Not using parentheses when referring to a structure member that uses a pointer and the
structure member operator (e.g., *cardPtr.suit) is a syntax error. To prevent this prob-
lem use the arrow (->) operator instead.

1 // Fig. 10.2: fig10_02.c

2 // Structure member operator and

3 // structure pointer operator

Fig. 10.2 | Structure member operator and structure pointer operator. (Part 1 of 2.)

410 Chapter 10 C Structures, Unions, Bit Manipulation and Enumerations

10.5 Using Structures with Functions
Structures may be passed to functions by

• passing individual structure members.

• passing an entire structure.

• passing a pointer to a structure.

When structures or individual structure members are passed to a function, they’re passed
by value. Therefore, the members of a caller’s structure cannot be modified by the called
function. To pass a structure by reference, pass the address of the structure variable. Arrays
of structures—like all other arrays—are automatically passed by reference.

In Chapter 6, we stated that you can use a structure to pass an array by value. To do
so, create a structure with the array as a member. Structures are passed by value, so the
array is passed by value.

4 #include <stdio.h>
5
6
7
8
9

10
11
12 int main(void)
13 {

14 struct card aCard; // define one struct card variable
15
16 // place strings into aCard

17

18
19
20 struct card *cardPtr = &aCard; // assign address of aCard to cardPtr
21
22
23

24

25 }

Ace of Spades
Ace of Spades
Ace of Spades

Common Programming Error 10.7
Assuming that structures, like arrays, are automatically passed by reference and trying to
modify the caller’s structure values in the called function is a logic error.

Performance Tip 10.1
Passing structures by reference is more efficient than passing structures by value (which re-
quires the entire structure to be copied).

Fig. 10.2 | Structure member operator and structure pointer operator. (Part 2 of 2.)

// card structure definition

struct card {
 char *face; // define pointer face
 char *suit; // define pointer suit
};

aCard.face = "Ace";
aCard.suit = "Spades";

printf("%s%s%s\n%s%s%s\n%s%s%s\n", aCard.face, " of ", aCard.suit,
 cardPtr->face, " of ", cardPtr->suit,
 (*cardPtr).face, " of ", (*cardPtr).suit);

10.6 typedef 411

10.6 typedef
The keyword typedef provides a mechanism for creating synonyms (or aliases) for previ-
ously defined data types. Names for structure types are often defined with typedef to cre-
ate shorter type names. For example, the statement

defines the new type name Card as a synonym for type struct card. C programmers often
use typedef to define a structure type, so a structure tag is not required. For example, the
following definition

creates the structure type Card without the need for a separate typedef statement.

Card can now be used to declare variables of type struct card. The declaration

declares an array of 52 Card structures (i.e., variables of type struct card). Creating a new
name with typedef does not create a new type; typedef simply creates a new type name,
which may be used as an alias for an existing type name. A meaningful name helps make
the program self-documenting. For example, when we read the previous declaration, we
know “deck is an array of 52 Cards.”

Often, typedef is used to create synonyms for the basic data types. For example, a
program requiring four-byte integers may use type int on one system and type long on
another. Programs designed for portability often use typedef to create an alias for four-
byte integers, such as Integer. The alias Integer can be changed once in the program to
make the program work on both systems.

10.7 Example: High-Performance Card Shuffling and
Dealing Simulation
The program in Fig. 10.3 is based on the card shuffling and dealing simulation discussed
in Chapter 7. The program represents the deck of cards as an array of structures and uses

typedef struct card Card;

typedef struct {
 char *face;
 char *suit;
} Card;

Good Programming Practice 10.3
Capitalize the first letter of typedef names to emphasize that they’re synonyms for other
type names.

Card deck[52];

Portability Tip 10.2
Use typedef to help make a program more portable.

Good Programming Practice 10.4
Using typedefs can help make a program more readable and maintainable.

412 Chapter 10 C Structures, Unions, Bit Manipulation and Enumerations

high-performance shuffling and dealing algorithms. The program output is shown in
Fig. 10.4.

1 // Fig. 10.3: fig10_03.c

2 // Card shuffling and dealing program using structures

3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <time.h>
6
7 #define CARDS 52
8 #define FACES 13
9

10
11
12
13
14
15
16
17
18 // prototypes

19 void fillDeck(Card * const wDeck, const char * wFace[],
20 const char * wSuit[]);
21 void shuffle(Card * const wDeck);
22 void deal(const Card * const wDeck);
23
24 int main(void)
25 {
26

27
28 // initialize array of pointers
29 const char *face[] = { "Ace", "Deuce", "Three", "Four", "Five",
30 "Six", "Seven", "Eight", "Nine", "Ten",
31 "Jack", "Queen", "King"};
32
33 // initialize array of pointers

34 const char *suit[] = { "Hearts", "Diamonds", "Clubs", "Spades"};
35
36 srand(time(NULL)); // randomize
37
38 fillDeck(deck, face, suit); // load the deck with Cards

39 shuffle(deck); // put Cards in random order

40 deal(deck); // deal all 52 Cards
41 }

42
43 // place strings into Card structures
44 void fillDeck(, const char * wFace[],
45 const char * wSuit[])
46 {
47 // loop through wDeck

48 for (size_t i = 0; i < CARDS; ++i) {
49

Fig. 10.3 | Card shuffling and dealing program using structures. (Part 1 of 2.)

// card structure definition
struct card {
 const char *face; // define pointer face
 const char *suit; // define pointer suit
};

typedef struct card Card; // new type name for struct card

Card deck[CARDS]; // define array of Cards

Card * const wDeck

wDeck[i].face = wFace[i % FACES];

10.7 Example: High-Performance Card Shuffling and Dealing Simulation 413

In the program, function fillDeck (lines 44–52) initializes the Card array in order
with "Ace" through "King" of each suit. The Card array is passed (in line 39) to function
shuffle (lines 55–64), where the high-performance shuffling algorithm is implemented.
Function shuffle takes an array of 52 Cards as an argument. The function loops through
the 52 Cards (lines 58–63). For each Card, a number between 0 and 51 is picked ran-
domly. Next, the current Card and the randomly selected Card are swapped in the array
(lines 60–62). A total of 52 swaps are made in a single pass of the entire array, and the array
of Cards is shuffled! This algorithm cannot suffer from indefinite postponement like the

50

51 }

52 }
53
54 // shuffle cards

55 void shuffle(Card * const wDeck)
56 {

57 // loop through wDeck randomly swapping Cards

58 for (size_t i = 0; i < CARDS; ++i) {
59 size_t j = rand() % CARDS;
60

61
62

63 }

64 }
65
66 // deal cards

67 void deal()

68 {
69 // loop through wDeck

70 for (size_t i = 0; i < CARDS; ++i) {
71 printf("%5s of %-8s%s", , ,
72 (i + 1) % 4 ? " " : "\n");
73 }

74 }

Three of Hearts Jack of Clubs Three of Spades Six of Diamonds
 Five of Hearts Eight of Spades Three of Clubs Deuce of Spades
 Jack of Spades Four of Hearts Deuce of Hearts Six of Clubs
Queen of Clubs Three of Diamonds Eight of Diamonds King of Clubs
 King of Hearts Eight of Hearts Queen of Hearts Seven of Clubs
Seven of Diamonds Nine of Spades Five of Clubs Eight of Clubs
 Six of Hearts Deuce of Diamonds Five of Spades Four of Clubs
Deuce of Clubs Nine of Hearts Seven of Hearts Four of Spades
 Ten of Spades King of Diamonds Ten of Hearts Jack of Diamonds
 Four of Diamonds Six of Spades Five of Diamonds Ace of Diamonds
 Ace of Clubs Jack of Hearts Ten of Clubs Queen of Diamonds
 Ace of Hearts Ten of Diamonds Nine of Clubs King of Spades
 Ace of Spades Nine of Diamonds Seven of Spades Queen of Spades

Fig. 10.4 | Output for the high-performance card shuffling and dealing simulation.

Fig. 10.3 | Card shuffling and dealing program using structures. (Part 2 of 2.)

wDeck[i].suit = wSuit[i / FACES];

Card temp = wDeck[i];

wDeck[i] = wDeck[j];

wDeck[j] = temp;

const Card * const wDeck

wDeck[i].face wDeck[i].suit

414 Chapter 10 C Structures, Unions, Bit Manipulation and Enumerations

shuffling algorithm presented in Chapter 7. Because the Cards were swapped in place in
the array, the high-performance dealing algorithm implemented in function deal (lines
67–74) requires only one pass of the array to deal the shuffled Cards.

Fisher-Yates Shuffling Algorithm
It’s recommended that you use a so-called unbiased shuffling algorithm for real card games.
Such an algorithm ensures that all possible shuffled card sequences are equally likely to oc-
cur. Exercise 10.18 asks you to research the popular unbiased Fisher-Yates shuffling algo-
rithm and use it to reimplement the DeckOfCards method shuffle in Fig. 10.3.

10.8 Unions
Like a structure, a union also is a derived data type, but with members that share the same
storage space. For different situations in a program, some variables may not be relevant, but
other variables are—so a union shares the space instead of wasting storage on variables that
are not being used. The members of a union can be of any data type. The number of bytes
used to store a union must be at least enough to hold the largest member. In most cases,
unions contain two or more data types. Only one member, and thus one data type, can be
referenced at a time. It’s your responsibility to ensure that the data in a union is referenced
with the proper data type.

10.8.1 Union Declarations
A union definition has the same format as a structure definition. The union definition

indicates that number is a union type with members int x and double y. The union defi-
nition is normally placed in a header and included in all source files that use the union
type.

Common Programming Error 10.8
Forgetting to include the array index when referring to individual structures in an array
of structures is a syntax error.

Common Programming Error 10.9
Referencing data in a union with a variable of the wrong type is a logic error.

Portability Tip 10.3
If data is stored in a union as one type and referenced as another type, the results are im-
plementation dependent.

union number {
 int x;
 double y;
};

Software Engineering Observation 10.1
As with a struct definition, a union definition simply creates a new type. Placing a
union or struct definition outside any function does not create a global variable.

10.8 Unions 415

10.8.2 Operations That Can Be Performed on Unions
The operations that can be performed on a union are:

• assigning a union to another union of the same type.

• taking the address (&) of a union variable.

• accessing union members using the structure member operator and the structure
pointer operator.

Unions may not be compared using operators == and != for the same reasons that struc-
tures cannot be compared.

10.8.3 Initializing Unions in Declarations
In a declaration, a union may be initialized with a value of the same type as the first union
member. For example, with the union in Section 10.8.1, the statement

is a valid initialization of union variable value because the union is initialized with an int,
but the following declaration would truncate the initializer value’s floating-point part
(some compilers will issue a warning about this):

10.8.4 Demonstrating Unions
The program in Fig. 10.5 uses the variable value (line 13) of type union number (lines 6–
9) to display the value stored in the union as both an int and a double. The program out-
put is implementation dependent. The program output shows that the internal representa-
tion of a double value can be quite different from the representation of int.

union number value = { 10 };

union number value = { 1.43 };

Portability Tip 10.4
The amount of storage required to store a union is implementation dependent but will
always be at least as large as the largest member of the union.

Portability Tip 10.5
Some unions may not port easily among computer systems. Whether a union is portable or
not often depends on the storage alignment requirements for the union member data types
on a given system.

1 // Fig. 10.5: fig10_05.c

2 // Displaying the value of a union in both member data types
3 #include <stdio.h>
4
5
6
7
8
9

Fig. 10.5 | Displaying the value of a union in both member data types. (Part 1 of 2.)

// number union definition

union number {
 int x;
 double y;
};

416 Chapter 10 C Structures, Unions, Bit Manipulation and Enumerations

10.9 Bitwise Operators
Computers represent all data internally as sequences of bits. Each bit can assume the value
0 or the value 1. On most systems, a sequence of eight bits forms a byte—the typical stor-
age unit for a variable of type char. Other data types are stored in larger numbers of bytes.
The bitwise operators are used to manipulate the bits of integral operands, both signed
and unsigned. Unsigned integers are normally used with the bitwise operators, which are
summarized in Fig. 10.6.

The bitwise AND, bitwise inclusive OR and bitwise exclusive OR operators compare
their two operands bit by bit. The bitwise AND operator sets each bit in the result to 1 if

10
11 int main(void)
12 {
13

14

15
16 printf("%s\n%s\n%s\n %d\n\n%s\n %f\n\n\n",
17 "Put 100 in the integer member",
18 "and print both members.",
19 "int:", value.x,
20 "double:", value.y);
21
22

23 printf("%s\n%s\n%s\n %d\n\n%s\n %f\n",
24 "Put 100.0 in the floating member",
25 "and print both members.",
26 "int:", value.x,
27 "double:", value.y);
28 }

Put 100 in the integer member
and print both members.
int:
 100

double:
 -92559592117433136000.000000

Put 100.0 in the floating member
and print both members.
int:
 0

double:
 100.000000

Portability Tip 10.6
Bitwise data manipulations are machine dependent.

Fig. 10.5 | Displaying the value of a union in both member data types. (Part 2 of 2.)

union number value; // define union variable

value.x = 100; // put an integer into the union

value.y = 100.0; // put a double into the same union

10.9 Bitwise Operators 417

the corresponding bit in both operands is 1. The bitwise inclusive OR operator sets each bit
in the result to 1 if the corresponding bit in either (or both) operand(s) is 1. The bitwise
exclusive OR operator sets each bit in the result to 1 if the corresponding bits in each
operand are different. The left-shift operator shifts the bits of its left operand to the left by
the number of bits specified in its right operand. The right-shift operator shifts the bits in
its left operand to the right by the number of bits specified in its right operand. The bitwise
complement operator sets all 0 bits in its operand to 1 in the result and sets all 1 bits to 0 in
the result—often called toggling the bits. Detailed discussions of each bitwise operator
appear in the examples that follow. The bitwise operators are summarized in Fig. 10.6.

The bitwise operator discussions in this section show the binary representations of the
integer operands. For a detailed explanation of the binary (also called base-2) number
system see Appendix C. Because of the machine-dependent nature of bitwise manipula-
tions, these programs might not work correctly or might work differently on your system.

10.9.1 Displaying an Unsigned Integer in Bits
When using the bitwise operators, it’s useful to display values in binary to show the precise
effects of these operators. The program of Fig. 10.7 prints an unsigned int in its binary rep-
resentation in groups of eight bits each for readability. For the examples in this section, we
assume an implementation where unsigned ints are stored in 4 bytes (32 bits) of memory.

Operator Description

& bitwise AND Compares its two operands bit by bit. The bits in the result are
set to 1 if the corresponding bits in the two operands are both 1.

| bitwise inclusive OR Compares its two operands bit by bit. The bits in the result are
set to 1 if at least one of the corresponding bits in the two oper-
ands is 1.

^ bitwise exclusive
OR (also known as
bitwise XOR)

Compares its two operands bit by bit. The bits in the result are
set to 1 if the corresponding bits in the two operands are differ-
ent.

<< left shift Shifts the bits of the first operand left by the number of bits spec-
ified by the second operand; fill from the right with 0 bits.

>> right shift Shifts the bits of the first operand right by the number of bits
specified by the second operand; the method of filling from the
left is machine dependent when the left operand is negative.

~ complement All 0 bits are set to 1 and all 1 bits are set to 0.

Fig. 10.6 | Bitwise operators.

1 // Fig. 10.7: fig10_07.c

2 // Displaying an unsigned int in bits

3 #include <stdio.h>

Fig. 10.7 | Displaying an unsigned int in bits. (Part 1 of 2.)

418 Chapter 10 C Structures, Unions, Bit Manipulation and Enumerations

Function displayBits (lines 18–36) uses the bitwise AND operator to combine vari-
able value with variable displayMask (line 27). Often, the bitwise AND operator is used
with an operand called a mask—an integer value with specific bits set to 1. Masks are used
to hide some bits in a value while selecting other bits. In function displayBits, mask vari-
able displayMask is assigned the value

The left-shift operator shifts the value 1 from the low-order (rightmost) bit to the high-
order (leftmost) bit in displayMask and fills in 0 bits from the right. Line 27

4
5 void displayBits(unsigned int value); // prototype
6
7 int main(void)
8 {

9 unsigned int x; // variable to hold user input
10
11 printf("%s", "Enter a nonnegative int: ");
12 scanf("%u", &x);
13
14 displayBits(x);

15 }
16
17 // display bits of an unsigned int value

18 void displayBits(unsigned int value)
19 {

20 // define displayMask and left shift 31 bits

21

22
23 printf("%10u = ", value);
24
25 // loop through bits
26 for (unsigned int c = 1; c <= 32; ++c) {
27

28
29
30 if (c % 8 == 0) { // output space after 8 bits
31 putchar(' ');
32 }

33 }

34
35 putchar('\n');
36 }

Enter a nonnegative int: 65000
 65000 = 00000000 00000000 11111101 11101000

1 << 31 (10000000 00000000 00000000 00000000)

putchar(value & displayMask ? '1' : '0');

Fig. 10.7 | Displaying an unsigned int in bits. (Part 2 of 2.)

unsigned int displayMask = 1 << 31;

putchar(value & displayMask ? '1' : '0');
value <<= 1; // shift value left by 1

10.9 Bitwise Operators 419

determines whether a 1 or a 0 should be printed for the current leftmost bit of variable
value. When value and displayMask are combined using &, all the bits except the high-
order bit in variable value are “masked off” (hidden), because any bit “ANDed” with 0
yields 0. If the leftmost bit is 1, value & displayMask evaluates to a nonzero (true) value
and 1 is printed—otherwise, 0 is printed. Variable value is then left shifted one bit by the
expression value <<= 1 (this is equivalent to value = value << 1). These steps are repeated
for each bit in unsigned variable value. Figure 10.8 summarizes the results of combining
two bits with the bitwise AND operator.

10.9.2 Making Function displayBits More Generic and Portable
In line 21 of Fig. 10.7, we hard coded the integer 31 to indicate that the value 1 should be
shifted to the leftmost bit in the variable displayMask. Similarly, in line 26, we hard coded
the integer 32 to indicate that the loop should iterate 32 times—once for each bit in vari-
able value. We assumed that unsigned ints are always stored in 32 bits (four bytes) of
memory. Today’s popular computers generally use 32-bit- or 64-bit-word hardware archi-
tectures. As a C programmer, you’ll tend to work across many hardware architectures, and
sometimes unsigned ints will be stored in smaller or larger numbers of bits.

Common Programming Error 10.10
Using the logical AND operator (&&) for the bitwise AND operator (&)—and vice versa—
is an error.

Bit 1 Bit 2 Bit 1 & Bit 2

0 0 0

0 1 0

1 0 0

1 1 1

Fig. 10.8 | Results of combining two bits
with the bitwise AND operator &.

Portability Tip 10.7
Figure 10.7 can be made more generic and portable by replacing the integers 31 (line 21)
and 32 (line 26) with expressions that calculate these integers, based on the size of an
unsigned int for the platform on which the program executes. The symbolic constant
CHAR_BIT (defined in <limits.h>) represents the number of bits in a byte (normally 8).
Recall sizeof determines the number of bytes used to store an object or type. The expres-
sion sizeof(unsigned int) evaluates to 4 for 32-bit unsigned ints and 8 for 64-bit un-
signed ints. You can replace 31 with CHAR_BIT * sizeof(unsigned int) - 1 and replace
32 with CHAR_BIT * sizeof(unsigned int). For 32-bit unsigned ints, these expressions
evaluate to 31 and 32, respectively. For 64-bit unsigned ints, they evaluate to 63 and 64.

420 Chapter 10 C Structures, Unions, Bit Manipulation and Enumerations

10.9.3 Using the Bitwise AND, Inclusive OR, Exclusive OR and
Complement Operators
Figure 10.9 demonstrates the use of the bitwise AND operator, the bitwise inclusive OR
operator, the bitwise exclusive OR operator and the bitwise complement operator. The
program uses function displayBits (lines 46–64) to print the unsigned int values. The
output is shown in Fig. 10.10.

1 // Fig. 10.9: fig10_09.c

2 // Using the bitwise AND, bitwise inclusive OR, bitwise
3 // exclusive OR and bitwise complement operators

4 #include <stdio.h>
5
6 void displayBits(unsigned int value); // prototype
7
8 int main(void)
9 {

10 // demonstrate bitwise AND (&)

11 unsigned int number1 = 65535;
12 unsigned int mask = 1;
13 puts("The result of combining the following");
14 displayBits(number1);

15 displayBits(mask);
16 puts("using the bitwise AND operator & is");
17 displayBits();

18
19 // demonstrate bitwise inclusive OR (|)

20 number1 = 15;
21 unsigned int setBits = 241;
22 puts("\nThe result of combining the following");
23 displayBits(number1);

24 displayBits(setBits);
25 puts("using the bitwise inclusive OR operator | is");
26 displayBits();

27
28 // demonstrate bitwise exclusive OR (^)

29 number1 = 139;
30 unsigned int number2 = 199;
31 puts("\nThe result of combining the following");
32 displayBits(number1);

33 displayBits(number2);
34 puts("using the bitwise exclusive OR operator ^ is");
35 displayBits();

36
37 // demonstrate bitwise complement (~)

38 number1 = 21845;
39 puts("\nThe one's complement of");
40 displayBits(number1);

41 puts("is");
42 displayBits();
43 }

Fig. 10.9 | Using the bitwise AND, bitwise inclusive OR, bitwise exclusive OR and bitwise
complement operators. (Part 1 of 2.)

number1 & mask

number1 | setBits

number1 ^ number2

~number1

10.9 Bitwise Operators 421

Bitwise AND Operator (&)
In Fig. 10.9, integer variable number1 is assigned value 65535 (00000000 00000000
11111111 11111111) in line 11 and variable mask is assigned the value 1 (00000000

44
45 // display bits of an unsigned int value

46 void displayBits(unsigned int value)
47 {

48 // declare displayMask and left shift 31 bits

49 unsigned int displayMask = 1 << 31;
50
51 printf("%10u = ", value);
52
53 // loop through bits

54 for (unsigned int c = 1; c <= 32; ++c) {
55 putchar(value & displayMask ? '1' : '0');
56 value <<= 1; // shift value left by 1
57
58 if (c % 8 == 0) { // output a space after 8 bits
59 putchar(' ');
60 }

61 }

62
63 putchar('\n');
64 }

The result of combining the following
 65535 = 00000000 00000000 11111111 11111111
 1 = 00000000 00000000 00000000 00000001
using the bitwise AND operator & is
 1 = 00000000 00000000 00000000 00000001

The result of combining the following
 15 = 00000000 00000000 00000000 00001111
 241 = 00000000 00000000 00000000 11110001
using the bitwise inclusive OR operator | is
 255 = 00000000 00000000 00000000 11111111

The result of combining the following
 139 = 00000000 00000000 00000000 10001011
 199 = 00000000 00000000 00000000 11000111
using the bitwise exclusive OR operator ^ is
 76 = 00000000 00000000 00000000 01001100

The one's complement of
 21845 = 00000000 00000000 01010101 01010101
is
4294945450 = 11111111 11111111 10101010 10101010

Fig. 10.10 | Output for the program of Fig. 10.9.

Fig. 10.9 | Using the bitwise AND, bitwise inclusive OR, bitwise exclusive OR and bitwise
complement operators. (Part 2 of 2.)

422 Chapter 10 C Structures, Unions, Bit Manipulation and Enumerations

00000000 00000000 00000001) in line 12. When number1 and mask are combined using
the bitwise AND operator (&) in the expression number1 & mask (line 17), the result is
00000000 00000000 00000000 00000001. All the bits except the low-order bit in variable
number1 are “masked off” (hidden) by “ANDing” with variable mask.

Bitwise Inclusive OR Operator (|)
The bitwise inclusive OR operator is used to set specific bits to 1 in an operand. In Fig. 10.9,
variable number1 is assigned 15 (00000000 00000000 00000000 00001111) in line 20, and
variable setBits is assigned 241 (00000000 00000000 00000000 11110001) in line 21.
When number1 and setBits are combined using the bitwise inclusive OR operator in the
expression number1 | setBits (line 26), the result is 255 (00000000 00000000 00000000
11111111). Figure 10.11 summarizes the results of combining two bits with the bitwise in-
clusive OR operator.

Bitwise Exclusive OR Operator (^)
The bitwise exclusive OR operator (^) sets each bit in the result to 1 if exactly one of the cor-
responding bits in its two operands is 1. In Fig. 10.9, variables number1 and number2
are assigned the values 139 (00000000 00000000 00000000 10001011) and 199 (00000000
00000000 00000000 11000111) in lines 29–30. When these variables are combined with the
bitwise exclusive OR operator in the expression number1 ^ number2 (line 35), the result is
00000000 00000000 00000000 01001100. Figure 10.12 summarizes the results of combin-
ing two bits with the bitwise exclusive OR operator.

Bitwise Complement Operator (~)
The bitwise complement operator (~) sets all 1 bits in its operand to 0 in the result and sets
all 0 bits to 1 in the result—otherwise referred to as “taking the one’s complement of the
value.” In Fig. 10.9, variable number1 is assigned the value 21845 (00000000 00000000

Bit 1 Bit 2 Bit 1 | Bit 2

0 0 0

0 1 1

1 0 1

1 1 1

Fig. 10.11 | Results of combining two
bits with the bitwise inclusive OR operator |.

Bit 1 Bit 2 Bit 1 ^ Bit 2

0 0 0

0 1 1

1 0 1

1 1 0

Fig. 10.12 | Results of combining two
bits with the bitwise exclusive OR operator ^.

10.9 Bitwise Operators 423

01010101 01010101) in line 38. When the expression ~number1 (line 42) is evaluated, the
result is 11111111 11111111 10101010 10101010.

10.9.4 Using the Bitwise Left- and Right-Shift Operators
The program of Fig. 10.13 demonstrates the left-shift operator (<<) and the right-shift op-
erator (>>). Function displayBits is used to print the unsigned int values.

1 // Fig. 10.13: fig10_13.c

2 // Using the bitwise shift operators
3 #include <stdio.h>
4
5 void displayBits(unsigned int value); // prototype
6
7 int main(void)
8 {
9 unsigned int number1 = 960; // initialize number1

10
11 // demonstrate bitwise left shift

12 puts("\nThe result of left shifting");
13 displayBits(number1);

14 puts("8 bit positions using the left shift operator << is");
15 displayBits();
16
17 // demonstrate bitwise right shift

18 puts("\nThe result of right shifting");
19 displayBits(number1);

20 puts("8 bit positions using the right shift operator >> is");
21 displayBits();
22 }

23
24 // display bits of an unsigned int value
25 void displayBits(unsigned int value)
26 {

27 // declare displayMask and left shift 31 bits
28 unsigned int displayMask = 1 << 31;
29
30 printf("%7u = ", value);
31
32 // loop through bits

33 for (unsigned int c = 1; c <= 32; ++c) {
34 putchar(value & displayMask ? '1' : '0');
35 value <<= 1; // shift value left by 1
36
37 if (c % 8 == 0) { // output a space after 8 bits
38 putchar(' ');
39 }
40 }

41
42 putchar('\n');
43 }

Fig. 10.13 | Using the bitwise shift operators. (Part 1 of 2.)

number1 << 8

number1 >> 8

424 Chapter 10 C Structures, Unions, Bit Manipulation and Enumerations

Left-Shift Operator (<<)
The left-shift operator (<<) shifts the bits of its left operand to the left by the number of bits
specified in its right operand. Bits vacated to the right are replaced with 0s; bits shifted off
the left are lost. In Fig. 10.13, variable number1 is assigned the value 960 (00000000 00000000
00000011 11000000) in line 9. The result of left shifting variable number1 8 bits in the ex-
pression number1 << 8 (line 15) is 245760 (00000000 00000011 11000000 00000000).

Right-Shift Operator (>>)
The right-shift operator (>>) shifts the bits of its left operand to the right by the number of
bits specified in its right operand. Performing a right shift on an unsigned int causes the
vacated bits at the left to be replaced by 0s; bits shifted off the right are lost. In Fig. 10.13,
the result of right shifting number1 in the expression number1 >> 8 (line 21) is 3 (00000000
00000000 00000000 00000011).

10.9.5 Bitwise Assignment Operators
Each binary bitwise operator has a corresponding assignment operator. These bitwise as-
signment operators are shown in Fig. 10.14 and are used in a manner similar to the arith-
metic assignment operators introduced in Chapter 3.

The result of left shifting
 960 = 00000000 00000000 00000011 11000000
8 bit positions using the left shift operator << is
 245760 = 00000000 00000011 11000000 00000000

The result of right shifting
 960 = 00000000 00000000 00000011 11000000
8 bit positions using the right shift operator >> is
 3 = 00000000 00000000 00000000 00000011

Common Programming Error 10.11
The result of right or left shifting a value is undefined if the right operand is negative or
if the right operand is larger than the number of bits in which the left operand is stored.

Portability Tip 10.8
The result of right shifting a negative number is implementation defined.

Bitwise assignment operators

&= Bitwise AND assignment operator.

|= Bitwise inclusive OR assignment operator.
^= Bitwise exclusive OR assignment operator.

<<= Left-shift assignment operator.

>>= Right-shift assignment operator.

Fig. 10.14 | The bitwise assignment operators.

Fig. 10.13 | Using the bitwise shift operators. (Part 2 of 2.)

10.10 Bit Fields 425

Figure 10.15 shows the precedence and associativity of the various operators introduced
to this point in the text. They’re shown top to bottom in decreasing order of precedence.

10.10 Bit Fields
C enables you to specify the number of bits in which an unsigned or signed integral mem-
ber of a structure or union is stored. This is referred to as a bit field. Bit fields enable better
memory utilization by storing data in the minimum number of bits required. Bit field
members must be declared as int or unsigned int.

10.10.1 Defining Bit Fields
Consider the following structure definition:

which contains three unsigned int bit fields—face, suit and color—used to represent
a card from a deck of 52 cards. A bit field is declared by following an unsigned or signed
integral member name with a colon (:) and an integer constant representing the width of
the field (i.e., the number of bits in which the member is stored). The constant represent-
ing the width must be an integer between 0 (discussed in Section 10.10.3) and the total
number of bits used to store an int on your system, inclusive. Our examples were tested
on a computer with 4-byte (32-bit) integers.

Operator Associativity Type

() [] . -> ++ (postfix) -- (postfix) left to right highest

+ - ++ -- ! & * ~ sizeof (type) right to left unary
* / % left to right multiplicative
+ - left to right additive
<< >> left to right shifting
< <= > >= left to right relational
== != left to right equality
& left to right bitwise AND
^ left to right bitwise XOR
| left to right bitwise OR
&& left to right logical AND
|| left to right logical OR
?: right to left conditional
= += -= *= /= &= |= ^= <<= >>= %= right to left assignment
, left to right comma

Fig. 10.15 | Operator precedence and associativity.

struct bitCard {
 unsigned int face : 4;
 unsigned int suit : 2;
 unsigned int color : 1;
};

426 Chapter 10 C Structures, Unions, Bit Manipulation and Enumerations

The preceding structure definition indicates that member face is stored in 4 bits,
member suit is stored in 2 bits and member color is stored in 1 bit. The number of bits
is based on the desired range of values for each structure member. Member face stores
values from 0 (Ace) through 12 (King)—4 bits can store values in the range 0–15. Member
suit stores values from 0 through 3 (0 = Hearts, 1 = Diamonds, 2 = Clubs, 3 = Spades)—
2 bits can store values in the range 0–3. Finally, member color stores either 0 (Red) or 1
(Black)—1 bit can store either 0 or 1.

10.10.2 Using Bit Fields to Represent a Card’s Face, Suit and Color
Figure 10.16 (output shown in Fig. 10.17) creates array deck containing 52 struct bit-
Card structures in line 20. Function fillDeck (lines 31–39) inserts the 52 cards in the
deck array and function deal (lines 43–55) prints the 52 cards. Notice that bit field mem-
bers of structures are accessed exactly as any other structure member. Member color is in-
cluded as a means of indicating the card color on a system that allows color displays.

1 // Fig. 10.16: fig10_16.c
2 // Representing cards with bit fields in a struct

3 #include <stdio.h>
4 #define CARDS 52
5
6 // bitCard structure definition with bit fields

7
8
9

10
11
12
13
14
15 void fillDeck(Card * const wDeck); // prototype
16 void deal(const Card * const wDeck); // prototype
17
18 int main(void)
19 {
20

21
22 fillDeck(deck);
23
24 puts("Card values 0-12 correspond to Ace through King");
25 puts("Suit values 0-3 correspond Hearts, Diamonds, Clubs and Spades");
26 puts("Color values 0-1 correspond to red and black\n");
27 deal(deck);

28 }
29
30 // initialize Cards

31 void fillDeck()
32 {

33 // loop through wDeck

34 for (size_t i = 0; i < CARDS; ++i) {
35

Fig. 10.16 | Representing cards with bit fields in a struct. (Part 1 of 2.)

struct bitCard {
 unsigned int face : 4; // 4 bits; 0-15
 unsigned int suit : 2; // 2 bits; 0-3
 unsigned int color : 1; // 1 bit; 0-1
};

typedef struct bitCard Card; // new type name for struct bitCard

Card deck[CARDS]; // create array of Cards

Card * const wDeck

wDeck[i].face = i % (CARDS / 4);

10.10 Bit Fields 427

36

37

38 }
39 }

40
41 // output cards in two-column format; cards 0-25 indexed with
42 // k1 (column 1); cards 26-51 indexed with k2 (column 2)

43 void deal(const Card * const wDeck)
44 {
45 printf("%-6s%-6s%-15s%-6s%-6s%s\n", "Card", "Suit", "Color",
46 "Card", "Suit", "Color");
47
48 // loop through wDeck

49 for (size_t k1 = 0, k2 = k1 + 26; k1 < CARDS / 2; ++k1, ++k2) {
50 printf("Card:%3d Suit:%2d Color:%2d ",
51);

52 printf("Card:%3d Suit:%2d Color:%2d\n",
53);

54 }
55 }

Card values 0-12 correspond to Ace through King
Suit values 0-3 correspond Hearts, Diamonds, Clubs and Spades
Color values 0-1 correspond to red and black

Card Suit Color Card Suit Color
0 0 0 0 2 1
1 0 0 1 2 1
2 0 0 2 2 1
3 0 0 3 2 1
4 0 0 4 2 1
5 0 0 5 2 1
6 0 0 6 2 1
7 0 0 7 2 1
8 0 0 8 2 1
9 0 0 9 2 1
10 0 0 10 2 1
11 0 0 11 2 1
12 0 0 12 2 1
0 1 0 0 3 1
1 1 0 1 3 1
2 1 0 2 3 1
3 1 0 3 3 1
4 1 0 4 3 1
5 1 0 5 3 1
6 1 0 6 3 1
7 1 0 7 3 1
8 1 0 8 3 1
9 1 0 9 3 1
10 1 0 10 3 1
11 1 0 11 3 1
12 1 0 12 3 1

Fig. 10.17 | Output of the program in Fig. 10.16.

Fig. 10.16 | Representing cards with bit fields in a struct. (Part 2 of 2.)

wDeck[i].suit = i / (CARDS / 4);
wDeck[i].color = i / (CARDS / 2);

wDeck[k1].face, wDeck[k1].suit, wDeck[k1].color

wDeck[k2].face, wDeck[k2].suit, wDeck[k2].color

428 Chapter 10 C Structures, Unions, Bit Manipulation and Enumerations

10.10.3 Unnamed Bit Fields
It’s possible to specify an unnamed bit field to be used as padding in the structure. For
example, the structure definition

uses an unnamed 19-bit field as padding—nothing can be stored in those 19 bits. Member
b (on our 4-byte-word computer) is stored in another storage unit.

An unnamed bit field with a zero width is used to align the next bit field on a new
storage-unit boundary. For example, the structure definition

uses an unnamed 0-bit field to skip the remaining bits (as many as there are) of the storage
unit in which a is stored and to align b on the next storage-unit boundary.

10.11 Enumeration Constants
An enumeration (discussed briefly in Section 5.11), introduced by the keyword enum, is a set
of integer enumeration constants represented by identifiers. Values in an enum start with 0,
unless specified otherwise, and are incremented by 1. For example, the enumeration

Performance Tip 10.2
Bit fields help reduce the amount of memory a program needs.

Portability Tip 10.9
Bit-field manipulations are machine dependent.

Common Programming Error 10.12
Attempting to access individual bits of a bit field as if they were elements of an array is a
syntax error. Bit fields are not “arrays of bits.”

Common Programming Error 10.13
Attempting to take the address of a bit field (the & operator may not be used with bit fields
because they do not have addresses).

Performance Tip 10.3
Although bit fields save space, using them can cause the compiler to generate slower-
executing machine-language code. This occurs because it takes extra machine-language op-
erations to access only portions of an addressable storage unit. This is one of many examples
of the kinds of space–time trade-offs that occur in computer science.

struct example {
 unsigned int a : 13;
 unsigned int : 19;
 unsigned int b : 4;
};

struct example {
 unsigned int a : 13;
 unsigned int : 0;
 unsigned int : 4;
};

10.11 Enumeration Constants 429

creates a new type, enum months, in which the identifiers are set to the integers 0 to 11,
respectively. To number the months 1 to 12, use:

Because the first value in the preceding enumeration is explicitly set to 1, the remaining
values are incremented from 1, resulting in the values 1 through 12. The identifiers in any
enumeration accessible in the same scope must be unique. The value of each enumeration
constant of an enumeration can be set explicitly in the definition by assigning a value to the
identifier. Multiple members of an enumeration can have the same constant value. In the
program of Fig. 10.18, the enumeration variable month is used in a for statement to print
the months of the year from the array monthName. We’ve made monthName[0] the empty
string "". You could set monthName[0] to a value such as ***ERROR*** to indicate that a
logic error occurred.

enum months {
 JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC
};

enum months {
 JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC
};

Common Programming Error 10.14
Assigning a value to an enumeration constant after it’s been defined is a syntax error.

Good Programming Practice 10.5
Use only uppercase letters in enumeration constant names. This makes these constants
stand out in a program and reminds you that enumeration constants are not variables.

1 // Fig. 10.18: fig10_18.c
2 // Using an enumeration

3 #include <stdio.h>
4
5
6
7
8
9

10 int main(void)
11 {

12 // initialize array of pointers

13 const char *monthName[] = { "", "January", "February", "March",
14 "April", "May", "June", "July", "August", "September", "October",
15 "November", "December" };
16
17 // loop through months

18 for (; ++month) {

19 printf("%2d%11s\n", month, monthName[month]);
20 }

21 }

Fig. 10.18 | Using an enumeration. (Part 1 of 2.)

// enumeration constants represent months of the year
enum months {
 JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC
};

enum months month = JAN month <= DEC;

430 Chapter 10 C Structures, Unions, Bit Manipulation and Enumerations

10.12 Anonymous Structures and Unions
Earlier in this chapter we introduced structs and unions. C11 now supports anonymous
structs and unions that can be nested in named structs and unions. The members in a
nested anonymous struct or union are considered to be members of the enclosing struct
or union and can be accessed directly through an object of the enclosing type. For example,
consider the following struct declaration:

For a variable myStruct of type struct MyStruct, you can access the members as:

10.13 Secure C Programming
Various CERT guidelines and rules apply to this chapter’s topics. For more information
on each, visit www.securecoding.cert.org.

CERT Guidelines for structs
As we discussed in Section 10.2.4, the boundary alignment requirements for struct mem-
bers may result in extra bytes containing undefined data for each struct variable you cre-
ate. Each of the following guidelines is related to this issue:

• EXP03-C: Because of boundary alignment requirements, the size of a struct vari-
able is not necessarily the sum of its members’ sizes. Always use sizeof to determine
the number of bytes in a struct variable. As you’ll see, we use this technique to ma-

 1 January
 2 February
 3 March
 4 April
 5 May
 6 June
 7 July
 8 August
 9 September
10 October
11 November
12 December

struct MyStruct {
 int member1;
 int member2;

 struct {
 int nestedMember1;
 int nestedMember2;
 }; // end nested struct

}; // end outer struct

myStruct.member1;

myStruct.member2;
myStruct.nestedMember1;

myStruct.nestedMember2;

Fig. 10.18 | Using an enumeration. (Part 2 of 2.)

 Summary 431

nipulate fixed-length records that are written to and read from files in Chapter 11,
and to create so-called dynamic data structures in Chapter 12.

• EXP04-C: As we discussed in Section 10.2.4, struct variables cannot be com-
pared for equality or inequality, because they might contain bytes of undefined
data. Therefore, you must compare their individual members.

• DCL39-C: In a struct variable, the undefined extra bytes could contain secure
data—left over from prior use of those memory locations—that should not be ac-
cessible. This CERT guideline discusses compiler-specific mechanisms for pack-
ing the data to eliminate these extra bytes.

CERT Guideline for typedef
• DCL05-C: Complex type declarations, such as those for function pointers, can

be difficult to read. You should use typedef to create self-documenting type
names that make your programs more readable.

CERT Guidelines for Bit Manipulation
• INT02-C: As a result of the integer promotion rules (discussed in Section 5.6),

performing bitwise operations on integer types smaller than int can lead to un-
expected results. Explicit casts are required to ensure correct results.

• INT13-C: Some bitwise operations on signed integer types are implementation de-
fined—this means that the operations may have different results across C compil-
ers. For this reason, unsigned integer types should be used with the bitwise
operators.

• EXP46-C: The logical operators && and || are frequently confused with the bit-
wise operators & and |, respectively. Using & and | in the condition of a condi-
tional expression (?:) can lead to unexpected behavior, because the & and |
operators do not use short-circuit evaluation.

CERT Guideline for enum
• INT09-C: Allowing multiple enumeration constants to have the same value can

result in difficult-to-find logic errors. In most cases, an enum’s enumeration con-
stants should each have unique values to help prevent such logic errors.

Summary
Section 10.1 Introduction
• Structures (p. 405) are collections of related variables under one name. They may contain vari-

ables of many different data types.

• Structures are commonly used to define records to be stored in files.

• Pointers and structures facilitate the formation of more complex data structures such as linked
lists, queues, stacks and trees.

Section 10.2 Structure Definitions
• Keyword struct introduces a structure definition (p. 406).

432 Chapter 10 C Structures, Unions, Bit Manipulation and Enumerations

• The identifier following keyword struct is the structure tag (p. 406), which names the structure
definition. The structure tag is used with the keyword struct to declare variables of the structure
type (p. 406).

• Variables declared within the braces of the structure definition are the structure’s members.

• Members of the same structure type must have unique names.

• Each structure definition must end with a semicolon.

• Structure members can have primitive or aggregates data types.

• A structure cannot contain an instance of itself but may include a pointer to its type.

• A structure containing a member that’s a pointer to the same structure type is referred to as a self-
referential structure. Self-referential structures (p. 406) are used to build linked data structures.

• Structure definitions create new data types that are used to define variables.

• Variables of a given structure type can be declared by placing a comma-separated list of variable
names between the closing brace of the structure definition and its ending semicolon.

• The structure tag name is optional. If a structure definition does not contain a structure tag
name, variables of the structure type may be declared only in the structure definition.

• The only valid operations that may be performed on structures are assigning structure variables
to variables of the same type, taking the address (&) of a structure variable, accessing the members
of a structure variable and using the sizeof operator to determine the size of a structure variable.

Section 10.3 Initializing Structures
• Structures can be initialized using initializer lists.

• If there are fewer initializers in the list than members in the structure, the remaining members
are automatically initialized to 0 (or NULL if the member is a pointer).

• Members of structure variables defined outside a function definition are initialized to 0 or NULL
if they’re not explicitly initialized in the external definition.

• Structure variables may be initialized in assignment statements by assigning a structure variable
of the same type, or by assigning values to the individual members of the structure.

Section 10.4 Accessing Structure Members with . and ->
• The structure member operator (.) and the structure pointer operator (->) are used to access

structure members (p. 408).

• The structure member operator accesses a structure member via the structure variable name.

• The structure pointer operator accesses a structure member via a pointer to the structure (p. 409).

Section 10.5 Using Structures with Functions
• Structures may be passed to functions by passing individual structure members, by passing an

entire structure or by passing a pointer to a structure.

• Stucture variables are passed by value by default.

• To pass a structure by reference, pass its address. Arrays of structures—like all other arrays—are
automatically passed by reference.

• To pass an array by value, create a structure with the array as a member. Structures are passed
by value, so the array is passed by value.

Section 10.6 typedef
• The keyword typedef (p. 411) provides a mechanism for creating synonyms for previously de-

fined types.

 Summary 433

• Names for structure types are often defined with typedef to create shorter type names.

• Often, typedef is used to create synonyms for the basic data types. For example, a program re-
quiring 4-byte integers may use type int on one system and type long on another. Programs de-
signed for portability often use typedef to create an alias for 4-byte integers such as Integer. The
alias Integer can be changed once in the program to make the program work on both systems.

Section 10.8 Unions
• A union (p. 414) is declared with keyword union in the same format as a structure. Its members

share the same storage space.

• The members of a union can be of any data type. The number of bytes used to store a union must
be at least enough to hold the largest member.

• Only one member of a union can be referenced at a time. It’s your responsibility to ensure that
the data in a union is referenced with the proper data type.

• The operations that can be performed on a union are assigning a union to another of the same
type, taking the address (&) of a union variable, and accessing union members using the structure
member operator and the structure pointer operator.

• A union may be initialized in a declaration with a value of the same type as the first union member.

Section 10.9 Bitwise Operators
• Computers represent all data internally as sequences of bits with the values 0 or 1.

• On most systems, a sequence of 8 bits form a byte—the standard storage unit for a variable of
type char. Other data types are stored in larger numbers of bytes.

• The bitwise operators are used to manipulate the bits of integral operands (char, short, int and
long; both signed and unsigned). Unsigned integers are normally used.

• The bitwise operators (p. 417) are bitwise AND (&), bitwise inclusive OR (|), bitwise exclusive
OR (^), left shift (<<), right shift (>>) and complement (~).

• The bitwise AND, bitwise inclusive OR and bitwise exclusive OR operators compare their two
operands bit by bit. The bitwise AND operator (p. 417) sets each bit in the result to 1 if the
corresponding bit in both operands is 1. The bitwise inclusive OR operator (p. 417) sets each
bit in the result to 1 if the corresponding bit in either (or both) operand(s) is 1. The bitwise ex-
clusive OR operator (p. 417) sets each bit in the result to 1 if the corresponding bits both oper-
ands are different.

• The left-shift operator (p. 417) shifts the bits of its left operand to the left by the number of bits
specified in its right operand. Bits vacated to the right are replaced with 0s; bits shifted off the
left are lost.

• The right-shift operator (p. 417) shifts the bits in its left operand to the right by the number of
bits specified in its right operand. Performing a right shift on an unsigned int causes the vacated
bits at the left to be replaced by 0s; bits shifted off the right are lost.

• The bitwise complement operator (p. 417) sets all 0 bits in its operand to 1 and all 1 bits to 0 in
the result.

• Often, the bitwise AND operator is used with an operand called a mask (p. 418)—an integer value
with specific bits set to 1. Masks are used to hide some bits in a value while selecting other bits.

• The symbolic constant CHAR_BIT (p. 419; defined in <limits.h>) represents the number of bits
in a byte (normally 8). It can be used to make a bit-manipulation program more generic and por-
table.

• Each binary bitwise operator has a corresponding bitwise assignment operator (p. 424).

434 Chapter 10 C Structures, Unions, Bit Manipulation and Enumerations

Section 10.10 Bit Fields
• C enables you to specify the number of bits in which an unsigned or signed integral member of

a structure or union is stored. This is referred to as a bit field (p. 425). Bit fields enable better
memory utilization by storing data in the minimum number of bits required.

• A bit field is declared by following an unsigned int or int member name (p. 425) with a colon
(:) and an integer constant representing the width of the field (p. 425). The constant must be an
integer between 0 and the total number of bits used to store an int on your system, inclusive.

• Bit-field members of structures are accessed exactly as any other structure member.

• It’s possible to specify an unnamed bit field (p. 428) to be used as padding in the structure (p. 428).

• An unnamed bit field with a zero width (p. 428) aligns the next bit field on a new storage-unit
boundary.

Section 10.11 Enumeration Constants
• An enum defines a set of integer constants represented by identifiers (p. 428). Values in an enum

start with 0, unless specified otherwise, and are incremented by 1.

• The identifiers in an enum must be unique.

• The value of an enum constant can be set explicitly via assignment in the enum definition.

Self-Review Exercises
10.1 Fill in the blanks in each of the following:

a) A(n) is a collection of related variables under one name.
b) A(n) is a collection of variables under one name in which the variables share

the same storage.
c) The bits in the result of an expression using the operator are set to 1 if the

corresponding bits in each operand are set to 1. Otherwise, the bits are set to zero.
d) The variables declared in a structure definition are called its .
e) In an expression using the operator, bits are set to 1 if at least one of the cor-

responding bits in either operand is set to 1. Otherwise, the bits are set to zero.
f) Keyword introduces a structure declaration.
g) Keyword is used to create a synonym for a previously defined data type.
h) In an expression using the operator, bits are set to 1 if exactly one of the cor-

responding bits in either operand is set to 1. Otherwise, the bits are set to zero.
i) The bitwise AND operator (&) is often used to bits—that is, to select certain

bits while zeroing others.
j) Keyword is used to introduce a union definition.
k) The name of the structure is referred to as the structure .
l) A structure member is accessed with either the or the operator.
m) The and operators are used to shift the bits of a value to the left or

to the right, respectively.
n) A(n) is a set of integers represented by identifiers.

10.2 State whether each of the following is true or false. If false, explain why.
a) Structures may contain variables of only one data type.
b) Two unions can be compared (using ==) to determine whether they’re equal.
c) The tag name of a structure is optional.
d) Members of different structures must have unique names.
e) Keyword typedef is used to define new data types.

 Answers to Self-Review Exercises 435

f) Structures are always passed to functions by reference.
g) Structures may not be compared by using operators == and !=.

10.3 Write code to accomplish each of the following:
a) Define a structure called part containing unsigned int variable partNumber and char

array partName with values that may be as long as 25 characters (including the terminat-
ing null character).

b) Define Part to be a synonym for the type struct part.
c) Use Part to declare variable a to be of type struct part, array b[10] to be of type struct

part and variable ptr to be of type pointer to struct part.
d) Read a part number and a part name from the keyboard into the individual members

of variable a.
e) Assign the member values of variable a to element 3 of array b.
f) Assign the address of array b to the pointer variable ptr.
g) Print the member values of element 3 of array b using the variable ptr and the structure

pointer operator to refer to the members.

10.4 Find the error in each of the following:
a) Assume that struct card has been defined containing two pointers to type char, name-

ly face and suit. Also, the variable c has been defined to be of type struct card and
the variable cPtr has been defined to be of type pointer to struct card. Variable cPtr
has been assigned the address of c.

printf("%s\n", *cPtr->face);
b) Assume that struct card has been defined containing two pointers to type char, name-

ly face and suit. Also, the array hearts[13] has been defined to be of type struct card.
The following statement should print the member face of array element 10.

printf("%s\n", hearts.face);
c) union values {

 char w;
 float x;
 double y;
};

union values v = { 1.27 };
d) struct person {

 char lastName[15];
 char firstName[15];
 unsigned int age;
}

e) Assume struct person has been defined as in part (d) but with the appropriate cor-
rection.

person d;

f) Assume variable p has been declared as type struct person and variable c has been de-
clared as type struct card.

p = c;

Answers to Self-Review Exercises
10.1 a) structure. b) union. c) bitwise AND (&). d) members. e) bitwise inclusive OR (|).
f) struct. g) typedef. h) bitwise exclusive OR (^). i) mask. j) union. k) tag name. l) structure
member, structure pointer. m) left-shift operator (<<), right-shift operator (>>). n) enumeration.

436 Chapter 10 C Structures, Unions, Bit Manipulation and Enumerations

10.2 a) False. A structure can contain variables of many data types.
b) False. Unions cannot be compared, because there might be bytes of undefined data with

different values in union variables that are otherwise identical.
c) True.
d) False. The members of separate structures can have the same names, but the members

of the same structure must have unique names.
e) False. Keyword typedef is used to define new names (synonyms) for previously defined

data types.
f) False. Structures are always passed to functions by value.
g) True, because of alignment problems.

10.3 a) struct part {
 unsigned int partNumber;
 char partName[25];

 };

b) typedef struct part Part;
c) Part a, b[10], *ptr;
d) scanf("%d%24s", &a.partNumber, a.partName);
e) b[3] = a;
f) ptr = b;
g) printf("%d %s\n", (ptr + 3)->partNumber, (ptr + 3)->partName);

10.4 a) The parentheses that should enclose *cPtr have been omitted, causing the order of eval-
uation of the expression to be incorrect. The expression should be
 cPtr->face

or
 (*cPtr).face

b) The array index has been omitted. The expression should be
 hearts[10].face

c) A union can be initialized only with a value that has the same type as the union’s first
member.

d) A semicolon is required to end a structure definition.
e) Keyword struct was omitted from the variable declaration. The declaration should be

 struct person d;
f) Variables of different structure types cannot be assigned to one another.

Exercises
10.5 Provide the definition for each of the following structures and unions:

a) Structure inventory containing character array partName[30], integer partNumber,
floating-point price, integer stock and integer reorder.

b) Union data containing char c, short s, long b, float f and double d.
c) A structure called address that contains character arrays

streetAddress[25], city[20], state[3] and zipCode[6].
d) Structure student that contains arrays firstName[15] and

lastName[15] and variable homeAddress of type struct address from part (c).
e) Structure test containing 16 bit fields with widths of 1 bit. The names of the bit fields

are the letters a to p.

10.6 Given the following structure and variable definitions,

struct customer {
 char lastName[15];

 Exercises 437

 char firstName[15];
 unsigned int customerNumber;
 struct {
 char phoneNumber[11];
 char address[50];
 char city[15];
 char state[3];
 char zipCode[6];
 } personal;

} customerRecord, *customerPtr;

customerPtr = &customerRecord;

write an expression that can be used to access the structure members in each of the following parts:
a) Member lastName of structure customerRecord.
b) Member lastName of the structure pointed to by customerPtr.
c) Member firstName of structure customerRecord.
d) Member firstName of the structure pointed to by customerPtr.
e) Member customerNumber of structure customerRecord.
f) Member customerNumber of the structure pointed to by customerPtr.
g) Member phoneNumber of member personal of structure customerRecord.
h) Member phoneNumber of member personal of the structure pointed to by customerPtr.
i) Member address of member personal of structure customerRecord.
j) Member address of member personal of the structure pointed to by customerPtr.
k) Member city of member personal of structure customerRecord.
l) Member city of member personal of the structure pointed to by customerPtr.
m) Member state of member personal of structure customerRecord.
n) Member state of member personal of the structure pointed to by customerPtr.
o) Member zipCode of member personal of structure customerRecord.
p) Member zipCode of member personal of the structure pointed to by customerPtr.

10.7 (Card Shuffling and Dealing Modification) Modify the program of Fig. 10.16 to shuffle
the cards using a high-performance shuffle (as shown in Fig. 10.3). Print the resulting deck in a
two-column format that uses the face and suit names. Precede each card with its color.

10.8 (Using Unions) Create union integer with members char c, short s, int i and long b.
Write a program that inputs values of type char, short, int and long and stores the values in union
variables of type union integer. Each union variable should be printed as a char, a short, an int
and a long. Do the values always print correctly?

10.9 (Using Unions) Create union floatingPoint with members float f, double d and long
double x. Write a program that inputs values of type float, double and long double and stores the
values in union variables of type union floatingPoint. Each union variable should be printed as a
float, a double and a long double. Do the values always print correctly?

10.10 (Right Shifting Integers) Write a program that right shifts an integer variable 4 bits. The
program should print the integer in bits before and after the shift operation. Does your system place
0s or 1s in the vacated bits?

10.11 (Left Shifting Integers) Left shifting an unsigned int by 1 bit is equivalent to multiplying
the value by 2. Write function power2 that takes two integer arguments number and pow and calcu-
lates

number * 2pow

Use the shift operator to calculate the result. Print the values as integers and as bits.

438 Chapter 10 C Structures, Unions, Bit Manipulation and Enumerations

10.12 (Packing Characters into an Integer) The left-shift operator can be used to pack four char-
acter values into a four-byte unsigned int variable. Write a program that inputs four characters from
the keyboard and passes them to function packCharacters. To pack four characters into an un-
signed int variable, assign the first character to the unsigned int variable, shift the unsigned int
variable left by 8 bit positions and combine the unsigned variable with the second character using
the bitwise inclusive OR operator. Repeat this process for the third and fourth characters. The pro-
gram should output the characters in their bit format before and after they’re packed into the un-
signed int to prove that the characters are in fact packed correctly in the unsigned int variable.

10.13 (Unpacking Characters from an Integer) Using the right-shift operator, the bitwise AND
operator and a mask, write function unpackCharacters that takes the unsigned int from
Exercise 10.12 and unpacks it into four characters. To unpack characters from a four-byte unsigned
int, combine the unsigned int with the mask 4278190080 (11111111 00000000 00000000 00000000)
and right shift the result 8 bits. Assign the resulting value to a char variable. Then combine the un-
signed int with the mask 16711680 (00000000 11111111 00000000 00000000). Assign the result to
another char variable. Continue this process with the masks 65280 and 255. The program should
print the unsigned int in bits before it’s unpacked, then print the characters in bits to confirm that
they were unpacked correctly.

10.14 (Reversing the Order of an Integer’s Bits) Write a program that reverses the order of the bits
in an unsigned int value. The program should input the value from the user and call function re-
verseBits to print the bits in reverse order. Print the value in bits both before and after the bits are
reversed to confirm that the bits are reversed properly.

10.15 (Portable displayBits Function) Modify function displayBits of Fig. 10.7 so it’s portable
between systems using 2-byte integers and systems using 4-byte integers. [Hint: Use the sizeof op-
erator to determine the size of an integer on a particular machine.]

10.16 (What’s the Value of X?) The following program uses function multiple to determine if the
integer entered from the keyboard is a multiple of some integer X. Examine the function multiple,
then determine X’s value.

1 // ex10_16.c

2 // This program determines whether a value is a multiple of X.

3 #include <stdio.h>
4
5 int multiple(int num); // prototype
6
7 int main(void)
8 {

9 int y; // y will hold an integer entered by the user
10
11 puts("Enter an integer between 1 and 32000: ");
12 scanf("%d", &y);
13
14 // if y is a multiple of X

15 if (multiple(y)) {
16 printf("%d is a multiple of X\n", y);
17 }

18 else {
19 printf("%d is not a multiple of X\n", y);
20 }

21 }

22
23 // determine whether num is a multiple of X

24 int multiple(int num)
25 {

 Making a Difference 439

10.17 What does the following program do?

10.18 (Fisher-Yates Shuffling Algorithm) Research the Fisher-Yates shuffling algorithm online,
then use it to reimplement the shuffle method in Fig. 10.3.

Making a Difference
10.19 (Computerization of Health Records) A health care issue that has been in the news lately is
the computerization of health records. This possibility is being approached cautiously because of
sensitive privacy and security concerns, among others. Computerizing health records could make it
easier for patients to share their health profiles and histories among their various health care profes-

26 int mask = 1; // initialize mask
27 int mult = 1; // initialize mult
28
29 for (int i = 1; i <= 10; ++i, mask <<= 1) {
30

31 if ((num & mask) != 0) {
32 mult = 0;
33 break;
34 }

35 }

36
37 return mult;
38 }

1 // ex10_17.c

2 #include <stdio.h>
3
4 int mystery(unsigned int bits); // prototype
5
6 int main(void)
7 {

8 unsigned int x; // x will hold an integer entered by the user
9

10 puts("Enter an integer: ");
11 scanf("%u", &x);
12
13 printf("The result is %d\n", mystery(x));
14 }

15
16 // What does this function do?

17 int mystery(unsigned int bits)
18 {

19 unsigned int mask = 1 << 31; // initialize mask
20 unsigned int total = 0; // initialize total
21
22 for (unsigned int i = 1; i <= 32; ++i, bits <<= 1) {
23
24 if ((bits & mask) == mask) {
25 ++total;

26 }

27 }

28
29 return !(total % 2) ? 1 : 0;
30 }

440 Chapter 10 C Structures, Unions, Bit Manipulation and Enumerations

sionals. This could improve the quality of health care, help avoid drug conflicts and erroneous drug
prescriptions, reduce costs and in emergencies could save lives. In this exercise, you’ll design a “start-
er” HealthProfile structure for a person. The structure’s members should include the person’s first
name, last name, gender, date of birth (consisting of separate attributes for the month, day and year
of birth), height (in inches) and weight (in pounds). Your program should have a function that re-
ceives this data and uses it to set the members of a HealthProfile variable. The program also should
include functions that calculate and return the user’s age in years, maximum heart rate and target-
heart-rate range (see Exercise 3.47), and body mass index (BMI; see Exercise 2.32). The program
should prompt for the person’s information, create a HealthProfile variable for that person and
display the information from that variable—including the person’s first name, last name, gender,
date of birth, height and weight—then calculate and display the person’s age in years, BMI, maxi-
mum heart rate and target-heart-rate range. It should also display the “BMI values” chart from
Exercise 2.32.

11C File Processing

O b j e c t i v e s
In this chapter, you’ll:

■ Understand the concepts of
files and streams.

■ Create and read data using
sequential-access file
processing.

■ Create, read and update data
using random-access file
processing.

■ Develop a substantial
transaction-processing
program.

■ Study Secure C programming
in the context of file
processing.

442 Chapter 11 C File Processing

11.1 Introduction
You studied the data hierarchy in Chapter 1. Storage of data in variables and arrays is tem-
porary—such data is lost when a program terminates. Files are used for long-term retention
of data. Computers store files on secondary storage devices, such as hard drives, solid-state
drives, flash drives and DVDs. In this chapter, we explain how data files are created, up-
dated and processed by C programs. We consider both sequential-access and random-ac-
cess file processing.

11.2 Files and Streams
C views each file simply as a sequential stream of bytes (Fig. 11.1). Each file ends either with
an end-of-file marker or at a specific byte number recorded in a system-maintained, ad-
ministrative data structure—this is determined by each platform and is hidden from you.

Standard Streams in Every Program
When a file is opened, a stream is associated with it. Three streams are automatically
opened when program execution begins:

• the standard input (which receives input from the keyboard),

• the standard output (which displays output on the screen) and

• the standard error (which displays error messages on the screen) .

11.1 Introduction
11.2 Files and Streams
11.3 Creating a Sequential-Access File

11.3.1 Pointer to a FILE
11.3.2 Using fopen to Open the File
11.3.3 Using feof to Check for the End-of-

File Indicator
11.3.4 Using fprintf to Write to the File
11.3.5 Using fclose to Close the File
11.3.6 File Open Modes

11.4 Reading Data from a Sequential-
Access File

11.4.1 Resetting the File Position Pointer
11.4.2 Credit Inquiry Program

11.5 Random-Access Files
11.6 Creating a Random-Access File
11.7 Writing Data Randomly to a

Random-Access File
11.7.1 Positioning the File Position Pointer

with fseek
11.7.2 Error Checking

11.8 Reading Data from a Random-Access
File

11.9 Case Study: Transaction-Processing
Program

11.10 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

Fig. 11.1 | C’s view of a file of n bytes.

0 1 2 3 4 5 6 7 8 9 ... n–1

end-of-file marker...

11.3 Creating a Sequential-Access File 443

Communication Channels
Streams provide communication channels between files and programs. For example, the
standard input stream enables a program to read data from the keyboard, and the standard
output stream enables a program to print data on the screen.

FILE Structure
Opening a file returns a pointer to a FILE structure (defined in <stdio.h>) that contains
information used to process the file. In some operating systems, this structure includes a
file descriptor, i.e., an integer index into an operating-system array called the open file
table. Each array element contains a file control block (FCB)—information that the op-
erating system uses to administer a particular file. The standard input, standard output
and standard error are manipulated using stdin, stdout and stderr.

File-Processing Function fgetc
The standard library provides many functions for reading data from files and for writing
data to files. Function fgetc, like getchar, reads one character from a file. Function fgetc
receives as an argument a FILE pointer for the file from which a character will be read. The
call fgetc(stdin) reads one character from stdin—the standard input. This call is equiv-
alent to the call getchar().

File-Processing Function fputc
Function fputc, like putchar, writes one character to a file. Function fputc receives as
arguments a character to be written and a pointer for the file to which the character will
be written. The function call fputc('a', stdout) writes the character 'a' to stdout—
the standard output. This call is equivalent to putchar('a').

Other File-Processing Functions
Several other functions used to read data from standard input and write data to standard
output have similarly named file-processing functions. The fgets and fputs functions,
for example, can be used to read a line from a file and write a line to a file, respectively. In
the next several sections, we introduce the file-processing equivalents of functions scanf
and printf—fscanf and fprintf. Later in the chapter we discuss functions fread and
fwrite.

11.3 Creating a Sequential-Access File
C imposes no structure on a file. Thus, notions such as a record of a file are not part of the C
language. The following example shows how you can impose your own record structure
on a file.

Figure 11.2 creates a simple sequential-access file that might be used in an accounts
receivable system to keep track of the amounts owed by a company’s credit clients. For
each client, the program obtains an account number, the client’s name and the client’s balance
(i.e., the amount the client owes the company for goods and services received in the past).
The data obtained for each client constitutes a “record” for that client. The account

444 Chapter 11 C File Processing

number is used as the record key in this application—the file will be created and maintained
in account-number order. This program assumes the user enters the records in account-
number order. In a comprehensive accounts receivable system, a sorting capability would
be provided so the user could enter the records in any order. The records would then be
sorted and written to the file. [Note: Figures 11.6–11.7 use the data file created in
Fig. 11.2, so you must run the program in Fig. 11.2 before the programs in Figs. 11.6–
11.7.]

1 // Fig. 11.2: fig11_02.c

2 // Creating a sequential file
3 #include <stdio.h>
4
5 int main(void)
6 {

7

8
9 // fopen opens file. Exit program if unable to create file

10 if (() == NULL) {
11 puts("File could not be opened");
12 }
13 else {
14 puts("Enter the account, name, and balance.");
15 puts("Enter EOF to end input.");
16 printf("%s", "? ");
17
18 unsigned int account; // account number
19 char name[30]; // account name
20 double balance; // account balance
21
22 scanf("%d%29s%lf", &account, name, &balance);
23
24 // write account, name and balance into file with fprintf
25 while () {

26

27 printf("%s", "? ");
28 scanf("%d%29s%lf", &account, name, &balance);
29 }

30
31

32 }

33 }

Enter the account, name, and balance.
Enter EOF to end input.
? 100 Jones 24.98
? 200 Doe 345.67
? 300 White 0.00
? 400 Stone -42.16
? 500 Rich 224.62
? ^Z

Fig. 11.2 | Creating a sequential file.

FILE *cfPtr; // cfPtr = clients.txt file pointer

cfPtr = fopen("clients.txt", "w")

!feof(stdin)
fprintf(cfPtr, "%d %s %.2f\n", account, name, balance);

fclose(cfPtr); // fclose closes file

11.3 Creating a Sequential-Access File 445

11.3.1 Pointer to a FILE
Now let’s examine this program. Line 7 states that cfPtr is a pointer to a FILE structure. A
C program administers each file with a separate FILE structure. Each open file must have
a separately declared pointer of type FILE that’s used to refer to the file. You need not
know the specifics of the FILE structure to use files, but you can study the declaration in
stdio.h if you like. We’ll soon see precisely how the FILE structure leads indirectly to the
operating system’s file control block (FCB) for a file.

11.3.2 Using fopen to Open the File
Line 10 names the file—"clients.txt"—to be used by the program and establishes a
“line of communication” with the file. The file pointer cfPtr is assigned a pointer to the
FILE structure for the file opened with fopen. Function fopen takes two arguments:

• a filename (which can include path information leading to the file’s location) and

• a file open mode.

The file open mode "w" indicates that the file is to be opened for writing. If a file does not
exist and it’s opened for writing, fopen creates the file. If an existing file is opened for writ-
ing, the contents of the file are discarded without warning. In the program, the if statement
is used to determine whether the file pointer cfPtr is NULL (i.e., the file is not opened be-
cause it does not exist or the user does not have permission to open the file). If it’s NULL,
the program prints an error message and terminates. Otherwise, the program processes the
input and writes it to the file.

11.3.3 Using feof to Check for the End-of-File Indicator
The program prompts the user to enter the various fields for each record or to enter end-
of-file when data entry is complete. Figure 11.3 lists the key combinations for entering
end-of-file for various computer systems.

Common Programming Error 11.1
Opening an existing file for writing ("w") when, in fact, the user wants to preserve the file,
discards the contents of the file without warning.

Common Programming Error 11.2
Forgetting to open a file before attempting to reference it in a program is a logic error.

Operating system Key combination

Linux/Mac OS X/UNIX <Ctrl> d

Windows <Ctrl> z then press Enter

Fig. 11.3 | End-of-file key combinations for various popular operating systems.

446 Chapter 11 C File Processing

Line 25 uses function feof to determine whether the end-of-file indicator is set for
stdin. The end-of-file indicator informs the program that there’s no more data to be pro-
cessed. In Fig. 11.2, the end-of-file indicator is set for the standard input when the user
enters the end-of-file key combination. The argument to function feof is a pointer to the
file being tested for the end-of-file indicator (stdin in this case). The function returns a
nonzero (true) value when the end-of-file indicator has been set; otherwise, the function
returns zero. The while statement that includes the feof call in this program continues
executing while the end-of-file indicator is not set.

11.3.4 Using fprintf to Write to the File
Line 26 writes data to the file clients.txt. The data may be retrieved later by a program
designed to read the file (see Section 11.4). Function fprintf is equivalent to printf ex-
cept that fprintf also receives as an argument a file pointer for the file to which the data
will be written. Function fprintf can output data to the standard output by using stdout
as the file pointer, as in:

11.3.5 Using fclose to Close the File
After the user enters end-of-file, the program closes the clients.txt file with fclose (line
31) and terminates. Function fclose also receives the file pointer (rather than the file-
name) as an argument. If function fclose is not called explicitly, the operating system normal-
ly will close the file when program execution terminates. This is an example of operating-
system “housekeeping.”

In the sample execution for the program of Fig. 11.2, the user enters information for
five accounts, then enters end-of-file to signal that data entry is complete. The sample exe-
cution does not show how the data records actually appear in the file. To verify that the
file has been created successfully, in the next section we present a program that reads the
file and prints its contents.

Relationship Betweeen FILE Pointers, FILE Structures and FCBs
Figure 11.4 illustrates the relationship between FILE pointers, FILE structures and FCBs.
When the file "clients.txt" is opened, an FCB for the file is copied into memory. The
figure shows the connection between the file pointer returned by fopen and the FCB used
by the operating system to administer the file. Programs may process no files, one file or
several files. Each file used in a program will have a different file pointer returned by fopen.
All subsequent file-processing functions after the file is opened must refer to the file with the ap-
propriate file pointer.

 fprintf(stdout, "%d %s %.2f\n", account, name, balance);

Performance Tip 11.1
Closing a file can free resources for which other users or programs may be waiting, so you
should close each file as soon as it’s no longer needed rather than waiting for the operating
system to close it at program termination.

11.3 Creating a Sequential-Access File 447

11.3.6 File Open Modes
Files may be opened in one of several modes, which are summarized in Fig. 11.5. Each file
open mode in the first half of the table has a corresponding binary mode (containing the

Fig. 11.4 | Relationship between FILE pointers, FILE structures and FCBs.

User has access to this
1

2

cfPtr = fopen("clients.dat", "w");
fopen returns a pointer to a FILE structure
(defined in <stdio.h>).

When the program issues an I/O call such as

 fprintf(cfPtr, "%d %s %.2f",
 account, name, balance);

the program locates the descriptor (7) in the
FILE structure and uses the descriptor to find
the FCB in the Open File Table.

FILE structure for
"clients.dat"
contains a descriptor,
i.e., a small integer
that is an index into
the Open File Table.

4

Open File Table

Only the operating system
has access to this

This entry is
copied from the FCB
when the file is opened.

The program calls an operating-
system service that uses data in
the FCB to control all input and
output to the actual file on the
disk. Note: The user cannot
directly access the FCB.

3

FCB for "clients.dat"

.

.

.

.

.

.

7

cfPtr

7

5

6

4

3

2

1

0

448 Chapter 11 C File Processing

letter b) for manipulating binary files. The binary modes are used in Sections 11.511.9
when we introduce random-access files.

C11 Exclusive Write Mode
In addition, C11 provides exclusive write mode, which you indicate by adding an x to the
end of the w, w+, wb or wb+ modes. In exclusive write mode, fopen will fail if the file already
exists or cannot be created. If opening a file in exclusive write mode is successful and the
underlying system supports exclusive file access, then only your program can access the file
while it’s open. (Some compilers and platforms do not support exclusive write mode.) If
an error occurs while opening a file in any mode, fopen returns NULL.

Mode Description

r Open an existing file for reading.

w Create a file for writing. If the file already exists, discard the current contents.

a Open or create a file for writing at the end of the file—i.e., write operations
append data to the file.

r+ Open an existing file for update (reading and writing).

w+ Create a file for reading and writing. If the file already exists, discard the cur-
rent contents.

a+ Open or create a file for reading and updating; all writing is done at the end of
the file—i.e., write operations append data to the file.

rb Open an existing file for reading in binary mode.

wb Create a file for writing in binary mode. If the file already exists, discard the
current contents.

ab Append: open or create a file for writing at the end of the file in binary mode.

rb+ Open an existing file for update (reading and writing) in binary mode.

wb+ Create a file for update in binary mode. If the file already exists, discard the
current contents.

ab+ Append: open or create a file for update in binary mode; writing is done at the
end of the file.

Fig. 11.5 | File opening modes.

Common Programming Error 11.3
Opening a nonexistent file for reading is an error.

Common Programming Error 11.4
Opening a file for reading or writing without having been granted the appropriate access
rights to the file (this is operating-system dependent) is an error.

Common Programming Error 11.5
Opening a file for writing when no space is available is a runtime error.

11.4 Reading Data from a Sequential-Access File 449

11.4 Reading Data from a Sequential-Access File
Data is stored in files so that it can be retrieved for processing when needed. The previous
section demonstrated how to create a file for sequential access. This section shows how to
read data sequentially from a file.

Figure 11.6 reads records from the file "clients.txt" created by the program of
Fig. 11.2 and prints their contents. Line 7 indicates that cfPtr is a pointer to a FILE. Line
10 attempts to open the file "clients.txt" for reading ("r") and determines whether it
opened successfully (i.e., fopen does not return NULL). Line 19 reads a “record” from the
file. Function fscanf is equivalent to function scanf, except fscanf receives as an argu-
ment a file pointer for the file from which the data is read. After this statement executes
the first time, account will have the value 100, name will have the value "Jones" and bal-
ance will have the value 24.98. Each time the second fscanf statement (line 24) executes,
the program reads another record from the file and account, name and balance take on
new values. When the program reaches the end of the file, the file is closed (line 27) and
the program terminates. Function feof returns true only after the program attempts to
read the nonexistent data following the last line.

Common Programming Error 11.6
Opening a file in write mode ("w") when it should be opened in update mode ("r+")
causes the contents of the file to be discarded.

Error-Prevention Tip 11.1
Open a file only for reading (and not updating) if its contents should not be modified.
This prevents unintentional modification of the file’s contents. This is another example of
the principle of least privilege.

1 // Fig. 11.6: fig11_06.c
2 // Reading and printing a sequential file

3 #include <stdio.h>
4
5 int main(void)
6 {

7
8
9 // fopen opens file; exits program if file cannot be opened

10 if (() == NULL) {
11 puts("File could not be opened");
12 }

13 else { // read account, name and balance from file
14 unsigned int account; // account number
15 char name[30]; // account name
16 double balance; // account balance
17
18 printf("%-10s%-13s%s\n", "Account", "Name", "Balance");
19
20

Fig. 11.6 | Reading and printing a sequential file. (Part 1 of 2.)

FILE *cfPtr; // cfPtr = clients.txt file pointer

cfPtr = fopen("clients.txt", "r")

fscanf(cfPtr, "%d%29s%lf", &account, name, &balance);

450 Chapter 11 C File Processing

11.4.1 Resetting the File Position Pointer
To retrieve data sequentially from a file, a program normally starts reading from the be-
ginning of the file and reads all data consecutively until the desired data is found. It may
be desirable to process the data sequentially in a file several times (from the beginning of
the file) during the execution of a program. The statement

causes a program’s file position pointer—which indicates the number of the next byte in
the file to be read or written—to be repositioned to the beginning of the file (i.e., byte 0)
pointed to by cfPtr. The file position pointer is not really a pointer. Rather it’s an integer
value that specifies the byte in the file at which the next read or write is to occur. This is
sometimes referred to as the file offset. The file position pointer is a member of the FILE
structure associated with each file.

11.4.2 Credit Inquiry Program
The program of Fig. 11.7 allows a credit manager to obtain lists of customers with zero
balances (i.e., customers who do not owe any money), customers with credit balances (i.e.,
customers to whom the company owes money) and customers with debit balances (i.e.,
customers who owe the company money for goods and services received). A credit balance
is a negative amount; a debit balance is a positive amount.

The program displays a menu and allows the credit manager to enter one of four
options:

• Option 1 produces a list of accounts with zero balances.

• Option 2 produces a list of accounts with credit balances.

• Option 3 produces a list of accounts with debit balances.

• Option 4 terminates program execution.

A sample output is shown in Fig. 11.8.

21 // while not end of file

22 while () {

23 printf("%-10d%-13s%7.2f\n", account, name, balance);
24

25 }

26
27

28 }

29 }

Account Name Balance
100 Jones 24.98
200 Doe 345.67
300 White 0.00
400 Stone -42.16
500 Rich 224.62

rewind(cfPtr);

Fig. 11.6 | Reading and printing a sequential file. (Part 2 of 2.)

!feof(cfPtr)

fscanf(cfPtr, "%d%29s%lf", &account, name, &balance);

fclose(cfPtr); // fclose closes the file

11.4 Reading Data from a Sequential-Access File 451

1 // Fig. 11.7: fig11_07.c

2 // Credit inquiry program

3 #include <stdio.h>
4
5 // function main begins program execution

6 int main(void)
7 {

8

9
10 // fopen opens the file; exits program if file cannot be opened

11 if (() == NULL) {
12 puts("File could not be opened");
13 }

14 else {
15
16 // display request options

17 printf("%s", "Enter request\n"
18 " 1 - List accounts with zero balances\n"
19 " 2 - List accounts with credit balances\n"
20 " 3 - List accounts with debit balances\n"
21 " 4 - End of run\n? ");
22 unsigned int request; // request number
23 scanf("%u", &request);
24
25 // process user's request
26 while (request != 4) {
27 unsigned int account; // account number
28 double balance; // account balance
29 char name[30]; // account name
30
31 // read account, name and balance from file
32

33
34 switch (request) {
35 case 1:
36 puts("\nAccounts with zero balances:");
37
38 // read file contents (until eof)

39 while (!feof(cfPtr)) {
40 // output only if balance is 0
41 if (balance == 0) {
42 printf("%-10d%-13s%7.2f\n",
43 account, name, balance);
44 }

45
46 // read account, name and balance from file
47

48

49 }
50
51 break;

Fig. 11.7 | Credit inquiry program. (Part 1 of 2.)

FILE *cfPtr; // clients.txt file pointer

cfPtr = fopen("clients.txt", "r")

fscanf(cfPtr, "%d%29s%lf", &account, name, &balance);

fscanf(cfPtr, "%d%29s%lf",
 &account, name, &balance);

452 Chapter 11 C File Processing

52 case 2:
53 puts("\nAccounts with credit balances:\n");
54
55 // read file contents (until eof)

56 while (!feof(cfPtr)) {
57 // output only if balance is less than 0
58 if (balance < 0) {
59 printf("%-10d%-13s%7.2f\n",
60 account, name, balance);
61 }

62
63 // read account, name and balance from file
64

65

66 }
67
68 break;
69 case 3:
70 puts("\nAccounts with debit balances:\n");
71
72 // read file contents (until eof)

73 while (!feof(cfPtr)) {
74 // output only if balance is greater than 0

75 if (balance > 0) {
76 printf("%-10d%-13s%7.2f\n",
77 account, name, balance);

78 }

79
80 // read account, name and balance from file

81

82
83 }

84
85 break;
86 }

87
88
89
90 printf("%s", "\n? ");
91 scanf("%d", &request);
92 }

93
94 puts("End of run.");
95

96 }

97 }

Fig. 11.7 | Credit inquiry program. (Part 2 of 2.)

fscanf(cfPtr, "%d%29s%lf",
 &account, name, &balance);

fscanf(cfPtr, "%d%29s%lf",
 &account, name, &balance);

rewind(cfPtr); // return cfPtr to beginning of file

fclose(cfPtr); // fclose closes the file

11.4 Reading Data from a Sequential-Access File 453

Updating a Sequential File
Data in this type of sequential file cannot be modified without the risk of destroying other
data. For example, if the name “White” needs to be changed to “Worthington,” the old
name cannot simply be overwritten. The record for White was written to the file as

If the record is rewritten beginning at the same location in the file using the new name,
the record will be

The new record is larger (has more characters) than the original record. The characters be-
yond the second “o” in “Worthington” will overwrite the beginning of the next sequential
record in the file. The problem here is that in the formatted input/output model using
fprintf and fscanf, fields—and hence records—can vary in size. For example, the values
7, 14, –117, 2074 and 27383 are all ints stored in the same number of bytes internally,
but they’re different-sized fields when displayed on the screen or written to a file as text.

Therefore, sequential access with fprintf and fscanf is not usually used to update
records in place. Instead, the entire file is usually rewritten. To make the preceding name
change, the records before 300 White 0.00 in such a sequential-access file would be copied
to a new file, the new record would be written and the records after 300 White 0.00 would
be copied to the new file. This requires processing every record in the file to update one
record.

Enter request
 1 - List accounts with zero balances
 2 - List accounts with credit balances
 3 - List accounts with debit balances
 4 - End of run
? 1
Accounts with zero balances:
300 White 0.00

? 2
Accounts with credit balances:
400 Stone -42.16

? 3
Accounts with debit balances:
100 Jones 24.98
200 Doe 345.67
500 Rich 224.62

? 4
End of run.

Fig. 11.8 | Sample output of the credit inquiry program of Fig. 11.7.

300 White 0.00

300 Worthington 0.00

454 Chapter 11 C File Processing

11.5 Random-Access Files
As we stated previously, records in a file created with the formatted output function
fprintf are not necessarily of the same length. However, individual records that you write
to and read from a random-access file are normally fixed in length and may be accessed
directly (and thus quickly) without searching through other records. This makes random-
access files appropriate for airline reservation systems, banking systems, point-of-sale sys-
tems, and other kinds of transaction-processing systems that require rapid access to spe-
cific data. There are other ways of implementing random-access files, but we’ll limit our
discussion to this straightforward approach using fixed-length records.

Because every record in a random-access file normally has the same length, the exact
location of a record relative to the beginning of the file can be calculated as a function of
the record key. We’ll soon see how this facilitates immediate access to specific records, even
in large files.

Figure 11.9 illustrates one way to implement a random-access file. Such a file is like a
freight train with many cars—some empty and some with cargo. Each car in the train has
the same length.

Fixed-length records enable data to be inserted in a random-access file without
destroying other data in the file. Data stored previously can also be updated or deleted
without rewriting the entire file. In the following sections we explain how to

• create a random-access file,

• enter data,

• read the data both sequentially and randomly,

• update the data,

• and delete data no longer needed.

11.6 Creating a Random-Access File
Function fwrite transfers a specified number of bytes beginning at a specified location in
memory to a file. The data is written beginning at the location in the file indicated by the
file position pointer. Function fread transfers a specified number of bytes from the loca-

Fig. 11.9 | C’s view of a random-access file.

100
bytes

100
bytes

100
bytes

100
bytes

100
bytes

100
bytes

byte
offsets

0 100 200 300 400 500

11.6 Creating a Random-Access File 455

tion in the file specified by the file position pointer to an area in memory beginning with
a specified address. Now, when writing a four-byte integer, instead of using

which could print a single digit or as many as 11 digits (10 digits plus a sign, each of which
requires at least one byte of storage, based on the character set for the locale), we can use

which always writes four bytes on a system with four-byte integers from a variable number
to the file represented by fPtr (we’ll explain the 1 argument shortly). Later, fread can be
used to read those four bytes into an integer variable number. Although fread and fwrite
read and write data, such as integers, in fixed-size rather than variable-size format, the data
they handle are processed in computer “raw data” format (i.e., bytes of data) rather than
in printf’s and scanf’s human-readable text format. Because the “raw” representation of
data is system dependent, “raw data” may not be readable on other systems, or by pro-
grams produced by other compilers or with other compiler options.

fwrite and fread Can Write and Read Arrays
Functions fwrite and fread are capable of reading and writing arrays of data to and from
files. The third argument of both fread and fwrite is the number of elements in the array
that should be read from or written to a file. The preceding fwrite function call writes a
single integer to a file, so the third argument is 1 (as if one element of an array were being
written). File-processing programs rarely write a single field to a file. Normally, they write
one struct at a time, as we show in the following examples.

Problem Statement
Consider the following problem statement:

Create a transaction-processing system capable of storing up to 100 fixed-length
records. Each record should consist of an account number that will be used as the
record key, a last name, a first name and a balance. The resulting program should be
able to update an account, insert a new account record, delete an account and list all
the account records in a formatted text file for printing. Use a random-access file.

The next several sections introduce the techniques necessary to create the transaction-pro-
cessing program. Figure 11.10 shows how to open a random-access file, define a record
format using a struct, write data to the file and close the file. This program initializes all
100 records of the file "accounts.dat" with empty structs using the function fwrite.
Each empty struct contains 0 for the account number, "" (the empty string) for the last
name, "" for the first name and 0.0 for the balance. The file is initialized in this manner
to create the space in which the file will be stored and to make it possible to determine
whether a record contains data.

fprintf(fPtr, "%d", number);

fwrite(&number, sizeof(int), 1, fPtr);

1 // Fig. 11.10: fig11_10.c

2 // Creating a random-access file sequentially
3 #include <stdio.h>

4

Fig. 11.10 | Creating a random-access file sequentially. (Part 1 of 2.)

456 Chapter 11 C File Processing

Function fwrite writes a block of bytes to a file. Line 27 causes the structure blank-
Client of size sizeof(struct clientData) to be written to the file pointed to by cfPtr.
The operator sizeof returns the size in bytes of its operand in parentheses (in this case
struct clientData).

Function fwrite can actually be used to write several elements of an array of objects.
To do so, supply in the call to fwrite a pointer to an array as the first argument and the
number of elements to be written as the third argument. In the preceding statement,
fwrite was used to write a single object that was not an array element. Writing a single
object is equivalent to writing one element of an array, hence the 1 in the fwrite call.
[Note: Figures 11.11, 11.14 and 11.15 use the data file created in Fig. 11.10, so you must
run Fig. 11.10 before Figs. 11.11, 11.14 and 11.15.]

11.7 Writing Data Randomly to a Random-Access File
Figure 11.11 writes data to the file "accounts.dat". It uses the combination of fseek and
fwrite to store data at specific locations in the file. Function fseek sets the file position
pointer to a specific position in the file, then fwrite writes the data. A sample execution
is shown in Fig. 11.12.

5
6
7
8
9

10
11
12

13 int main(void)
14 {

15 FILE *cfPtr; // accounts.dat file pointer

16
17 // fopen opens the file; exits if file cannot be opened

18 if (() == NULL) {
19 puts("File could not be opened.");
20 }

21 else {
22 // create clientData with default information

23
24

25

26
27

28

29
30 fclose (cfPtr); // fclose closes the file

31 }

32 }

Fig. 11.10 | Creating a random-access file sequentially. (Part 2 of 2.)

// clientData structure definition
struct clientData {
 unsigned int acctNum; // account number
 char lastName[15]; // account last name
 char firstName[10]; // account first name
 double balance; // account balance
};

cfPtr = fopen("accounts.dat", "wb")

struct clientData blankClient = {0, "", "", 0.0};

// output 100 blank records to file

for (unsigned int i = 1; i <= 100; ++i) {
 fwrite(&blankClient, sizeof(struct clientData), 1, cfPtr);
}

11.7 Writing Data Randomly to a Random-Access File 457

1 // Fig. 11.11: fig11_11.c

2 // Writing data randomly to a random-access file

3 #include <stdio.h>
4
5 // clientData structure definition

6 {
7 unsigned int acctNum; // account number
8 char lastName[15]; // account last name
9 char firstName[10]; // account first name

10 double balance; // account balance
11 }; // end structure clientData

12
13 int main(void)
14 {

15 FILE *cfPtr; // accounts.dat file pointer
16
17 // fopen opens the file; exits if file cannot be opened

18 if (() == NULL) {
19 puts("File could not be opened.");
20 }

21 else {
22 // create clientData with default information
23 struct clientData client = {0, "", "", 0.0};
24
25 // require user to specify account number
26 printf("%s", "Enter account number"
27 " (1 to 100, 0 to end input): ");
28 scanf("%d", &client.acctNum);
29
30 // user enters information, which is copied into file

31 while (client.acctNum != 0) {
32 // user enters last name, first name and balance

33 printf("%s", "\nEnter lastname, firstname, balance: ");
34
35 // set record lastName, firstName and balance value

36 fscanf(stdin, "%14s%9s%lf", client.lastName,
37 client.firstName, &client.balance);
38
39

40
41

42
43
44

45
46 // enable user to input another account number
47 printf("%s", "\nEnter account number: ");
48 scanf("%d", &client.acctNum);
49 }
50
51 fclose(cfPtr); // fclose closes the file

52 }
53 }

Fig. 11.11 | Writing data randomly to a random-access file.

struct clientData

cfPtr = fopen("accounts.dat", "rb+")

// seek position in file to user-specified record

fseek(cfPtr, (client.acctNum - 1) *
 sizeof(struct clientData), SEEK_SET);

// write user-specified information in file

fwrite(&client, sizeof(struct clientData), 1, cfPtr);

458 Chapter 11 C File Processing

11.7.1 Positioning the File Position Pointer with fseek
Lines 40–41 position the file position pointer for the file referenced by cfPtr to the byte
location calculated by (client.accountNum - 1) * sizeof(struct clientData). The val-
ue of this expression is called the offset or the displacement. Because the account number
is between 1 and 100 but the byte positions in the file start with 0, 1 is subtracted from
the account number when calculating the byte location of the record. Thus, for record 1,
the file position pointer is set to byte 0 of the file. The symbolic constant SEEK_SET indi-
cates that the file position pointer is positioned relative to the beginning of the file by the
amount of the offset. As the above statement indicates, a seek for account number 1 in the
file sets the file position pointer to the beginning of the file because the byte location cal-
culated is 0.

Figure 11.13 illustrates the file pointer referring to a FILE structure in memory. The
file position pointer in this diagram indicates that the next byte to be read or written is 5
bytes from the beginning of the file.

fseek Function Prototype
The function prototype for fseek is

where offset is the number of bytes to seek from whence in the file pointed to by stream—
a positive offset seeks forward and a negative one seeks backward. Argument whence is one
of the values SEEK_SET, SEEK_CUR or SEEK_END (all defined in <stdio.h>), which indicate
the location from which the seek begins. SEEK_SET indicates that the seek starts at the begin-
ning of the file; SEEK_CUR indicates that the seek starts at the current location in the file; and
SEEK_END indicates that the seek is measured from at the end of the file.

Enter account number (1 to 100, 0 to end input): 37
Enter lastname, firstname, balance: Barker Doug 0.00
Enter account number: 29
Enter lastname, firstname, balance: Brown Nancy -24.54
Enter account number: 96
Enter lastname, firstname, balance: Stone Sam 34.98
Enter account number: 88
Enter lastname, firstname, balance: Smith Dave 258.34
Enter account number: 33
Enter lastname, firstname, balance: Dunn Stacey 314.33
Enter account number: 0

Fig. 11.12 | Sample execution of the program in Fig. 11.11.

int fseek(FILE *stream, long int offset, int whence);

11.8 Reading Data from a Random-Access File 459

11.7.2 Error Checking
For simplicity, the programs in this chapter do not perform error checking. Industrial-
strength programs should determine whether functions such as fscanf (Fig. 11.11, lines 36–
37), fseek (lines 40–41) and fwrite (line 44) operate correctly by checking their return val-
ues. Function fscanf returns the number of data items successfully read or the value EOF if
a problem occurs while reading data. Function fseek returns a nonzero value if the seek op-
eration cannot be performed (e.g., attempting to seek to a position before the start of the file).
Function fwrite returns the number of items it successfully output. If this number is less
than the third argument in the function call, then a write error occurred.

11.8 Reading Data from a Random-Access File
Function fread reads a specified number of bytes from a file into memory. For example,

reads the number of bytes determined by sizeof(struct clientData) from the file refer-
enced by cfPtr, stores the data in client and returns the number of bytes read. The bytes
are read from the location specified by the file position pointer. Function fread can read
several fixed-size array elements by providing a pointer to the array in which the elements
will be stored and by indicating the number of elements to be read. The preceding state-
ment reads one element. To read more than one, specify the number of elements as fread’s
third argument. Function fread returns the number of items it successfully input. If this
number is less than the third argument in the function call, then a read error occurred.

Figure 11.14 reads sequentially every record in the "accounts.dat" file, determines
whether each record contains data and displays the formatted data for records containing
data. Function feof determines when the end of the file is reached, and the fread function
transfers data from the file to the clientData structure client.

Fig. 11.13 | File position pointer indicating an offset of 5 bytes from the beginning of the file.

fread(&client, sizeof(struct clientData), 1, cfPtr);

5

0 1 2 3 4 5 6 7 8 9 ...

cfPtr

Byte
number

(File position
pointer)

Memory

460 Chapter 11 C File Processing

1 // Fig. 11.14: fig11_14.c

2 // Reading a random-access file sequentially

3 #include <stdio.h>
4
5 // clientData structure definition

6 {
7 unsigned int acctNum; // account number
8 char lastName[15]; // account last name
9 char firstName[10]; // account first name

10 double balance; // account balance
11 };

12
13 int main(void)
14 {

15 FILE *cfPtr; // accounts.dat file pointer
16
17 // fopen opens the file; exits if file cannot be opened

18 if (() == NULL) {
19 puts("File could not be opened.");
20 }

21 else {
22 printf("%-6s%-16s%-11s%10s\n", "Acct", "Last Name",
23 "First Name", "Balance");
24
25 // read all records from file (until eof)
26 while (!feof(cfPtr)) {
27 // create clientData with default information

28 struct clientData client = {0, "", "", 0.0};
29
30

31
32 // display record

33 if (result != 0 && client.acctNum != 0) {
34 printf("%-6d%-16s%-11s%10.2f\n",
35 client.acctNum, client.lastName,

36 client.firstName, client.balance);

37 }
38 }

39
40 fclose(cfPtr); // fclose closes the file
41 }

42 }

Acct Last Name First Name Balance
29 Brown Nancy -24.54
33 Dunn Stacey 314.33
37 Barker Doug 0.00
88 Smith Dave 258.34
96 Stone Sam 34.98

Fig. 11.14 | Reading a random-access file sequentially.

struct clientData

cfPtr = fopen("credit.txt", "rb")

int result = fread(&client, sizeof(struct clientData), 1, cfPtr);

11.9 Case Study: Transaction-Processing Program 461

11.9 Case Study: Transaction-Processing Program
We now present a substantial transaction-processing program (Fig. 11.15) using random-
access files. The program maintains a bank’s account information—updating existing ac-
counts, adding new accounts, deleting accounts and storing a listing of all the current ac-
counts in a text file for printing. We assume that the program of Fig. 11.10 has been
executed to create the file accounts.dat.

Option 1: Create a Formatted List of Accounts
The program has five options—option 5 terminates the program. Option 1 calls function
textFile (lines 64–94) to store a formatted list of all the accounts (typically called a re-
port) in a text file called accounts.txt that may be printed later. The function uses fread
and the sequential file-access techniques used in the program of Fig. 11.14. After option
1, accounts.txt contains:

Option 2: Update an Account
Option 2 calls the function updateRecord (lines 97–140) to update an account. The func-
tion will update only a record that already exists, so the function first checks whether the re-
cord specified by the user is empty. The record is read into structure client with fread, then
member acctNum is compared to 0. If it’s 0, the record contains no information, and a mes-
sage is printed stating that the record is empty. Then the menu choices are displayed. If the
record contains information, function updateRecord inputs the transaction amount, calcu-
lates the new balance and rewrites the record to the file. A typical output for option 2 is

Option 3: Create a New Account
Option 3 calls the function newRecord (lines 177–215) to add a new account to the file.
If the user enters an account number for an existing account, newRecord displays an error
message indicating that the record already contains information, and the menu choices are
printed again. This function uses the same process to add a new account as does the pro-
gram in Fig. 11.11. A typical output for option 3 is

Acct Last Name First Name Balance
29 Brown Nancy -24.54
33 Dunn Stacey 314.33
37 Barker Doug 0.00
88 Smith Dave 258.34
96 Stone Sam 34.98

Enter account to update (1 - 100): 37
37 Barker Doug 0.00

Enter charge (+) or payment (-): +87.99
37 Barker Doug 87.99

Enter new account number (1 - 100): 22
Enter lastname, firstname, balance
? Johnston Sarah 247.45

462 Chapter 11 C File Processing

Option 4: Delete an Account
Option 4 calls function deleteRecord (lines 143–174) to delete a record from the file. De-
letion is accomplished by asking the user for the account number and reinitializing the re-
cord. If the account contains no information, deleteRecord displays an error message
indicating that the account does not exist.

Code for the Transaction-Processing Program
The program is shown in Fig. 11.15. The file "accounts.dat" is opened for update (read-
ing and writing) using "rb+" mode.

1 // Fig. 11.15: fig11_15.c

2 // Transaction-processing program reads a random-access file sequentially,
3 // updates data already written to the file, creates new data to

4 // be placed in the file, and deletes data previously stored in the file.

5 #include <stdio.h>
6
7 // clientData structure definition

8 {

9 unsigned int acctNum; // account number
10 char lastName[15]; // account last name
11 char firstName[10]; // account first name
12 double balance; // account balance
13 };

14
15 // prototypes
16 unsigned int enterChoice(void);
17 void textFile(FILE *readPtr);
18 void updateRecord(FILE *fPtr);
19 void newRecord(FILE *fPtr);
20 void deleteRecord(FILE *fPtr);
21
22 int main(void)
23 {

24 FILE *cfPtr; // accounts.dat file pointer
25
26 // fopen opens the file; exits if file cannot be opened

27 if (() == NULL) {
28 puts("File could not be opened.");
29 }

30 else {
31 unsigned int choice; // user's choice
32
33 // enable user to specify action
34 while ((choice = enterChoice()) != 5) {
35 switch (choice) {
36 // create text file from record file
37 case 1:
38 textFile(cfPtr);

39 break;

Fig. 11.15 | Transaction-processing program. (Part 1 of 5.)

struct clientData

cfPtr = fopen("accounts.dat", "rb+")

11.9 Case Study: Transaction-Processing Program 463

40 // update record

41 case 2:
42 updateRecord(cfPtr);
43 break;
44 // create record

45 case 3:
46 newRecord(cfPtr);

47 break;
48 // delete existing record
49 case 4:
50 deleteRecord(cfPtr);

51 break;
52 // display message if user does not select valid choice

53 default:
54 puts("Incorrect choice");
55 break;
56 }

57 }

58
59 fclose(cfPtr); // fclose closes the file

60 }

61 }
62
63 // create formatted text file for printing

64 void textFile(FILE *readPtr)
65 {

66 FILE *writePtr; // accounts.txt file pointer

67
68 // fopen opens the file; exits if file cannot be opened

69 if (() == NULL) {
70 puts("File could not be opened.");
71 }

72 else {
73 rewind(readPtr); // sets pointer to beginning of file
74 fprintf(writePtr, "%-6s%-16s%-11s%10s\n",
75 "Acct", "Last Name", "First Name","Balance");
76
77 // copy all records from random-access file into text file

78 while (!feof(readPtr)) {
79 // create clientData with default information
80 struct clientData client = { 0, "", "", 0.0 };
81 int result =
82 fread(&client, sizeof(struct clientData), 1, readPtr);
83
84 // write single record to text file

85 if (result != 0 && client.acctNum != 0) {
86

87

88
89 }

90 }

Fig. 11.15 | Transaction-processing program. (Part 2 of 5.)

writePtr = fopen("accounts.txt", "w")

fprintf(writePtr, "%-6d%-16s%-11s%10.2f\n",
 client.acctNum, client.lastName,

 client.firstName, client.balance);

464 Chapter 11 C File Processing

91
92 fclose(writePtr); // fclose closes the file

93 }
94 }

95
96 // update balance in record
97 void updateRecord(FILE *fPtr)
98 {

99 // obtain number of account to update
100 printf("%s", "Enter account to update (1 - 100): ");
101 unsigned int account; // account number
102 scanf("%d", &account);
103
104

105
106

107
108 // create clientData with no information

109 struct clientData client = {0, "", "", 0.0};
110
111 // read record from file

112
113
114 // display error if account does not exist

115 if (client.acctNum == 0) {
116 printf("Account #%d has no information.\n", account);
117 }

118 else { // update record
119 printf("%-6d%-16s%-11s%10.2f\n\n",
120 client.acctNum, client.lastName,

121 client.firstName, client.balance);
122

123 // request transaction amount from user

124 printf("%s", "Enter charge (+) or payment (-): ");
125 double transaction; // transaction amount
126 scanf("%lf", &transaction);
127 client.balance += transaction; // update record balance
128

129 printf("%-6d%-16s%-11s%10.2f\n",
130 client.acctNum, client.lastName,
131 client.firstName, client.balance);

132

133
134

135

136
137

138

139 }
140 }

141

Fig. 11.15 | Transaction-processing program. (Part 3 of 5.)

// move file pointer to correct record in file

fseek(fPtr, (account - 1) * sizeof(struct clientData),
 SEEK_SET);

fread(&client, sizeof(struct clientData), 1, fPtr);

// move file pointer to correct record in file

fseek(fPtr, (account - 1) * sizeof(struct clientData),
 SEEK_SET);

// write updated record over old record in file
fwrite(&client, sizeof(struct clientData), 1, fPtr);

11.9 Case Study: Transaction-Processing Program 465

142 // delete an existing record

143 void deleteRecord(FILE *fPtr)
144 {
145 // obtain number of account to delete

146 printf("%s", "Enter account number to delete (1 - 100): ");
147 unsigned int accountNum; // account number
148 scanf("%d", &accountNum);
149
150
151

152

153
154 struct clientData client; // stores record read from file
155
156
157

158
159 // display error if record does not exist

160 if (client.acctNum == 0) {
161 printf("Account %d does not exist.\n", accountNum);
162 }

163 else { // delete record
164

165

166
167
168 struct clientData blankClient = {0, "", "", 0}; // blank client
169
170

171

172
173 }

174 }

175
176 // create and insert record

177 void newRecord(FILE *fPtr)
178 {
179 // obtain number of account to create

180 printf("%s", "Enter new account number (1 - 100): ");
181 unsigned int accountNum; // account number
182 scanf("%d", &accountNum);
183
184
185

186

187
188 // create clientData with default information

189 struct clientData client = { 0, "", "", 0.0 };
190
191

192

193

Fig. 11.15 | Transaction-processing program. (Part 4 of 5.)

// move file pointer to correct record in file

fseek(fPtr, (accountNum - 1) * sizeof(struct clientData),
 SEEK_SET);

// read record from file

fread(&client, sizeof(struct clientData), 1, fPtr);

// move file pointer to correct record in file
fseek(fPtr, (accountNum - 1) * sizeof(struct clientData),
 SEEK_SET);

// replace existing record with blank record
fwrite(&blankClient,

 sizeof(struct clientData), 1, fPtr);

// move file pointer to correct record in file

fseek(fPtr, (accountNum - 1) * sizeof(struct clientData),
 SEEK_SET);

// read record from file
fread(&client, sizeof(struct clientData), 1, fPtr);

466 Chapter 11 C File Processing

11.10 Secure C Programming
fprintf_s and fscanf_s
The examples in Sections 11.311.4 used functions fprintf and fscanf to write text to and
read text from files, respectively. The new standard’s Annex K provides more secure versions
of these functions named fprintf_s and fscanf_s that are identical to the printf_s and
scanf_s functions we’ve previously introduced, except that you also specify a FILE pointer
argument indicating the file to manipulate. If your C compiler’s standard libraries include
these functions, you should use them instead of fprintf and fscanf. As with scanf_s and
printf_s, Microsoft’s versions of fprintf_s and fscanf_s differ from those in Annex K.

194 // display error if account already exists

195 if (client.acctNum != 0) {
196 printf("Account #%d already contains information.\n",
197 client.acctNum);

198 }

199 else { // create record
200 // user enters last name, first name and balance

201 printf("%s", "Enter lastname, firstname, balance\n? ");
202 scanf("%14s%9s%lf", &client.lastName, &client.firstName,
203 &client.balance);

204
205 client.acctNum = accountNum;
206

207

208
209

210
211

212
213

214 }

215 }
216
217 // enable user to input menu choice

218 unsigned int enterChoice(void)
219 {

220 // display available options

221 printf("%s", "\nEnter your choice\n"
222 "1 - store a formatted text file of accounts called\n"
223 " \"accounts.txt\" for printing\n"
224 "2 - update an account\n"
225 "3 - add a new account\n"
226 "4 - delete an account\n"
227 "5 - end program\n? ");
228
229 unsigned int menuChoice; // variable to store user's choice
230 scanf("%u", &menuChoice); // receive choice from user
231 return menuChoice;
232 }

Fig. 11.15 | Transaction-processing program. (Part 5 of 5.)

// move file pointer to correct record in file

fseek(fPtr, (client.acctNum - 1) *
 sizeof(struct clientData), SEEK_SET);

// insert record in file

fwrite(&client,
 sizeof(struct clientData), 1, fPtr);

 Summary 467

Chapter 9 of the CERT Secure C Coding Standard
Chapter 9 of the CERT Secure C Coding Standard is dedicated to input/output recommen-
dations and rules—many apply to file processing in general and several of these apply to
the file-processing functions presented in this chapter. For more information on each, visit
www.securecoding.cert.org.

• FIO03-C: When opening a file for writing using the nonexclusive file-open
modes (Fig. 11.5), if the file exists, function fopen opens it and truncates its con-
tents, providing no indication of whether the file existed before the fopen call.
To ensure that an existing file is not opened and truncated, you can use C11’s new
exclusive write mode (discussed in Section 11.3), which allows fopen to open the
file only if it does not already exist.

• FIO04-C: In industrial-strength code, you should always check the return values
of file-processing functions that return error indicators to ensure that the func-
tions performed their tasks correctly.

• FIO07-C. Function rewind does not return a value, so you cannot test whether
the operation was successful. It’s recommended instead that you use function
fseek, because it returns a nonzero value if it fails.

• FIO09-C. We demonstrated both text files and binary files in this chapter. Due
to differences in binary data representations across platforms, files written in bi-
nary format often are not portable. For more portable file representations, con-
sider using text files or a function library that can handle the differences in binary
file representations across platforms.

• FIO14-C. Some library functions do not operate identically on text files and bi-
nary files. In particular, function fseek is not guaranteed to work correctly with
binary files if you seek from SEEK_END, so SEEK_SET should be used.

• FIO42-C. On many platforms, you can have only a limited number of files open
at once. For this reason, you should always close a file as soon as it’s no longer
needed by your program.

Summary
Section 11.1 Introduction
• Files (p. 442) are used for permanent retention of large amounts of data.

• Computers store files on secondary storage devices, such as hard drives, solid-state drives, flash
drives and DVDs.

Section 11.2 Files and Streams
• C views each file as a sequential stream of bytes (p. 442). When a file is opened, a stream is as-

sociated with the file.

• Three streams are automatically opened when program execution begins—the standard input
(p. 442), the standard output (p. 442) and the standard error (p. 442).

• Streams provide communication channels between files and programs.

468 Chapter 11 C File Processing

• The standard input stream enables a program to read data from the keyboard, and the standard
output stream enables a program to print data on the screen.

• Opening a file returns a pointer to a FILE structure (defined in <stdio.h>; p. 443) that contains
information used to process the file. This structure includes a file descriptor (p. 443), i.e., an index
into an operating-system array called the open file table (p. 443). Each array element contains a file
control block (FCB; p. 443) that the operating system uses to administer a particular file.

• The standard input, standard output and standard error are manipulated using the predefined
file pointers stdin, stdout and stderr.

• Function fgetc (p. 443) reads one character from a file. It receives as an argument a FILE pointer
for the file from which a character will be read.

• Function fputc (p. 443) writes one character to a file. It receives as arguments a character to be
written and a FILE pointer for the file to which the character will be written.

• The fgets and fputs functions (p. 443) read a line from a file or write a line to a file, respec-
tively.

Section 11.3 Creating a Sequential-Access File
• C imposes no structure on a file. You must provide a file structure to meet the requirements of

a particular application.

• A C program administers each file with a separate FILE structure.

• Each open file must have a separately declared pointer of type FILE that’s used to refer to the file.

• Function fopen (p. 448) takes as arguments a filename and a file open mode (p. 445) and returns
a pointer to the FILE structure for the file opened.

• The file open mode "w" indicates that the file is to be opened for writing. If the file does not
exist, fopen creates it. If the file exists, the contents are discarded without warning.

• Function fopen returns NULL if it’s unable to open a file.

• Function feof (p. 446) receives a pointer to a FILE and returns a nonzero (true) value when the
end-of-file indicator has been set; otherwise, the function returns zero. Any attempt to read from
a file for which feof returns true will fail.

• Function fprintf (p. 443) is equivalent to printf except that fprintf also receives as an argu-
ment a file pointer for the file to which the data will be written.

• Function fclose (p. 446) receives a file pointer as an argument and closes the specified file.

• When a file is opened, the file control block (FCB) for the file is copied into memory. The FCB
is used by the operating system to administer the file.

• To create a new file, or to discard an existing file’s contents before writing data, open the file for
writing ("w").

• To read an existing file, open it for reading ("r").

• To add records to the end of an existing file, open the file for appending ("a").

• To open a file so that it may be written to and read from, open the file for updating in one of the
three update modes—"r+", "w+" or "a+". Mode "r+" opens a file for reading and writing. Mode
"w+" creates a file for reading and writing. If the file already exists, it’s opened and its contents
are discarded. Mode "a+" opens a file for reading and writing—all writing is done at the end of
the file. If the file does not exist, it’s created.

• Each file open mode has a corresponding binary mode (containing the letter b) for manipulating
binary files.

• C11 also supports exclusive write mode by appending x to the w, w+, wb and wb+ modes.

 Summary 469

Section 11.4 Reading Data from a Sequential-Access File
• Function fscanf (p. 443) is equivalent to function scanf except fscanf receives as an argument

a file pointer for the file from which the data is read.

• To retrieve data sequentially from a file, a program normally starts reading from the beginning
of the file and reads all data consecutively until the desired data is found.

• Function rewind causes a program’s file position pointer (p. 450) to be repositioned to the be-
ginning of the file (i.e., byte 0) pointed to its argument.

• The file position pointer is an integer value that specifies the byte location in the file at which the
next read or write is to occur. This is sometimes referred to as the file offset (p. 450). The file
position pointer is a member of the FILE structure associated with each file.

• The data in a sequential file typically cannot be modified without the risk of destroying other
data in the file.

Section 11.5 Random-Access Files
• Individual records of a random-access file (p. 454) are normally fixed in length and may be ac-

cessed directly (and thus quickly) without searching through other records.

• Because every record in a random-access file normally has the same length, the exact location of
a record relative to the beginning of the file can be calculated as a function of the record key.

• Fixed-length records enable data to be inserted in a random-access file without destroying other
data. Data stored previously can also be updated or deleted without rewriting the entire file.

Section 11.6 Creating a Random-Access File
• Function fwrite (p. 454) transfers a specified number of bytes beginning at a specified location

in memory to a file. The data is written beginning at the file position pointer’s location.

• Function fread (p. 454) transfers a specified number of bytes from the location in the file spec-
ified by the file position pointer to an area in memory beginning with a specified address.

• Functions fwrite and fread are capable of reading and writing arrays of data from and to files.
The third argument of both fread and fwrite is the number of elements to process.

• File-processing programs normally write one struct at a time.

• Function fwrite writes a block (specific number of bytes) of data to a file.

• To write several array elements, supply in the call to fwrite a pointer to an array as the first ar-
gument and the number of elements to be written as the third argument.

Section 11.7 Writing Data Randomly to a Random-Access File
• Function fseek (p. 456) sets the file position pointer for a given file to a specific position in the

file. Its second argument indicates the number of bytes to seek and its third argument indicates
the location from which to seek. The third argument can have one of three values—SEEK_SET,
SEEK_CUR or SEEK_END (all defined in <stdio.h>). SEEK_SET (p. 458) indicates that the seek starts
at the beginning of the file; SEEK_CUR (p. 458) indicates that the seek starts at the current location
in the file; and SEEK_END (p. 458) indicates that the seek is measured from at the end of the file.

• Industrial-strength programs should determine whether functions such as fscanf, fseek and
fwrite operate correctly by checking their return values.

• Function fscanf returns the number of fields successfully read or the value EOF if a problem oc-
curs while reading data.

• Function fseek returns a nonzero value if the seek operation cannot be performed.

• Function fwrite returns the number of items it successfully output. If this number is less than
the third argument in the function call, then a write error occurred.

470 Chapter 11 C File Processing

Section 11.8 Reading Data from a Random-Access File
• Function fread reads a specified number of bytes from a file into memory.

• Function fread can be used to read several fixed-size array elements by providing a pointer to the
array in which the elements will be stored and by indicating the number of elements to be read.

• Function fread returns the number of items it successfully input. If this number is less than the
third argument in the function call, then a read error occurred.

Self-Review Exercises
11.1 Fill in the blanks in each of the following:

a) Function closes a file.
b) The function reads data from a file in a manner similar to how scanf reads

from stdin.
c) Function reads a character from a specified file.
d) Function reads a line from a specified file.
e) Function opens a file.
f) Function is normally used when reading data from a file in random-access ap-

plications.
g) Function repositions the file position pointer to a specific location in the file.

11.2 State which of the following are true and which are false. If false, explain why.
a) Function fscanf cannot be used to read data from the standard input.
b) You must explicitly use fopen to open the standard input, standard output and standard

error streams.
c) A program must explicitly call function fclose to close a file.
d) If the file position pointer points to a location in a sequential file other than the beginning

of the file, the file must be closed and reopened to read from the beginning of the file.
e) Function fprintf can write to the standard output.
f) Data in sequential-access files is always updated without overwriting other data.
g) It’s not necessary to search through all the records in a random-access file to find a spe-

cific record.
h) Records in random-access files are not of uniform length.
i) Function fseek may seek only relative to the beginning of a file.

11.3 Write a single statement to accomplish each of the following. Assume that each of these
statements applies to the same program.

a) Write a statement that opens the file "oldmast.dat" for reading and assigns the re-
turned file pointer to ofPtr.

b) Write a statement that opens the file "trans.dat" for reading and assigns the returned
file pointer to tfPtr.

c) Write a statement that opens the file "newmast.dat" for writing (and creation) and as-
signs the returned file pointer to nfPtr.

d) Write a statement that reads a record from the file "oldmast.dat". The record consists
of integer accountNum, string name and floating-point currentBalance.

e) Write a statement that reads a record from the file "trans.dat". The record consists of
the integer accountNum and floating-point dollarAmount.

f) Write a statement that writes a record to the file "newmast.dat". The record consists of
the integer accountNum, string name and floating-point currentBalance.

11.4 Find the error in each of the following program segments and explain how to correct it.
a) The file referred to by fPtr ("payables.dat") has not been opened.

 printf(fPtr, "%d%s%d\n", account, company, amount);

 Answers to Self-Review Exercises 471

b) open("receive.dat", "r+");
c) The following statement should read a record from the file "payables.dat". File point-

er payPtr refers to this file, and file pointer recPtr refers to the file "receive.dat":
 scanf(recPtr, "%d%s%d\n", &account, company, &amount);

d) The file "tools.dat" should be opened to add data to the file without discarding the
current data.
 if ((tfPtr = fopen("tools.dat", "w")) != NULL)

e) The file "courses.dat" should be opened for appending without modifying the current
contents of the file.
 if ((cfPtr = fopen("courses.dat", "w+")) != NULL)

Answers to Self-Review Exercises
11.1 a) fclose. b) fscanf. c) fgetc. d) fgets. e) fopen. f) fread. g) fseek.

11.2 a) False. Function fscanf can be used to read from the standard input by including the
pointer to the standard input stream, stdin, in the call to fscanf.

b) False. These three streams are opened automatically by C when program execution be-
gins.

c) False. The files will be closed when program execution terminates, but all files should
be explicitly closed with fclose.

d) False. Function rewind can be used to reposition the file position pointer to the be-
ginning of the file.

e) True.
f) False. In most cases, sequential file records are not of uniform length. Therefore, it’s

possible that updating a record will cause other data to be overwritten.
g) True.
h) False. Records in a random-access file are normally of uniform length.
i) False. It’s possible to seek from the beginning of the file, from the end of the file and

from the current location in the file.

11.3 a) ofPtr = fopen("oldmast.dat", "r");
b) tfPtr = fopen("trans.dat", "r");
c) nfPtr = fopen("newmast.dat", "w");
d) fscanf(ofPtr, "%d%s%f", &accountNum, name, ¤tBalance);
e) fscanf(tfPtr, "%d%f", &accountNum, &dollarAmount);
f) fprintf(nfPtr, "%d %s %.2f", accountNum, name, currentBalance);

11.4 a) Error: The file "payables.dat" has not been opened before the reference to its file
pointer.
Correction: Use fopen to open "payables.dat" for writing, appending or updating.

b) Error: Function open is not a Standard C function.
Correction: Use function fopen.

c) Error: The function scanf should be fscanf. Function fscanf uses the incorrect file
pointer to refer to file "payables.dat".
Correction: Use file pointer payPtr to refer to "payables.dat" and use fscanf.

d) Error: The contents of the file are discarded because the file is opened for writing ("w").
Correction: To add data to the file, either open the file for updating ("r+") or open the
file for appending ("a" or "a+").

e) Error: File "courses.dat" is opened for updating in "w+" mode, which discards the cur-
rent contents of the file.
Correction: Open the file in "a" or "a+" mode.

472 Chapter 11 C File Processing

Exercises
11.5 Fill in the blanks in each of the following:

a) Computers store large amounts of data on secondary storage devices as .
b) A(n) is composed of several fields.
c) To facilitate the retrieval of specific records from a file, one field in each record is chosen

as a(n) .
d) A group of related characters that conveys meaning is called a(n) .
e) The file pointers for the three streams that are opened automatically when program ex-

ecution begins are named , and .
f) Function writes a character to a specified file.
g) Function writes a line to a specified file.
h) Function is generally used to write data to a random-access file.
i) Function repositions the file position pointer to the beginning of the file.

11.6 State which of the following are true and which are false. If false, explain why.
a) The impressive functions performed by computers essentially involve the manipulation

of zeros and ones.
b) People prefer to manipulate bits instead of characters and fields because bits are more

compact.
c) People specify programs and data items as characters; computers then manipulate and

process these characters as groups of zeros and ones.
d) A person’s zip code is an example of a numeric field.
e) Data items processed by a computer form a data hierarchy in which data items become

larger and more complex as we progress from fields to characters to bits, and so on.
f) A record key identifies a record as belonging to a particular field.
g) Most companies store their information in a single file to facilitate computer processing.
h) Files are always referred to by name in C programs.
i) When a program creates a file, the file is automatically retained by the computer for fu-

ture reference.

11.7 (Creating Data for a File-Matching Program) Write a simple program to create some test
data for checking out the program of Exercise 11.8. Use the following sample account data:

Master File:
Account number Name Balance

100 Alan Jones 348.17

300 Mary Smith 27.19

500 Sam Sharp 0.00

700 Suzy Green -14.22

Transaction File:
Account number Dollar amount

100 27.14

300 62.11

400 100.56

900 82.17

 Exercises 473

11.8 (File Matching) Exercise 11.3 asked the reader to write a series of single statements. Actu-
ally, these statements form the core of an important type of file-processing program, namely, a file-
matching program. In commercial data processing, it’s common to have several files in each system.
In an accounts receivable system, for example, there’s generally a master file containing detailed
information about each customer such as the customer’s name, address, telephone number, out-
standing balance, credit limit, discount terms, contract arrangements and possibly a condensed his-
tory of recent purchases and cash payments.

As transactions occur (i.e., sales are made and cash payments arrive in the mail), they’re
entered into a file. At the end of each business period (i.e., a month for some companies, a week for
others and a day in some cases) the file of transactions (called "trans.dat" in Exercise 11.3) is
applied to the master file (called "oldmast.dat" in Exercise 11.3), thus updating each account's
record of purchases and payments. After each of these updates runs, the master file is rewritten as a
new file ("newmast.dat"), which is then used at the end of the next business period to begin the
updating process again.

File-matching programs must deal with certain problems that do not exist in single-file pro-
grams. For example, a match does not always occur. A customer on the master file might not have
made any purchases or cash payments in the current business period, and therefore no record for
this customer will appear on the transaction file. Similarly, a customer who did make some pur-
chases or cash payments might have just moved to this community, and the company may not have
had a chance to create a master record for this customer.

Use the statements written in Exercise 11.3 as the basis for a complete file-matching accounts
receivable program. Use the account number on each file as the record key for matching purposes.
Assume that each file is a sequential file with records stored in increasing account-number order.

When a match occurs (i.e., records with the same account number appear on both the master
file and the transaction file), add the dollar amount on the transaction file to the current balance
on the master file and write the "newmast.dat" record. (Assume that purchases are indicated by
positive amounts on the transaction file, and that payments are indicated by negative amounts.)
When there’s a master record for a particular account but no corresponding transaction record,
merely write the master record to "newmast.dat". When there’s a transaction record but no cor-
responding master record, print the message "Unmatched transaction record for account number
…" (fill in the account number from the transaction record).

11.9 (Testing the File-Matching Exercises) Run the program of Exercise 11.8 using the files of
test data created in Exercise 11.7. Check the results carefully.

11.10 (File Matching with Multiple Transactions) It’s possible (actually common) to have several
transaction records with the same record key. This occurs because a particular customer might make
several purchases and cash payments during a business period. Rewrite your accounts receivable file-
matching program of Exercise 11.8 to provide for the possibility of handling several transaction re-
cords with the same record key. Modify the test data of Exercise 11.7 to include the following ad-
ditional transaction records:

11.11 (Write Statements to Accomplish a Task) Write statements that accomplish each of the fol-
lowing. Assume that the structure

Account number Dollar amount

300 83.89

700 80.78

700 1.53

474 Chapter 11 C File Processing

struct person {
 char lastName[15];
 char firstName[15];
 char age[4];
};

has been defined and that the file is already open for writing.
a) Initialize the file "nameage.dat" so that there are 100 records with lastName = "unas-

signed", firstname = "" and age = "0".
b) Input 10 last names, first names and ages, and write them to the file.
c) Update a record; if there’s no information in the record, tell the user "No info".
d) Delete a record that has information by reinitializing that particular record.

11.12 (Hardware Inventory) You’re the owner of a hardware store and need to keep an inventory
that can tell you what tools you have, how many you have and the cost of each one. Write a program
that initializes the file "hardware.dat" to 100 empty records, lets you input the data concerning
each tool, enables you to list all your tools, lets you delete a record for a tool that you no longer have
and lets you update any information in the file. The tool identification number should be the record
number. Use the following information to start your file:

11.13 (Telephone-Number Word Generator) Standard telephone keypads contain the digits 0–9.
The numbers 2–9 each have three letters associated with them, as is indicated by the following table:

Many people find it difficult to memorize phone numbers, so they use the correspondence
between digits and letters to develop seven-letter words that correspond to their phone numbers.
For example, a person whose telephone number is 686-2377 might use the correspondence indi-
cated in the above table to develop the seven-letter word “NUMBERS.”

Businesses frequently attempt to get telephone numbers that are easy for their clients to
remember. If a business can advertise a simple word for its customers to dial, then, no doubt, the
business will receive a few more calls.

Each seven-letter word corresponds to exactly one seven-digit telephone number. The restau-
rant wishing to increase its take-home business could surely do so with the number 825-3688 (i.e.,
“TAKEOUT”).

Each seven-digit phone number corresponds to many separate seven-letter words. Unfortu-
nately, most of these represent unrecognizable juxtapositions of letters. It’s possible, however, that

Record # Tool name Quantity Cost

3 Electric sander 7 57.98

17 Hammer 76 11.99

24 Jig saw 21 11.00

39 Lawn mower 3 79.50

56 Power saw 18 99.99

68 Screwdriver 106 6.99

77 Sledge hammer 11 21.50

83 Wrench 34 7.50

Digit Letter Digit Letter

2 A B C 6 M N O

3 D E F 7 P R S

4 G H I 8 T U V

5 J K L 9 W X Y

 Exercises 475

the owner of a barber shop would be pleased to know that the shop’s telephone number, 424-7288,
corresponds to “HAIRCUT.” The owner of a liquor store would, no doubt, be delighted to find
that the store’s telephone number, 233-7226, corresponds to “BEERCAN.” A veterinarian with the
phone number 738-2273 would be pleased to know that the number corresponds to the letters
“PETCARE.”

Write a C program that, given a seven-digit number, writes to a file every possible seven-letter
word corresponding to that number. There are 2187 (3 to the seventh power) such words. Avoid
phone numbers with the digits 0 and 1.

11.14 (Project: Telephone-Number Word Generator Modification) If you have a computerized
dictionary available, modify the program you wrote in Exercise 11.13 to look up the words in the
dictionary. Some seven-letter combinations created by this program consist of two or more words
(e.g., the phone number 843-2677 produces “THEBOSS”).

11.15 (Using File-Processing Functions with Standard Input/Output Streams) Modify the exam-
ple of Fig. 8.11 to use functions fgetc and fputs rather than getchar and puts. The program
should give the user the option to read from the standard input and write to the standard output or
to read from a specified file and write to a specified file. If the user chooses the second option, have
the user enter the filenames for the input and output files.

11.16 (Outputting Type Sizes to a File) Write a program that uses the sizeof operator to determine
the sizes in bytes of the various data types on your computer system. Write the results to the file "data-
size.dat" so you may print the results later. The format for the results in the file should be as follows
(the type sizes on your computer might be different from those shown in the sample output):

11.17 (Simpletron with File Processing) In Exercise 7.28, you wrote a software simulation of a
computer that used a special machine language called Simpletron Machine Language (SML). In the
simulation, each time you wanted to run an SML program, you entered the program into the sim-
ulator from the keyboard. If you made a mistake while typing the SML program, the simulator was
restarted and the SML code was reentered. It would be nice to be able to read the SML program
from a file rather than type it each time. This would reduce time and mistakes in preparing to run
SML programs.

a) Modify the simulator you wrote in Exercise 7.28 to read SML programs from a file
specified by the user at the keyboard.

b) After the Simpletron executes, it outputs the contents of its registers and memory on
the screen. It would be nice to capture the output in a file, so modify the simulator to
write its output to a file in addition to displaying it on the screen.

11.18 (Modified Transaction-Processing Program) Modify the program of Section 11.9 to include
an option that displays the list of accounts on the screen. Consider modifying function textFile to
use either the standard output or a text file based on an additional function parameter that specifies
where the output should be written.

Data type Size
char 1
unsigned char 1
short int 2
unsigned short int 2
int 4
unsigned int 4
long int 4
unsigned long int 4
float 4
double 8
long double 16

476 Chapter 11 C File Processing

Making a Difference
11.19 (Project: Phishing Scanner) Phishing is a form of identity theft in which, in an e-mail, a
sender posing as a trustworthy source attempts to acquire private information, such as your user
names, passwords, credit-card numbers and social security number. Phishing e-mails claiming to be
from popular banks, credit-card companies, auction sites, social networks and online payment ser-
vices may look quite legitimate. These fraudulent messages often provide links to spoofed (fake)
websites where you’re asked to enter sensitive information.

Visit http://www.snopes.com and other websites to find lists of the top phishing scams. Also
check out the Anti-Phishing Working Group (http://www.antiphishing.org/), and the FBI’s
Cyber Investigations website (http://www.fbi.gov/about-us/investigate/cyber/cyber), where
you’ll find information about the latest scams and how to protect yourself.

Create a list of 30 words, phrases and company names commonly found in phishing messages.
Assign a point value to each based on your estimate of its likeliness to be in a phishing message
(e.g., one point if it’s somewhat likely, two points if moderately likely, or three points if highly
likely). Write a program that scans a file of text for these terms and phrases. For each occurrence of
a keyword or phrase within the text file, add the assigned point value to the total points for that
word or phrase. For each keyword or phrase found, output one line with the word or phrase, the
number of occurrences and the point total. Then show the point total for the entire message. Does
your program assign a high point total to some actual phishing e-mails you’ve received? Does it
assign a high point total to some legitimate e-mails you’ve received?

12C Data Structures

O b j e c t i v e s
In this chapter, you’ll:

■ Allocate and free memory
dynamically for data objects.

■ Form linked data structures
using pointers, self-referential
structures and recursion.

■ Create and manipulate linked
lists, queues, stacks and
binary trees.

■ Learn important applications
of linked data structures.

■ Study Secure C programming
recommendations for
pointers and dynamic
memory allocation.

■ Optionally build your own
compiler in the exercises.

478 Chapter 12 C Data Structures

12.1 Introduction
We’ve studied fixed-size data structures such as one-dimensional arrays, two-dimensional
arrays and structs. This chapter introduces dynamic data structures that can grow and
shrink at execution time.

• Linked lists are collections of data items “lined up in a row”—insertions and de-
letions are made anywhere in a linked list.

• Stacks are important in compilers and operating systems—insertions and dele-
tions are made only at one end of a stack—its top.

• Queues represent waiting lines; insertions are made only at the back (also referred
to as the tail) of a queue and deletions are made only from the front (also referred
to as the head) of a queue.

• Binary trees facilitate high-speed searching and sorting of data, efficiently elimi-
nating duplicate data items and compiling expressions into machine language.

Each of these data structures has many other interesting applications.
We’ll discuss each of the major types of data structures and implement programs that

create and manipulate them. In the C++ part of the book—which introduces object-
oriented programming—we’ll study data abstraction. This technique will enable us to
build these data structures in a dramatically different manner designed for producing soft-
ware that’s easier to maintain and reuse.

Optional Project: Building Your Own Compiler
We hope that you’ll attempt the optional major project described in the special section en-
titled Building Your Own Compiler. You have been using a compiler to translate your C
programs to machine language so that you could execute your programs on your comput-
er. In this project, you’ll actually build your own compiler. It will read a file of statements
written in a simple, yet powerful, high-level language. Your compiler will translate these
statements into a file of Simpletron Machine Language (SML) instructions. SML is the
(Deitel-created) language you learned in the Chapter 7 special section, Building Your
Own Computer. Your Simpletron Simulator program will then execute the SML program

12.1 Introduction
12.2 Self-Referential Structures
12.3 Dynamic Memory Allocation
12.4 Linked Lists

12.4.1 Function insert
12.4.2 Function delete
12.4.3 Function printList

12.5 Stacks
12.5.1 Function push
12.5.2 Function pop
12.5.3 Applications of Stacks

12.6 Queues
12.6.1 Function enqueue
12.6.2 Function dequeue

12.7 Trees
12.7.1 Function insertNode
12.7.2 Traversals: Functions inOrder,

preOrder and postOrder
12.7.3 Duplicate Elimination
12.7.4 Binary Tree Search
12.7.5 Other Binary Tree Operations

12.8 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises
Special Section: Building Your Own Compiler

12.2 Self-Referential Structures 479

produced by your compiler! This project will give you a wonderful opportunity to exercise
most of what you’ve learned in this book. The special section carefully walks you through
the specifications of the high-level language and describes the algorithms you’ll need to
convert each type of high-level language statement into machine-language instructions. If
you enjoy being challenged, you might attempt the many enhancements to both the com-
piler and the Simpletron Simulator suggested in the exercises.

12.2 Self-Referential Structures
Recall that a self-referential structure contains a pointer member that points to a structure
of the same structure type. For example, the definition

defines a type, struct node. A structure of type struct node has two members—integer
member data and pointer member nextPtr. Member nextPtr points to a structure of
type struct node—a structure of the same type as the one being declared here, hence the
term self-referential structure. Member nextPtr is referred to as a link—i.e., it can be used
to “tie” (i.e., link) a structure of type struct node to another structure of the same type.
Self-referential structures can be linked together to form useful data structures such as lists,
queues, stacks and trees. Figure 12.1 illustrates two self-referential structure objects linked
together to form a list. A slash—representing a NULL pointer—is placed in the link mem-
ber of the second self-referential structure to indicate that the link does not point to an-
other structure. [Note: The slash is only for illustration purposes; it does not correspond
to the backslash character in C.] A NULL pointer normally indicates the end of a data struc-
ture just as the null character indicates the end of a string.

12.3 Dynamic Memory Allocation
Creating and maintaining dynamic data structures that can grow and shrink as the pro-
gram runs requires dynamic memory allocation—the ability for a program to obtain more
memory space at execution time to hold new nodes, and to release space no longer needed.

Functions malloc and free, and operator sizeof, are essential to dynamic memory
allocation. Function malloc takes as an argument the number of bytes to be allocated and
returns a pointer of type void * (pointer to void) to the allocated memory. As you recall,
a void * pointer may be assigned to a variable of any pointer type. Function malloc is nor-
mally used with the sizeof operator. For example, the statement

struct node {
 int data;
 struct node *nextPtr;
};

Common Programming Error 12.1
Not setting the link in the last node of a list to NULL can lead to runtime errors.

Fig. 12.1 | Self-referential structures linked together.

1015

480 Chapter 12 C Data Structures

evaluates sizeof(struct node) to determine a struct node object’s size in bytes, allocates a
new area in memory of that number of bytes and stores a pointer to the allocated memory in
newPtr. The memory is not guaranteed to be initialized, though many implementations ini-
tialize it for security. If no memory is available, malloc returns NULL.

Function free deallocates memory—i.e., the memory is returned to the system so that
it can be reallocated in the future. To free memory dynamically allocated by the preceding
malloc call, use the statement

C also provides functions calloc and realloc for creating and modifying dynamic
arrays. These functions are discussed in Section 14.9. The sections that follow discuss lists,
stacks, queues and trees, each of which is created and maintained with dynamic memory
allocation and self-referential structures.

12.4 Linked Lists
A linked list is a linear collection of self-referential structures, called nodes, connected by
pointer links—hence, the term “linked” list. A linked list is accessed via a pointer to the
first node of the list. Subsequent nodes are accessed via the link pointer member stored in
each node. By convention, the link pointer in the last node of a list is set to NULL to mark

newPtr = malloc(sizeof(struct node));

free(newPtr);

Portability Tip 12.1
A structure’s size is not necessarily the sum of the sizes of its members. This is so because of
various machine-dependent boundary alignment requirements (see Chapter 10).

Error-Prevention Tip 12.1
When using malloc, test for a NULL pointer return value, which indicates that the mem-
ory was not allocated.

Common Programming Error 12.2
Not freeing dynamically allocated memory when it’s no longer needed can cause the sys-
tem to run out of memory prematurely. This is sometimes called a “memory leak.”

Error-Prevention Tip 12.2
When memory that was dynamically allocated is no longer needed, use free to return the
memory to the system immediately. Then set the pointer to NULL to eliminate the possibility
that the program could refer to memory that’s been reclaimed and which may have already
been allocated for another purpose.

Common Programming Error 12.3
Freeing memory not allocated dynamically with malloc is an error.

Common Programming Error 12.4
Referring to memory that has been freed is an error that typically results in the program
crashing.

12.4 Linked Lists 481

the end of the list. Data is stored in a linked list dynamically—each node is created as nec-
essary. A node can contain data of any type including other structs. Stacks and queues
are also linear data structures, and, as we’ll see, are constrained versions of linked lists.
Trees are nonlinear data structures.

Lists of data can be stored in arrays, but linked lists provide several advantages. A
linked list is appropriate when the number of data elements to be represented in the data
structure is unpredictable. Linked lists are dynamic, so the length of a list can increase or
decrease at execution time as necessary. The size of an array created at compile time, how-
ever, cannot be altered. Arrays can become full. Linked lists become full only when the
system has insufficient memory to satisfy dynamic storage allocation requests.

Linked lists can be maintained in sorted order by inserting each new element at the
proper point in the list.

Linked-list nodes are normally not stored contiguously in memory. Logically, how-
ever, the nodes of a linked list appear to be contiguous. Figure 12.2 illustrates a linked list
with several nodes.

Performance Tip 12.1
An array can be declared to contain more elements than the number of data items ex-
pected, but this can waste memory. Linked lists can provide better memory utilization in
these situations.

Performance Tip 12.2
Insertion and deletion in a sorted array can be time consuming—all the elements follow-
ing the inserted or deleted element must be shifted appropriately.

Performance Tip 12.3
The elements of an array are stored contiguously in memory. This allows immediate access
to any array element because the address of any element can be calculated directly based
on its position relative to the beginning of the array. Linked lists do not afford such imme-
diate access to their elements.

Performance Tip 12.4
Using dynamic memory allocation (instead of arrays) for data structures that grow and
shrink at execution time can save memory. Keep in mind, however, that the pointers take
up space, and that dynamic memory allocation incurs the overhead of function calls.

Fig. 12.2 | Linked-list graphical representation.

2917 ... 93

startPtr

482 Chapter 12 C Data Structures

Figure 12.3 (output shown in Fig. 12.4) manipulates a list of characters. You can
insert a character in the list in alphabetical order (function insert) or delete a character
from the list (function delete). A detailed discussion of the program follows.

1 // Fig. 12.3: fig12_03.c

2 // Inserting and deleting nodes in a list

3 #include <stdio.h>
4 #include <stdlib.h>
5
6
7
8
9

10
11
12 typedef struct listNode ListNode; // synonym for struct listNode
13 typedef ListNode *ListNodePtr; // synonym for ListNode*
14
15 // prototypes

16 void insert(ListNodePtr *sPtr, char value);
17 char delete(ListNodePtr *sPtr, char value);
18 int isEmpty(ListNodePtr sPtr);
19 void printList(ListNodePtr currentPtr);
20 void instructions(void);
21
22 int main(void)
23 {

24 ListNodePtr startPtr = NULL; // initially there are no nodes
25 char item; // char entered by user
26
27 instructions(); // display the menu

28 printf("%s", "? ");
29 unsigned int choice; // user's choice
30 scanf("%u", &choice);
31
32 // loop while user does not choose 3

33 while (choice != 3) {
34
35 switch (choice) {
36 case 1:
37 printf("%s", "Enter a character: ");
38 scanf("\n%c", &item);
39

40 printList(startPtr);
41 break;
42 case 2: // delete an element
43 // if list is not empty
44 if (!isEmpty(startPtr)) {
45 printf("%s", "Enter character to be deleted: ");
46 scanf("\n%c", &item);
47

Fig. 12.3 | Inserting and deleting nodes in a list. (Part 1 of 4.)

// self-referential structure

struct listNode {
 char data; // each listNode contains a character
 struct listNode *nextPtr; // pointer to next node
};

insert(&startPtr, item); // insert item in list

12.4 Linked Lists 483

48 // if character is found, remove it

49

50 printf("%c deleted.\n", item);
51 printList(startPtr);

52 }

53 else {
54 printf("%c not found.\n\n", item);
55 }

56 }
57 else {
58 puts("List is empty.\n");
59 }
60
61 break;
62 default:
63 puts("Invalid choice.\n");
64 instructions();

65 break;
66 }
67
68 printf("%s", "? ");
69 scanf("%u", &choice);
70 }

71
72 puts("End of run.");
73 }

74
75 // display program instructions to user
76 void instructions(void)
77 {

78 puts("Enter your choice:\n"
79 " 1 to insert an element into the list.\n"
80 " 2 to delete an element from the list.\n"
81 " 3 to end.");
82 }

83
84 // insert a new value into the list in sorted order
85 void insert(ListNodePtr *sPtr, char value)
86 {

87
88
89 if (newPtr != NULL) { // is space available?
90 newPtr->data = value; // place value in node
91 newPtr->nextPtr = NULL; // node does not link to another node
92
93 ListNodePtr previousPtr = NULL;
94 ListNodePtr currentPtr = *sPtr;

95
96
97

98

99
100

Fig. 12.3 | Inserting and deleting nodes in a list. (Part 2 of 4.)

if (delete(&startPtr, item)) { // remove item

ListNodePtr newPtr = malloc(sizeof(ListNode)); // create node

// loop to find the correct location in the list

while (currentPtr != NULL && value > currentPtr->data) {
 previousPtr = currentPtr; // walk to ...

 currentPtr = currentPtr->nextPtr; // ... next node

}

484 Chapter 12 C Data Structures

101
102 // insert new node at beginning of list

103 if (previousPtr == NULL) {
104 newPtr->nextPtr = *sPtr;

105 *sPtr = newPtr;

106 }
107 else { // insert new node between previousPtr and currentPtr
108 previousPtr->nextPtr = newPtr;

109 newPtr->nextPtr = currentPtr;
110 }

111 }

112 else {
113 printf("%c not inserted. No memory available.\n", value);
114 }

115 }
116
117 // delete a list element

118 char delete(ListNodePtr *sPtr, char value)
119 {
120 // delete first node if a match is found

121 if (value == (*sPtr)->data) {
122 ListNodePtr tempPtr = *sPtr; // hold onto node being removed
123 *sPtr = (*sPtr)->nextPtr; // de-thread the node

124 free(tempPtr); // free the de-threaded node

125 return value;
126 }

127 else {
128 ListNodePtr previousPtr = *sPtr;
129 ListNodePtr currentPtr = (*sPtr)->nextPtr;

130
131 // loop to find the correct location in the list
132 while (currentPtr != NULL && currentPtr->data != value) {
133 previousPtr = currentPtr; // walk to ...

134 currentPtr = currentPtr->nextPtr; // ... next node
135 }

136
137 // delete node at currentPtr
138 if (currentPtr != NULL) {
139 ListNodePtr tempPtr = currentPtr;

140 previousPtr->nextPtr = currentPtr->nextPtr;
141

142 return value;
143 }
144 }

145
146 return '\0';
147 }

148
149 // return 1 if the list is empty, 0 otherwise
150 int isEmpty(ListNodePtr sPtr)
151 {

152 return sPtr == NULL;
153 }

Fig. 12.3 | Inserting and deleting nodes in a list. (Part 3 of 4.)

free(tempPtr);

12.4 Linked Lists 485

154
155 // print the list

156 void printList(ListNodePtr currentPtr)
157 {

158 // if list is empty

159 if (isEmpty(currentPtr)) {
160 puts("List is empty.\n");
161 }

162 else {
163 puts("The list is:");
164
165 // while not the end of the list
166 while (currentPtr != NULL) {
167 printf("%c --> ", currentPtr->data);
168 currentPtr = currentPtr->nextPtr;
169 }

170
171 puts("NULL\n");
172 }
173 }

Enter your choice:
 1 to insert an element into the list.
 2 to delete an element from the list.
 3 to end.
? 1
Enter a character: B
The list is:
B --> NULL

? 1
Enter a character: A

The list is:
A --> B --> NULL

? 1
Enter a character: C
The list is:
A --> B --> C --> NULL

? 2
Enter character to be deleted: D
D not found.

? 2
Enter character to be deleted: B
B deleted.
The list is:
A --> C --> NULL

Fig. 12.4 | Sample output for the program of Fig. 12.3. (Part 1 of 2.)

Fig. 12.3 | Inserting and deleting nodes in a list. (Part 4 of 4.)

486 Chapter 12 C Data Structures

The primary functions of linked lists are insert (lines 85–115) and delete (lines 118–
147). Function isEmpty (lines 150–153) is called a predicate function—it does not alter the
list in any way; rather it determines whether the list is empty (i.e., the pointer to the first node
of the list is NULL). If the list is empty, 1 is returned; otherwise, 0 is returned. [Note: If you’re
using a compiler that’s compliant with the C99 standard, you can use the _Bool type
(Section 4.10) rather than int.] Function printList (lines 156–173) prints the list.

12.4.1 Function insert
Characters are inserted in the list in alphabetical order. Function insert (lines 85–115) re-
ceives the address of the list and a character to be inserted. The list’s address is necessary
when a value is to be inserted at the start of the list. Providing the address enables the list
(i.e., the pointer to the first node of the list) to be modified via a call by reference. Because
the list itself is a pointer (to its first element), passing its address creates a pointer to a
pointer (i.e., double indirection). This is a complex notion and requires careful program-
ming. The steps for inserting a character in the list are as follows (see Fig. 12.5):

1. Create a node by calling malloc, assigning to newPtr the address of the allocated
memory (line 87), assigning the character to be inserted to newPtr->data (line
90), and assigning NULL to newPtr->nextPtr (line 91).

2. Initialize previousPtr to NULL (line 93) and currentPtr to *sPtr (line 94)—the
pointer to the start of the list. Pointers previousPtr and currentPtr store the
locations of the node preceding and after the insertion point, respectively.

3. While currentPtr is not NULL and the value to be inserted is greater than cur-
rentPtr->data (line 97), assign currentPtr to previousPtr (line 98) and ad-
vance currentPtr to the next node in the list (line 99). This locates the insertion
point for the value.

4. If previousPtr is NULL (line 103), insert the new node as the first in the list (lines
104–105). Assign *sPtr to newPtr->nextPtr (the new node link points to the for-

? 2
Enter character to be deleted: C
C deleted.
The list is:
A --> NULL

? 2
Enter character to be deleted: A
A deleted.
List is empty.

? 4
Invalid choice.

Enter your choice:
 1 to insert an element into the list.
 2 to delete an element from the list.
 3 to end.
? 3
End of run.

Fig. 12.4 | Sample output for the program of Fig. 12.3. (Part 2 of 2.)

12.4 Linked Lists 487

mer first node) and assign newPtr to *sPtr (*sPtr points to the new node). Oth-
erwise, if previousPtr is not NULL, insert the new node in place (lines 108–109).
Assign newPtr to previousPtr->nextPtr (the previous node points to the new
node) and assign currentPtr to newPtr->nextPtr (the new node link points to
the current node).

Figure 12.5 illustrates the insertion of a node containing the character 'C' into an
ordered list. Part (a) of the figure shows the list and the new node just before the insertion.
Part (b) of the figure shows the result of inserting the new node. The reassigned pointers
are dotted arrows. For simplicity, we implemented function insert (and other similar
functions in this chapter) with a void return type. It’s possible that function malloc will
fail to allocate the requested memory. In this case, it would be better for our insert func-
tion to return a status that indicates whether the operation was successful.

12.4.2 Function delete
Function delete (lines 118–147) receives the address of the pointer to the start of the list
and a character to be deleted. The steps for deleting a character from the list are as follows
(see Fig. 12.6):

Error-Prevention Tip 12.3
Assign NULL to a new node’s link member. Pointers should be initialized before they’re used.

Fig. 12.5 | Inserting a node in order in a list.

BA ED

*sPtr previousPtr currentPtr

C

(b)

newPtr

BA ED

*sPtr previousPtr currentPtr

C

(a)

newPtr

488 Chapter 12 C Data Structures

1. If the character to be deleted matches the character in the first node of the list (line
121), assign *sPtr to tempPtr (tempPtr will be used to free the unneeded mem-
ory), assign (*sPtr)->nextPtr to *sPtr (*sPtr now points to the second node in
the list), free the memory pointed to by tempPtr, and return the character that
was deleted.

2. Otherwise, initialize previousPtr with *sPtr and initialize currentPtr with
(*sPtr)->nextPtr (lines 128–129) to advance to the second node.

3. While currentPtr is not NULL and the value to be deleted is not equal to cur-
rentPtr->data (line 132), assign currentPtr to previousPtr (line 133) and as-
sign currentPtr->nextPtr to currentPtr (line 134). This locates the character
to be deleted if it’s contained in the list.

4. If currentPtr is not NULL (line 138), assign currentPtr to tempPtr (line 139),
assign currentPtr->nextPtr to previousPtr->nextPtr (line 140), free the node
pointed to by tempPtr (line 141), and return the character that was deleted from
the list (line 142). If currentPtr is NULL, return the null character ('\0') to sig-
nify that the character to be deleted was not found in the list (line 146).

Figure 12.6 illustrates the deletion of the node containing the character 'C' from a
linked list. Part (a) of the figure shows the linked list after the preceding insert operation.
Part (b) shows the reassignment of the link element of previousPtr and the assignment
of currentPtr to tempPtr. Pointer tempPtr is used to free the memory allocated to the
node that stores 'C'. Note that in lines 124 and 141 we free tempPtr. Recall that we rec-
ommended setting a freed pointer to NULL. We do not do that in these two cases, because
tempPtr is a local automatic variable and the function returns immediately.

Fig. 12.6 | Deleting a node from a list.

BA C

*sPtr previousPtr currentPtr

ED

(a)

BA C

*sPtr previousPtr currentPtr

ED

(b)

tempPtr

12.5 Stacks 489

12.4.3 Function printList
Function printList (lines 156–173) receives a pointer to the start of the list as an argu-
ment and refers to the pointer as currentPtr. The function first determines whether the
list is empty (lines 159–161) and, if so, prints "List is empty." and terminates. Other-
wise, it prints the data in the list (lines 162–172). While currentPtr is not NULL, the value
of currentPtr->data is printed by the function, and currentPtr->nextPtr is assigned to
currentPtr to advance to the next node. If the link in the last node of the list is not NULL,
the printing algorithm will try to print past the end of the list, and an error will occur. The
printing algorithm is identical for linked lists, stacks and queues.

Exercise 12.20 asks you to implement a recursive function that prints a list backward.
Exercise 12.21 asks the reader to implement a recursive function that searches a linked list
for a particular data item.

12.5 Stacks
A stack can be implemented as a constrained version of a linked list. New nodes can be
added to a stack and removed from a stack only at the top. For this reason, a stack is referred
to as a last-in, first-out (LIFO) data structure. A stack is referenced via a pointer to the top
element of the stack. The link member in the last node of the stack is set to NULL to indicate
the bottom of the stack.

Figure 12.7 illustrates a stack with several nodes—stackPtr points to the stack’s top
element. We represent stacks and linked lists in these figures identically. The difference
between stacks and linked lists is that insertions and deletions may occur anywhere in a
linked list, but only at the top of a stack.

Primary Stack Operations
The primary functions used to manipulate a stack are push and pop. Function push creates
a new node and places it on top of the stack. Function pop removes a node from the top of
the stack, frees the memory that was allocated to the popped node and returns the popped
value.

Implementing a Stack
Figure 12.8 (output shown in Fig. 12.9) implements a simple stack of integers. The pro-
gram provides three options: 1) push a value onto the stack (function push), 2) pop a value
off the stack (function pop) and 3) terminate the program.

Common Programming Error 12.5
Not setting the link in the bottom node of a stack to NULL can lead to runtime errors.

Fig. 12.7 | Stack graphical representation.

28 ... 3

stackPtr

490 Chapter 12 C Data Structures

1 // Fig. 12.8: fig12_08.c

2 // A simple stack program

3 #include <stdio.h>
4 #include <stdlib.h>
5
6
7
8
9

10
11
12 typedef struct stackNode StackNode; // synonym for struct stackNode
13 typedef StackNode *StackNodePtr; // synonym for StackNode*
14
15 // prototypes
16 void push(StackNodePtr *topPtr, int info);
17 int pop(StackNodePtr *topPtr);
18 int isEmpty(StackNodePtr topPtr);
19 void printStack(StackNodePtr currentPtr);
20 void instructions(void);
21
22 // function main begins program execution
23 int main(void)
24 {

25 StackNodePtr stackPtr = NULL; // points to stack top
26 int value; // int input by user
27

28 instructions(); // display the menu
29 printf("%s", "? ");
30 unsigned int choice; // user's menu choice
31 scanf("%u", &choice);
32
33 // while user does not enter 3

34 while (choice != 3) {
35
36 switch (choice) {
37 // push value onto stack
38 case 1:
39 printf("%s", "Enter an integer: ");
40 scanf("%d", &value);
41

42 printStack(stackPtr);

43 break;
44 // pop value off stack

45 case 2:
46 // if stack is not empty
47 if (!isEmpty(stackPtr)) {
48 printf("The popped value is %d.\n",);

49 }
50
51 printStack(stackPtr);

52 break;

Fig. 12.8 | A simple stack program. (Part 1 of 3.)

// self-referential structure

struct stackNode {
 int data; // define data as an int
 struct stackNode *nextPtr; // stackNode pointer
};

push(&stackPtr, value);

pop(&stackPtr)

12.5 Stacks 491

53 default:
54 puts("Invalid choice.\n");
55 instructions();
56 break;
57 }

58
59 printf("%s", "? ");
60 scanf("%u", &choice);
61 }
62
63 puts("End of run.");
64 }
65
66 // display program instructions to user

67 void instructions(void)
68 {

69 puts("Enter choice:\n"
70 "1 to push a value on the stack\n"
71 "2 to pop a value off the stack\n"
72 "3 to end program");
73 }

74
75 // insert a node at the stack top

76 void push(StackNodePtr *topPtr, int info)
77 {
78

79
80
81

82

83
84

85

86 else { // no space available
87 printf("%d not inserted. No memory available.\n", info);
88 }

89 }
90
91 // remove a node from the stack top

92 int pop(StackNodePtr *topPtr)
93 {

94

95
96

97

98 return popValue;
99 }

100
101 // print the stack
102 void printStack(StackNodePtr currentPtr)
103 {

Fig. 12.8 | A simple stack program. (Part 2 of 3.)

StackNodePtr newPtr = malloc(sizeof(StackNode));

// insert the node at stack top

if (newPtr != NULL) {
 newPtr->data = info;

 newPtr->nextPtr = *topPtr;

 *topPtr = newPtr;
}

StackNodePtr tempPtr = *topPtr;

int popValue = (*topPtr)->data;
*topPtr = (*topPtr)->nextPtr;
free(tempPtr);

492 Chapter 12 C Data Structures

104 // if stack is empty

105 if (currentPtr == NULL) {
106 puts("The stack is empty.\n");
107 }

108 else {
109 puts("The stack is:");
110
111 // while not the end of the stack

112 while (currentPtr != NULL) {
113 printf("%d --> ", currentPtr->data);
114 currentPtr = currentPtr->nextPtr;

115 }
116
117 puts("NULL\n");
118 }
119 }

120
121 // return 1 if the stack is empty, 0 otherwise

122 int isEmpty(StackNodePtr topPtr)
123 {

124 return topPtr == NULL;
125 }

Enter choice:
1 to push a value on the stack
2 to pop a value off the stack
3 to end program
? 1
Enter an integer: 5
The stack is:
5 --> NULL

? 1
Enter an integer: 6
The stack is:
6 --> 5 --> NULL

? 1
Enter an integer: 4
The stack is:
4 --> 6 --> 5 --> NULL

? 2
The popped value is 4.
The stack is:
6 --> 5 --> NULL

? 2
The popped value is 6.
The stack is:
5 --> NULL

Fig. 12.9 | Sample output from the program of Fig. 12.8. (Part 1 of 2.)

Fig. 12.8 | A simple stack program. (Part 3 of 3.)

12.5 Stacks 493

12.5.1 Function push
Function push (lines 76–89) places a new node at the top of the stack. The function con-
sists of three steps:

1. Create a new node by calling malloc and assign the location of the allocated mem-
ory to newPtr (line 78).

2. Assign to newPtr->data the value to be placed on the stack (line 82) and assign
*topPtr (the stack top pointer) to newPtr->nextPtr (line 83)—the link member
of newPtr now points to the previous top node.

3. Assign newPtr to *topPtr (line 84)—*topPtr now points to the new stack top.

Manipulations involving *topPtr change the value of stackPtr in main. Figure 12.10
illustrates function push. Part (a) of the figure shows the stack and the new node before the

? 2
The popped value is 5.
The stack is empty.

? 2
The stack is empty.

? 4
Invalid choice.

Enter choice:
1 to push a value on the stack
2 to pop a value off the stack
3 to end program
? 3
End of run.

Fig. 12.10 | push operation.

Fig. 12.9 | Sample output from the program of Fig. 12.8. (Part 2 of 2.)

*topPtr

117

newPtr

12

(a)

*topPtr

117

newPtr

12

(b)

494 Chapter 12 C Data Structures

push operation. The dotted arrows in part (b) illustrate Steps 2 and 3 of the push operation
that enable the node containing 12 to become the new stack top.

12.5.2 Function pop
Function pop (lines 92–99) removes the node at the top of the stack. Function main deter-
mines whether the stack is empty before calling pop. The pop operation consists of five steps:

1. Assign *topPtr to tempPtr (line 94); tempPtr will be used to free the unneeded
memory.

2. Assign (*topPtr)->data to popValue (line 95) to save the value in the top node.

3. Assign (*topPtr)->nextPtr to *topPtr (line 96) so *topPtr contains address of
the new top node.

4. Free the memory pointed to by tempPtr (line 97).

5. Return popValue to the caller (line 98).

Figure 12.11 illustrates function pop. Part (a) shows the stack after the previous push
operation. Part (b) shows tempPtr pointing to the first node of the stack and topPtr
pointing to the second node of the stack. Function free is used to free the memory pointed
to by tempPtr.

12.5.3 Applications of Stacks
Stacks have many interesting applications. For example, whenever a function call is made, the
called function must know how to return to its caller, so the return address is pushed onto a
stack (Section 5.7). In a series of function calls, the successive return addresses are pushed
onto the stack in last-in, first-out order so that each function can return to its caller. Stacks
support recursive function calls in the same manner as conventional nonrecursive calls.

Stacks contain the space created for automatic variables on each invocation of a func-
tion. When the function returns to its caller, the space for that function's automatic vari-
ables is popped off the stack, and these variables no longer are known to the program.
Stacks also are sometimes used by compilers in the process of evaluating expressions and
generating machine-language code. The exercises explore several applications of stacks.

Fig. 12.11 | pop operation.

*topPtr

712 11

(a)

*topPtr

712

tempPtr

(b)

11

12.6 Queues 495

12.6 Queues
Another common data structure is the queue. A queue is similar to a checkout line in a
grocery store—the first person in line is serviced first, and other customers enter the line
only at the end and wait to be serviced. Queue nodes are removed only from the head of
the queue and are inserted only at the tail of the queue. For this reason, a queue is referred
to as a first-in, first-out (FIFO) data structure. The insert and remove operations are
known as enqueue (pronounced “en-cue”) and dequeue (pronounced “dee-cue”), respec-
tively.

Queues have many applications in computer systems. For computers that have only a
single processor, only one user at a time may be serviced. Entries for the other users are
placed in a queue. Each entry gradually advances to the front of the queue as users receive
service. The entry at the front of the queue is the next to receive service. Similarly, for today’s
multicore systems, there could be more users than there are processors, so the users not
currently running are placed in a queue until a currently busy processor becomes available.
In Appendix E, we discuss multithreading. When a user’s work is divided into multiple
threads capable of executing in parallel, there could be more threads than there are proces-
sors, so the threads not currently running need to be waiting in a queue.

Queues are also used to support print spooling. A multiuser environment may have
only a single printer. Many users may be generating outputs to be printed. If the printer
is busy, other outputs may still be generated. These are spooled (just as sewing thread is
wrapped around a spool until it’s needed) to disk where they wait in a queue until the
printer becomes available.

Information packets also wait in queues in computer networks. Each time a packet
arrives at a network node, it must be routed to the next node on the network along the
path to its final destination. The routing node routes one packet at a time, so additional
packets are enqueued until the router can route them. Figure 12.12 illustrates a queue with
several nodes. Note the pointers to the head of the queue and the tail of the queue.

Figure 12.13 (output in Fig. 12.14) performs queue manipulations. The program
provides several options: insert a node in the queue (function enqueue), remove a node
from the queue (function dequeue) and terminate the program.

Common Programming Error 12.6
Not setting the link in the last node of a queue to NULL can lead to runtime errors.

Fig. 12.12 | Queue graphical representation.

DH ... Q

headPtr tailPtr

496 Chapter 12 C Data Structures

1 // Fig. 12.13: fig12_13.c

2 // Operating and maintaining a queue

3 #include <stdio.h>
4 #include <stdlib.h>
5
6 // self-referential structure
7 struct queueNode {
8 char data; // define data as a char
9 struct queueNode *nextPtr; // queueNode pointer

10 };

11
12 typedef struct queueNode QueueNode;
13 typedef QueueNode *QueueNodePtr;
14
15 // function prototypes
16 void printQueue(QueueNodePtr currentPtr);
17 int isEmpty(QueueNodePtr headPtr);
18 char dequeue(QueueNodePtr *headPtr, QueueNodePtr *tailPtr);
19 void enqueue(QueueNodePtr *headPtr, QueueNodePtr *tailPtr, char value);
20 void instructions(void);
21
22 // function main begins program execution
23 int main(void)
24 {

25 QueueNodePtr headPtr = NULL; // initialize headPtr
26 QueueNodePtr tailPtr = NULL; // initialize tailPtr
27 char item; // char input by user
28
29 instructions(); // display the menu

30 printf("%s", "? ");
31 unsigned int choice; // user's menu choice
32 scanf("%u", &choice);
33
34 // while user does not enter 3
35 while (choice != 3) {
36
37 switch(choice) {
38 // enqueue value

39 case 1:
40 printf("%s", "Enter a character: ");
41 scanf("\n%c", &item);
42

43 printQueue(headPtr);
44 break;
45 // dequeue value

46 case 2:
47 // if queue is not empty

48 if (!isEmpty(headPtr)) {
49
50 printf("%c has been dequeued.\n", item);
51 }

Fig. 12.13 | Operating and maintaining a queue. (Part 1 of 3.)

enqueue(&headPtr, &tailPtr, item);

item = dequeue(&headPtr, &tailPtr);

12.6 Queues 497

52
53 printQueue(headPtr);

54 break;
55 default:
56 puts("Invalid choice.\n");
57 instructions();
58 break;
59 }

60
61 printf("%s", "? ");
62 scanf("%u", &choice);
63 }
64
65 puts("End of run.");
66 }
67
68 // display program instructions to user

69 void instructions(void)
70 {
71 printf ("Enter your choice:\n"
72 " 1 to add an item to the queue\n"
73 " 2 to remove an item from the queue\n"
74 " 3 to end\n");
75 }

76
77 // insert a node at queue tail

78 void enqueue(QueueNodePtr *headPtr, QueueNodePtr *tailPtr, char value)
79 {
80

81
82 if (newPtr != NULL) { // is space available?
83 newPtr->data = value;

84 newPtr->nextPtr = NULL;
85
86 // if empty, insert node at head

87 if (isEmpty(*headPtr)) {
88
89 }

90 else {
91
92 }

93
94 *tailPtr = newPtr;
95 }

96 else {
97 printf("%c not inserted. No memory available.\n", value);
98 }

99 }

100
101 // remove node from queue head

102 char dequeue(QueueNodePtr *headPtr, QueueNodePtr *tailPtr)
103 {

Fig. 12.13 | Operating and maintaining a queue. (Part 2 of 3.)

QueueNodePtr newPtr = malloc(sizeof(QueueNode));

*headPtr = newPtr;

(*tailPtr)->nextPtr = newPtr;

498 Chapter 12 C Data Structures

104

105

106
107
108 // if queue is empty

109 if (*headPtr == NULL) {
110 *tailPtr = NULL;
111 }

112
113

114 return value;
115 }
116
117 // return 1 if the queue is empty, 0 otherwise

118 int isEmpty(QueueNodePtr headPtr)
119 {

120 return headPtr == NULL;
121 }

122
123 // print the queue

124 void printQueue(QueueNodePtr currentPtr)
125 {
126 // if queue is empty

127 if (currentPtr == NULL) {
128 puts("Queue is empty.\n");
129 }

130 else {
131 puts("The queue is:");
132
133 // while not end of queue

134 while (currentPtr != NULL) {
135 printf("%c --> ", currentPtr->data);
136 currentPtr = currentPtr->nextPtr;

137 }
138
139 puts("NULL\n");
140 }
141 }

Enter your choice:
 1 to add an item to the queue
 2 to remove an item from the queue
 3 to end

? 1
Enter a character: A
The queue is:
A --> NULL

Fig. 12.14 | Sample output from the program in Fig. 12.13. (Part 1 of 2.)

Fig. 12.13 | Operating and maintaining a queue. (Part 3 of 3.)

char value = (*headPtr)->data;
QueueNodePtr tempPtr = *headPtr;

*headPtr = (*headPtr)->nextPtr;

free(tempPtr);

12.6 Queues 499

12.6.1 Function enqueue
Function enqueue (lines 78–99) receives three arguments from main: the address of the
pointer to the head of the queue, the address of the pointer to the tail of the queue and the value
to be inserted in the queue. The function consists of three steps:

1. To create a new node: Call malloc, assign the allocated memory location to
newPtr (line 80), assign the value to be inserted in the queue to newPtr->data
(line 83) and assign NULL to newPtr->nextPtr (line 84).

2. If the queue is empty (line 87), assign newPtr to *headPtr (line 88), because the
new node will be both the head and tail of the queue; otherwise, assign pointer
newPtr to (*tailPtr)->nextPtr (line 91), because the new node will be placed
after the previous tail node.

3. Assign newPtr to *tailPtr (line 94), because the new node is the queue’s tail.

Figure 12.15 illustrates an enqueue operation. Part (a) shows the queue and the new
node before the operation. The dotted arrows in part (b) illustrate Steps 2 and 3 of function
enqueue that enable a new node to be added to the end of a queue that’s not empty.

? 1
Enter a character: B
The queue is:
A --> B --> NULL

? 1
Enter a character: C
The queue is:
A --> B --> C --> NULL

? 2
A has been dequeued.
The queue is:
B --> C --> NULL

? 2
B has been dequeued.
The queue is:
C --> NULL

? 2
C has been dequeued.
Queue is empty.

? 2
Queue is empty.

? 4
Invalid choice.

Enter your choice:
 1 to add an item to the queue
 2 to remove an item from the queue
 3 to end
? 3
End of run.

Fig. 12.14 | Sample output from the program in Fig. 12.13. (Part 2 of 2.)

500 Chapter 12 C Data Structures

12.6.2 Function dequeue
Function dequeue (lines 102–115; illustrated in Fig. 12.16) receives the address of the pointer
to the head of the queue and the address of the pointer to the tail of the queue as arguments and
removes the first node from the queue. The dequeue operation consists of six steps:

1. Assign (*headPtr)->data to value to save the data (line 104).

2. Assign *headPtr to tempPtr (line 105), which will be used to free the unneeded
memory.

Fig. 12.15 | enqueue operation.

Fig. 12.16 | dequeue operation.

AR ND

*headPtr *tailPtr newPtr(a)

AR ND

*headPtr *tailPtr newPtr(b)

AR ND

*headPtr *tailPtr(a)

AR ND

*headPtr

*tempPtr

*tailPtr(b)

12.7 Trees 501

3. Assign (*headPtr)->nextPtr to *headPtr (line 106) so that *headPtr now
points to the new first node in the queue.

4. If *headPtr is NULL (line 109), assign NULL to *tailPtr (line 110) because the
queue is now empty.

5. Free the memory pointed to by tempPtr (line 113).

6. Return value to the caller (line 114).

Figure 12.16 illustrates function dequeue. Figure 12.16(a) shows the queue after the
preceding enqueue operation. Part (b) shows tempPtr pointing to the dequeued node, and
headPtr pointing to the new first node of the queue. Function free is used to reclaim the
memory pointed to by tempPtr.

12.7 Trees
Linked lists, stacks and queues are linear data structures. A tree is a nonlinear, two-di-
mensional data structure with special properties. Tree nodes contain two or more links. This
section discusses binary trees (Fig. 12.17)—trees whose nodes all contain two links (none,
one, or both of which may be NULL). The root node is the first node in a tree. Each link in
the root node refers to a child. The left child is the first node in the left subtree, and the
right child is the first node in the right subtree. The children of a node are called siblings.
A node with no children is called a leaf node. Computer scientists normally draw trees with
the root node at the top—exactly the opposite of trees in nature.

In this section, a special binary tree called a binary search tree is created. A binary
search tree (with no duplicate node values) has the characteristic that the values in any left
subtree are less than the value in its parent node, and the values in any right subtree are
greater than the value in its parent node. Figure 12.18 illustrates a binary search tree with
nine values. The shape of the binary search tree that corresponds to a set of data can vary,
depending on the order in which the values are inserted into the tree.

Fig. 12.17 | Binary tree graphical representation.

root node pointer

left subtree
of node

containing B

right subtree
of node
containing B

B

A D

C

502 Chapter 12 C Data Structures

Figure 12.19 (output shown in Fig. 12.20) creates a binary search tree and traverses it
three ways—inorder, preorder and postorder. The program generates 10 random num-
bers and inserts each in the tree, except that duplicate values are discarded.

Common Programming Error 12.7
Not setting to NULL the links in leaf nodes of a tree can lead to runtime errors.

Fig. 12.18 | Binary search tree.

1 // Fig. 12.19: fig12_19.c

2 // Creating and traversing a binary tree
3 // preorder, inorder, and postorder

4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <time.h>
7
8
9

10
11
12
13
14
15 typedef struct treeNode TreeNode; // synonym for struct treeNode
16 typedef TreeNode *TreeNodePtr; // synonym for TreeNode*
17
18 // prototypes

19 void insertNode(TreeNodePtr *treePtr, int value);
20 void inOrder(TreeNodePtr treePtr);
21 void preOrder(TreeNodePtr treePtr);
22 void postOrder(TreeNodePtr treePtr);
23
24 // function main begins program execution

25 int main(void)
26 {
27 TreeNodePtr rootPtr = NULL; // tree initially empty
28
29 srand(time(NULL));
30 puts("The numbers being placed in the tree are:");
31

Fig. 12.19 | Creating and traversing a binary tree. (Part 1 of 3.)

47

25

11 43 65

77

31 44 68

// self-referential structure

struct treeNode {
 struct treeNode *leftPtr; // pointer to left subtree
 int data; // node value
 struct treeNode *rightPtr; // pointer to right subtree
};

12.7 Trees 503

32 // insert random values between 0 and 14 in the tree

33 for (unsigned int i = 1; i <= 10; ++i) {
34 int item = rand() % 15;
35 printf("%3d", item);
36

37 }
38
39 // traverse the tree preOrder

40 puts("\n\nThe preOrder traversal is:");
41

42
43 // traverse the tree inOrder
44 puts("\n\nThe inOrder traversal is:");
45

46
47 // traverse the tree postOrder

48 puts("\n\nThe postOrder traversal is:");
49

50 }
51
52 // insert node into tree

53 void insertNode(TreeNodePtr *treePtr, int value)
54 {

55 // if tree is empty

56 if (*treePtr == NULL) {
57 *treePtr = malloc(sizeof(TreeNode));
58
59 // if memory was allocated, then assign data
60 if (*treePtr != NULL) {
61 (*treePtr)->data = value;

62 (*treePtr)->leftPtr = NULL;
63 (*treePtr)->rightPtr = NULL;
64 }

65 else {
66 printf("%d not inserted. No memory available.\n", value);
67 }

68 }
69 else { // tree is not empty
70

71
72

73

74
75

76

77
78

79 else { // duplicate data value ignored
80 printf("%s", "dup");
81 }

82 }

83 }
84

Fig. 12.19 | Creating and traversing a binary tree. (Part 2 of 3.)

insertNode(&rootPtr, item);

preOrder(rootPtr);

inOrder(rootPtr);

postOrder(rootPtr);

// data to insert is less than data in current node

if (value < (*treePtr)->data) {
 insertNode(&((*treePtr)->leftPtr), value);
}

// data to insert is greater than data in current node
else if (value > (*treePtr)->data) {
 insertNode(&((*treePtr)->rightPtr), value);

}

504 Chapter 12 C Data Structures

12.7.1 Function insertNode
The functions used in Fig. 12.19 to create a binary search tree and traverse it are recursive.
Function insertNode (lines 53–83) receives the address of the tree and an integer to be

85 // begin inorder traversal of tree

86 void inOrder(TreeNodePtr treePtr)
87 {
88

89

90
91

92

93
94 }

95
96 // begin preorder traversal of tree
97 void preOrder(TreeNodePtr treePtr)
98 {

99
100

101

102

103
104

105 }

106
107 // begin postorder traversal of tree

108 void postOrder(TreeNodePtr treePtr)
109 {
110

111

112
113

114

115
116 }

The numbers being placed in the tree are:
 6 7 4 12 7dup 2 2dup 5 7dup 11

The preOrder traversal is:
 6 4 2 5 7 12 11

The inOrder traversal is:
 2 4 5 6 7 11 12

The postOrder traversal is:
 2 5 4 11 12 7 6

Fig. 12.20 | Sample output from the program of Fig. 12.19.

Fig. 12.19 | Creating and traversing a binary tree. (Part 3 of 3.)

// if tree is not empty, then traverse
if (treePtr != NULL) {
 inOrder(treePtr->leftPtr);

 printf("%3d", treePtr->data);
 inOrder(treePtr->rightPtr);

}

// if tree is not empty, then traverse

if (treePtr != NULL) {
 printf("%3d", treePtr->data);
 preOrder(treePtr->leftPtr);

 preOrder(treePtr->rightPtr);
}

// if tree is not empty, then traverse
if (treePtr != NULL) {
 postOrder(treePtr->leftPtr);

 postOrder(treePtr->rightPtr);
 printf("%3d", treePtr->data);
}

12.7 Trees 505

stored in the tree as arguments. A node can be inserted only as a leaf node in a binary search
tree. The steps for inserting a node in a binary search tree are as follows:

1. If *treePtr is NULL (line 56), create a new node (line 57). Call malloc, assign the
allocated memory to *treePtr, assign to (*treePtr)->data the integer to be stored
(line 61), assign to (*treePtr)->leftPtr and (*treePtr)->rightPtr the value
NULL (lines 62–63, and return control to the caller (either main or a previous call
to insertNode).

2. If the value of *treePtr is not NULL and the value to be inserted is less than
(*treePtr)->data, function insertNode is called with the address of
(*treePtr)->leftPtr (line 72) to insert the node in the left subtree of the node
pointed to by treePtr. If the value to be inserted is greater than (*treePtr)->
data, function insertNode is called with the address of (*treePtr)->rightPtr
(line 77) to insert the node in the right subtree of the node pointed to by treePtr.

The recursive steps continue until a NULL pointer is found, then Step 1 inserts the new node.

12.7.2 Traversals: Functions inOrder, preOrder and postOrder
Functions inOrder (lines 86–94), preOrder (lines 97–105) and postOrder (lines 108–
116) each receive a tree (i.e., the pointer to the root node of the tree) and traverse the tree.

The steps for an inOrder traversal are:

1. Traverse the left subtree inOrder.

2. Process the value in the node.

3. Traverse the right subtree inOrder.

The value in a node is not processed until the values in its left subtree are processed. The
inOrder traversal of the tree in Fig. 12.21 is:

The inOrder traversal of a binary search tree prints the node values in ascending order.
The process of creating a binary search tree actually sorts the data—and thus this process
is called the binary tree sort.

The steps for a preOrder traversal are:

1. Process the value in the node.

2. Traverse the left subtree preOrder.

3. Traverse the right subtree preOrder.

6 13 17 27 33 42 48

Fig. 12.21 | Binary search tree with seven nodes.

27

13

6 17 33

42

48

506 Chapter 12 C Data Structures

The value in each node is processed as the node is visited. After the value in a given node
is processed, the values in the left subtree are processed, then those in the right subtree are
processed. The preOrder traversal of the tree in Fig. 12.21 is:

The steps for a postOrder traversal are:

1. Traverse the left subtree postOrder.

2. Traverse the right subtree postOrder.

3. Process the value in the node.

The value in each node is not printed until the values of its children are printed. The post-
Order traversal of the tree in Fig. 12.21 is:

12.7.3 Duplicate Elimination
The binary search tree facilitates duplicate elimination. As the tree is being created, an at-
tempt to insert a duplicate value will be recognized because a duplicate will follow the same
“go left” or “go right” decisions on each comparison as the original value did. Thus, the
duplicate will eventually be compared with a node in the tree containing the same value.
The duplicate value may simply be discarded at this point.

12.7.4 Binary Tree Search
Searching a binary tree for a value that matches a key value is also fast. If the tree is tightly
packed, each level contains about twice as many elements as the previous level. So a binary
search tree with n elements would have a maximum of log2n levels, and thus a maximum
of log2n comparisons would have to be made either to find a match or to determine that
no match exists. This means, for example, that when searching a (tightly packed) 1,000-
element binary search tree, no more than 10 comparisons need to be made because 210 >
1,000. When searching a (tightly packed) 1,000,000-element binary search tree, no more
than 20 comparisons need to be made because 220 > 1,000,000.

12.7.5 Other Binary Tree Operations
In the exercises, algorithms are presented for several other binary tree operations such as
printing a binary tree in a two-dimensional tree format and performing a level order travers-
al of a binary tree. The level order traversal visits the nodes of the tree row-by-row starting
at the root node level. On each level of the tree, the nodes are visited from left to right.
Other binary tree exercises include allowing a binary search tree to contain duplicate val-
ues, inserting string values in a binary tree and determining how many levels are contained
in a binary tree.

12.8 Secure C Programming
Chapter 8 of the CERT Secure C Coding Standard is dedicated to memory-management rec-
ommendations and rules—many apply to the uses of pointers and dynamic memory alloca-
tion presented in this chapter. For more information, visit www.securecoding.cert.org.

27 13 6 17 42 33 48

6 17 13 33 48 42 27

 Summary 507

• MEM01-C/MEM30-C: Pointers should not be left uninitialized. Rather, they
should be assigned either NULL or the address of a valid item in memory. When
you use free to deallocate dynamically allocated memory, the pointer passed to
free is not assigned a new value, so it still points to the memory location where
the dynamically allocated memory used to be. Using such a “dangling” pointer
can lead to program crashes and security vulnerabilities. When you free dynami-
cally allocated memory, you should immediately assign the pointer either NULL or
a valid address. We chose not to do this for local pointer variables that immedi-
ately go out of scope after a call to free.

• MEM01-C: Undefined behavior occurs when you attempt to use free to deallo-
cate dynamic memory that was already deallocated—this is known as a “double
free vulnerability.” To ensure that you don’t attempt to deallocate the same
memory more than once, immediately set a pointer to NULL after the call to
free—attempting to free a NULL pointer has no effect.

• ERR33-C: Most standard library functions return values that enable you to de-
termine whether the functions performed their tasks correctly. Function malloc,
for example, returns NULL if it’s unable to allocate the requested memory. You
should always ensure that malloc did not return NULL before attempting to use the
pointer that stores malloc’s return value.

Summary
Section 12.1 Introduction
• Dynamic data structures (p. 478) grow and shrink at execution time.

• Linked lists (p. 478) are collections of data items “lined up in a row”—insertions and deletions
are made anywhere in a linked list.

• With stacks (p. 478), insertions and deletions are made only at the top (p. 478).

• Queues (p. 478) represent waiting lines; insertions are made at the back (also referred to as the
tail; p. 478) of a queue and deletions are made from the front (also referred to as the head; p. 478)
of a queue.

• Binary trees facilitate high-speed searching and sorting of data, efficient elimination of duplicate
data items, representing file-system directories and compiling expressions into machine language.

Section 12.2 Self-Referential Structures
• A self-referential structure (p. 479) contains a pointer member that points to a structure of the

same type.

• Self-referential structures can be linked together to form lists, queues, stacks and trees.

• A NULL pointer (p. 479) normally indicates the end of a data structure.

Section 12.3 Dynamic Memory Allocation
• Creating and maintaining dynamic data structures require dynamic memory allocation (p. 479).

• Functions malloc and free, and operator sizeof, are essential to dynamic memory allocation.

• Function malloc (p. 479) receives the number of bytes to be allocated and returns a void * point-
er to the allocated memory. A void * pointer may be assigned to a variable of any pointer type.

• Function malloc is normally used with the sizeof operator.

508 Chapter 12 C Data Structures

• The memory allocated by malloc is not initialized.

• If no memory is available, malloc returns NULL.

• Function free (p. 479) deallocates memory so that it can be reallocated in the future.

• C also provides functions calloc and realloc for creating and modifying dynamic arrays.

Section 12.4 Linked Lists
• A linked list is a linear collection of self-referential structures, called nodes (p. 480), connected

by pointer links (p. 480).

• A linked list is accessed via a pointer to the first node. Subsequent nodes are accessed via the link
pointer member stored in each node.

• By convention, the link pointer in the last node of a list is set to NULL to mark the end of the list.

• Data is stored in a linked list dynamically—each node is created as necessary.

• A node can contain data of any type including other struct objects.

• Linked lists are dynamic, so the length of a list can increase or decrease as necessary.

• Linked-list nodes are normally not stored contiguously in memory. Logically, however, the
nodes of a linked list appear to be contiguous.

Section 12.5 Stacks
• A stack (p. 489) can be implemented as a constrained version of a linked list. New nodes can be

added to a stack and removed from a stack only at the top—referred to as a last-in, first-out
(LIFO; p. 489) data structure.

• The primary functions used to manipulate a stack are push and pop. Function push creates a new
node and places it on top of the stack. Function pop removes a node from the top of the stack,
frees the memory that was allocated to the popped node and returns the popped value.

• Whenever a function call is made, the called function must know how to return to its caller, so the
return address is pushed onto a stack. If a series of function calls occurs, the successive return values
are pushed onto the stack in last-in, first-out order so that each function can return to its caller.
Stacks support recursive function calls in the same manner as conventional nonrecursive calls.

• Stacks are used by compilers in the process of evaluating expressions and generating machine-
language code.

Section 12.6 Queues
• Queue nodes are removed only from the head of the queue and inserted only at the tail of the

queue—referred to as a first-in, first-out (FIFO; p. 495) data structure.

• The insert and remove operations for a queue are known as enqueue and dequeue (p. 495).

Section 12.7 Trees
• A tree (p. 501) is a nonlinear, two-dimensional data structure. Tree nodes contain two or more

links.

• Binary trees (p. 501) are trees whose nodes all contain two links.

• The root node (p. 501) is the first node in a tree. Each link in the root node of a binary tree refers
to a child (p. 501). The left child (p. 501) is the first node in the left subtree (p. 501), and the
right child (p. 501) is the first node in the right subtree (p. 501). The children of a node are called
siblings (p. 501).

• A node with no children is called a leaf node (p. 501).

 Self-Review Exercises 509

• A binary search tree (with no duplicate node values; p. 501) has the characteristic that the values
in any left subtree are less than the value in its parent node (p. 501), and the values in any right
subtree are greater than the value in its parent node.

• A node can be inserted only as a leaf node in a binary search tree.

• The steps for an in-order traversal are: Traverse the left subtree in-order, process the value in the
node, then traverse the right subtree in-order. The value in a node is not processed until the val-
ues in its left subtree are processed.

• The in-order traversal (p. 502) of a binary search tree processes the node values in ascending or-
der. The process of creating a binary search tree actually sorts the data—and thus this process is
called the binary tree sort (p. 505).

• The steps for a pre-order traversal (p. 502) are: Process the value in the node, traverse the left
subtree pre-order, then traverse the right subtree pre-order. The value in each node is processed
as the node is visited. After the value in a given node is processed, the values in the left subtree
are processed, then the values in the right subtree are processed.

• The steps for a post-order traversal (p. 502) are: Traverse the left subtree post-order, traverse the
right subtree post-order, then process the value in the node. The value in each node is not pro-
cessed until the values of its children are processed.

• A binary search tree facilitates duplicate elimination (p. 506). As the tree is being created, an at-
tempt to insert a duplicate value will be recognized because a duplicate will follow the same “go
left” or “go right” decisions on each comparison as the original value did. Thus, the duplicate
will eventually be compared with a node in the tree containing the same value. The duplicate
value may simply be discarded at this point.

• Searching a binary tree for a value that matches a key value is fast. If the tree is tightly packed,
each level contains about twice as many elements as the previous level. So a binary search tree
with n elements would have a maximum of log2n levels, and thus a maximum of log2n compar-
isons would have to be made either to find a match or to determine that no match exists. This
means that when searching a (tightly packed) 1,000-element binary search tree, no more than 10
comparisons need to be made because 210 > 1,000. When searching a (tightly packed)
1,000,000-element binary search tree, no more than 20 comparisons need to be made because
220 > 1,000,000.

Self-Review Exercises
12.1 Fill in the blanks in each of the following:

a) A self- structure is used to form dynamic data structures.
b) Function is used to dynamically allocate memory.
c) A(n) is a specialized version of a linked list in which nodes can be inserted and

deleted only from the start of the list.
d) Functions that look at a linked list but do not modify it are referred to as .
e) A queue is referred to as a(n) data structure.
f) The pointer to the next node in a linked list is referred to as a(n) .
g) Function is used to reclaim dynamically allocated memory.
h) A(n) is a specialized version of a linked list in which nodes can be inserted only

at the start of the list and deleted only from the end of the list.
i) A(n) is a nonlinear, two-dimensional data structure that contains nodes with

two or more links.
j) A stack is referred to as a(n) data structure because the last node inserted is the

first node removed.
k) The nodes of a(n) tree contain two link members.

510 Chapter 12 C Data Structures

l) The first node of a tree is the node.
m) Each link in a tree node points to a(n) or of that node.
n) A tree node that has no children is called a(n) node.
o) The three traversal algorithms (covered in this chapter) for a binary tree are ,

 and .

12.2 What are the differences between a linked list and a stack?

12.3 What are the differences between a stack and a queue?

12.4 Write a statement or set of statements to accomplish each of the following. Assume that all
the manipulations occur in main (therefore, no addresses of pointer variables are needed), and as-
sume the following definitions:

struct gradeNode {
 char lastName[20];
 double grade;
 struct gradeNode *nextPtr;
};

typedef struct gradeNode GradeNode;
typedef GradeNode *GradeNodePtr;
a) Create a pointer to the start of the list called startPtr. The list is empty.
b) Create a new node of type GradeNode that’s pointed to by pointer newPtr of type Grade-

NodePtr. Assign the string "Jones" to member lastName and the value 91.5 to member
grade (use strcpy). Provide any necessary declarations and statements.

c) Assume that the list pointed to by startPtr currently consists of 2 nodes—one con-
taining "Jones" and one containing "Smith". The nodes are in alphabetical order. Pro-
vide the statements necessary to insert in order nodes containing the following data for
lastName and grade:

"Adams" 85.0

"Thompson" 73.5

"Pritchard" 66.5

Use pointers previousPtr, currentPtr and newPtr to perform the insertions. State what
previousPtr and currentPtr point to before each insertion. Assume that newPtr always
points to the new node, and that the new node has already been assigned the data.

d) Write a while loop that prints the data in each node of the list. Use pointer currentPtr
to move along the list.

e) Write a while loop that deletes all the nodes in the list and frees the memory associated
with each node. Use pointer currentPtr and pointer tempPtr to walk along the list and
free memory, respectively.

12.5 (Binary Search Tree Traversals) Provide the in-order, pre-order and post-order traversals of
the binary search tree of Fig. 12.22.

Fig. 12.22 | A 15-node binary search tree.

49

28 83

97

92 9969 72

7140

32 4411 19

18

 Answers to Self-Review Exercises 511

Answers to Self-Review Exercises
12.1 a) referential. b) malloc. c) stack. d) predicates. e) FIFO. f) link. g) free. h) queue.
i) tree. j) LIFO. k) binary. l) root. m) child, subtree. n) leaf. o) in-order, pre-order, post-order.

12.2 It’s possible to insert a node anywhere in a linked list and remove a node from anywhere in
a linked list. However, nodes in a stack may be inserted only at the top of the stack and removed
only from the top of a stack.

12.3 A queue has pointers to both its head and its tail so that nodes may be inserted at the tail
and deleted from the head. A stack has a single pointer to the top of the stack where both insertion
and deletion of nodes is performed.

12.4 a) GradeNodePtr startPtr = NULL;
b) GradeNodePtr newPtr;

newPtr = malloc(sizeof(GradeNode));
strcpy(newPtr->lastName, "Jones");
newPtr->grade = 91.5;
newPtr->nextPtr = NULL;

c) To insert "Adams":
previousPtr is NULL, currentPtr points to the first element in the list.
newPtr->nextPtr = currentPtr;

startPtr = newPtr;

To insert "Thompson":
previousPtr points to the last element in the list (containing "Smith")
currentPtr is NULL.
newPtr->nextPtr = currentPtr;

previousPtr->nextPtr = newPtr;

To insert "Pritchard":
previousPtr points to the node containing "Jones"
currentPtr points to the node containing "Smith"
newPtr->nextPtr = currentPtr;

previousPtr->nextPtr = newPtr;

d) currentPtr = startPtr;

while (currentPtr != NULL) {
 printf("Lastname = %s\nGrade = %6.2f\n",
 currentPtr->lastName, currentPtr->grade);

 currentPtr = currentPtr->nextPtr;

}
e) currentPtr = startPtr;

while (currentPtr != NULL) {
 tempPtr = currentPtr;

 currentPtr = currentPtr->nextPtr;

 free(tempPtr);

}

startPtr = NULL;

12.5 The in-order traversal is:
 11 18 19 28 32 40 44 49 69 71 72 83 92 97 99

The pre-order traversal is:
 49 28 18 11 19 40 32 44 83 71 69 72 97 92 99

512 Chapter 12 C Data Structures

The post-order traversal is:
 11 19 18 32 44 40 28 69 72 71 92 99 97 83 49

Exercises
12.6 (Concatenating Lists) Write a program that concatenates two linked lists of characters. The
program should include function concatenate that takes pointers to both lists as arguments and
concatenates the second list to the first list.

12.7 (Merging Ordered Lists) Write a program that merges two ordered lists of integers into a
single ordered list of integers. Function merge should receive pointers to the first node of each of the
lists to be merged and return a pointer to the first node of the merged list.

12.8 (Inserting into an Ordered List) Write a program that inserts 25 random integers from 0 to
100 in order in a linked list. The program should calculate the sum of the elements and the floating-
point average of the elements.

12.9 (Creating a Linked List, Then Reversing Its Elements) Write a program that creates a linked
list of 10 characters, then creates a copy of the list in reverse order.

12.10 (Reversing the Words of a Sentence) Write a program that inputs a line of text and uses a
stack to print the line reversed.

12.11 (Palindrome Tester) Write a program that uses a stack to determine whether a string is a
palindrome (i.e., the string is spelled identically backward and forward). The program should ignore
spaces and punctuation.

12.12 (Infix-to-Postfix Converter) Stacks are used by compilers to help in the process of evaluating
expressions and generating machine-language code. In this and the next exercise, we investigate how
compilers evaluate arithmetic expressions consisting only of constants, operators and parentheses.

Humans generally write expressions like 3 + 4 and 7 / 9 in which the operator (+ or / here) is
written between its operands—this is called infix notation. Computers “prefer” postfix notation in
which the operator is written to the right of its two operands. The preceding infix expressions
would appear in postfix notation as 3 4 + and 7 9 /, respectively.

To evaluate a complex infix expression, some compilers first convert the expression to postfix
notation, and then evaluate the postfix version. Each of these algorithms requires only a single left-
to-right pass of the expression. Each algorithm uses a stack in support of its operation, and in each
the stack is used for a different purpose.

In this exercise, you’ll write a version of the infix-to-postfix conversion algorithm. In the next
exercise, you’ll write a version of the postfix-expression evaluation algorithm.

Write a program that converts an ordinary infix arithmetic expression (assume a valid
expression is entered) with single-digit integers such as

(6 + 2) * 5 - 8 / 4

to a postfix expression. The postfix version of the preceding infix expression is

6 2 + 5 * 8 4 / -

The program should read the expression into character array infix and use the stack functions
implemented in this chapter to help create the postfix expression in character array postfix. The
algorithm for creating a postfix expression is as follows:

1) Push a left parenthesis '(' onto the stack.
2) Append a right parenthesis ')' to the end of infix.

 Exercises 513

3) While the stack is not empty, read infix from left to right and do the following:
If the current character in infix is a digit, copy it to the next element of postfix.
If the current character in infix is a left parenthesis, push it onto the stack.
If the current character in infix is an operator,
Pop operators (if there are any) at the top of the stack while they have equal or
higher precedence than the current operator, and insert the popped
operators in postfix.
Push the current character in infix onto the stack.
If the current character in infix is a right parenthesis
Pop operators from the top of the stack and insert them in postfix until a left
parenthesis is at the top of the stack.
Pop (and discard) the left parenthesis from the stack.

The following arithmetic operations are allowed in an expression:
+ addition
- subtraction
* multiplication
/ division
^ exponentiation
% remainder

The stack should be maintained with the following declarations:

struct stackNode {
 char data;
 struct stackNode *nextPtr;
};

typedef struct stackNode StackNode;
typedef StackNode *StackNodePtr;

The program should consist of main and eight other functions with the following function headers:

void convertToPostfix(char infix[], char postfix[])
Convert the infix expression to postfix notation.

int isOperator(char c)
Determine whether c is an operator.

int precedence(char operator1, char operator2)
Determine whether the precedence of operator1 is less than, equal to, or greater than
the precedence of operator2. The function returns -1, 0 and 1, respectively.

void push(StackNodePtr *topPtr, char value)
Push a value on the stack.

char pop(StackNodePtr *topPtr)
Pop a value off the stack.

char stackTop(StackNodePtr topPtr)
Return the top value of the stack without popping the stack.

int isEmpty(StackNodePtr topPtr)
Determine whether the stack is empty.

void printStack(StackNodePtr topPtr)
Print the stack.

514 Chapter 12 C Data Structures

12.13 (Postfix Evaluator) Write a program that evaluates a postfix expression (assume it’s valid)
such as

6 2 + 5 * 8 4 / -

The program should read a postfix expression consisting of single digits and operators into a char-
acter array. Using the stack functions implemented earlier in this chapter, the program should scan
the expression and evaluate it. The algorithm is as follows:

1) Append the null character ('\0') to the end of the postfix expression. When the null
character is encountered, no further processing is necessary.

2) While '\0' has not been encountered, read the expression from left to right.
If the current character is a digit,
Push its integer value onto the stack (the integer value of a digit character is its
value in the computer’s character set minus the value of '0' in the
computer’s character set).
Otherwise, if the current character is an operator,
Pop the two top elements of the stack into variables x and y.
Calculate y operator x.
Push the result of the calculation onto the stack.

3) When the null character is encountered in the expression, pop the top value of the stack.
This is the result of the postfix expression.

[Note: In 2) above, if the operator is '/', the top of the stack is 2, and the next element in the stack
is 8, then pop 2 into x, pop 8 into y, evaluate 8 / 2, and push the result, 4, back onto the stack. This
note also applies to the other binary operators.]

The arithmetic operations allowed in an expression are:
+ addition
- subtraction
* multiplication
/ division
^ exponentiation
% remainder

The stack should be maintained with the following declarations:

struct stackNode {
 int data;
 struct stackNode *nextPtr;
};

typedef struct stackNode StackNode;
typedef StackNode *StackNodePtr;

The program should consist of main and six other functions with the following function headers:

int evaluatePostfixExpression(char *expr)
Evaluate the postfix expression.

int calculate(int op1, int op2, char operator)
Evaluate the expression op1 operator op2.

void push(StackNodePtr *topPtr, int value)
Push a value on the stack.

int pop(StackNodePtr *topPtr)
Pop a value off the stack.

 Exercises 515

int isEmpty(StackNodePtr topPtr)
Determine whether the stack is empty.

void printStack(StackNodePtr topPtr)
Print the stack.

12.14 (Postfix Evaluator Modification) Modify the postfix evaluator program of Exercise 12.13
so that it can process integer operands larger than 9.

12.15 (Supermarket Simulation) Write a program that simulates a check-out line at a supermar-
ket. The line is a queue. Customers arrive in random integer intervals of 1 to 4 minutes. Also, each
customer is serviced in random integer intervals of 1 to 4 minutes. Obviously, the rates need to be
balanced. If the average arrival rate is larger than the average service rate, the queue will grow in-
finitely. Even with balanced rates, randomness can still cause long lines. Run the supermarket simu-
lation for a 12-hour day (720 minutes) using the following algorithm:

1) Choose a random integer between 1 and 4 to determine the minute at which the first
customer arrives.

2) At the first customer’s arrival time:
Determine customer’s service time (random integer from 1 to 4);
Begin servicing the customer;
Schedule arrival time of next customer (random integer 1 to 4 added to the current time).

3) For each minute of the day:
If the next customer arrives,
Say so;
Enqueue the customer;
Schedule the arrival time of the next customer.
If service was completed for the last customer,
Say so;
Dequeue next customer to be serviced;
Determine customer’s service completion time
(random integer from 1 to 4 added to the current time).

Now run your simulation for 720 minutes and answer each of the following:
a) What’s the maximum number of customers in the queue at any time?
b) What’s the longest wait any one customer experienced?
c) What happens if the arrival interval is changed from 1 to 4 minutes to 1 to 3 minutes?

12.16 (Allowing Duplicates in a Binary Tree) Modify the program of Fig. 12.19 to allow the bi-
nary tree to contain duplicate values.

12.17 (Binary Search Tree of Strings) Write a program based on the program of Fig. 12.19 that
inputs a line of text, tokenizes the sentence into separate words, inserts the words in a binary search
tree, and prints the in-order, pre-order, and post-order traversals of the tree.

[Hint: Read the line of text into an array. Use strtok to tokenize the text. When a token is
found, create a new node for the tree, assign the pointer returned by strtok to member string of
the new node, and insert the node in the tree.]

12.18 (Duplicate Elimination) We’ve seen that duplicate elimination is straightforward when cre-
ating a binary search tree. Describe how you would perform duplicate elimination using only a one-
dimensional array. Compare the performance of array-based duplicate elimination with the perfor-
mance of binary-search-tree-based duplicate elimination.

12.19 (Depth of a Binary Tree) Write a function depth that receives a binary tree and determines
how many levels it has.

516 Chapter 12 C Data Structures

12.20 (Recursively Print a List Backward) Write a function printListBackward that recursively
outputs the items in a list in reverse order. Use your function in a test program that creates a sorted
list of integers and prints the list in reverse order.

12.21 (Recursively Search a List) Write a function searchList that recursively searches a linked
list for a specified value. The function should return a pointer to the value if it’s found; otherwise,
NULL should be returned. Use your function in a test program that creates a list of integers. The pro-
gram should prompt the user for a value to locate in the list.

12.22 (Binary Tree Search) Write function binaryTreeSearch that attempts to locate a specified
value in a binary search tree. The function should take as arguments a pointer to the root node of
the binary tree and a search key to be located. If the node containing the search key is found, the
function should return a pointer to that node; otherwise, the function should return a NULL pointer.

12.23 (Level Order Binary Tree Traversal) The program of Fig. 12.19 illustrated three recursive
methods of traversing a binary tree—inorder traversal, preorder traversal, and postorder traversal.
This exercise presents the level order traversal of a binary tree in which the node values are printed
level-by-level starting at the root node level. The nodes on each level are printed from left to right.
The level order traversal is not a recursive algorithm. It uses the queue data structure to control the
output of the nodes. The algorithm is as follows:

1) Insert the root node in the queue
2) While there are nodes left in the queue,

Get the next node in the queue
Print the node’s value
If the pointer to the left child of the node is not NULL
Insert the left child node in the queue
If the pointer to the right child of the node is not NULL
Insert the right child node in the queue.

Write function levelOrder to perform a level order traversal of a binary tree. The function
should take as an argument a pointer to the root node of the binary tree. Modify the program of
Fig. 12.19 to use this function. Compare the output from this function to the outputs of the other
traversal algorithms to see that it worked correctly. [Note: You’ll also need to modify and incor-
porate the queue-processing functions of Fig. 12.13 in this program.]

12.24 (Printing Trees) Write a recursive function outputTree to display a binary tree on the
screen. The function should output the tree row-by-row with the top of the tree at the left of the
screen and the bottom of the tree toward the right of the screen. Each row is output vertically. For
example, the binary tree illustrated in Fig. 12.22 is output as follows:

Note that the rightmost leaf node appears at the top of the output in the rightmost column, and
the root node appears at the left of the output. Each column of output starts five spaces to the right

 99
 97
 92
 83
 72
 71
 69
49
 44
 40
 32
 28
 19
 18
 11

 Special Section: Building Your Own Compiler 517

of the previous column. Function outputTree should receive as arguments a pointer to the root
node of the tree and an integer totalSpaces representing the number of spaces preceding the value
to be output (this variable should start at zero so that the root node is output at the left of the
screen). The function uses a modified inorder traversal to output the tree. The algorithm is as fol-
lows:

While the pointer to the current node is not NULL
Recursively call outputTree with the current node’s right subtree and totalSpaces + 5.
Use a for statement to count from 1 to totalSpaces and output spaces.
Output the value in the current node.
Recursively call outputTree with the current node’s left subtree and totalSpaces + 5.

Special Section: Building Your Own Compiler
In Exercises 7.27–7.29, we introduced Simpletron Machine Language (SML), and you imple-
mented a Simpletron computer simulator to execute SML programs. In Exercises 12.25–12.29, we
build a compiler that converts programs written in a high-level programming language to SML.
This section “ties” together the entire programming process. You’ll write programs in this new
high-level language, compile them on the compiler you build and run them on the simulator you
built in Exercise 7.28. [Note: Due to the size of the descriptions for Exercises 12.25–12.29, we’ve
posted them in a PDF document located at www.deitel.com/books/chtp8/.]

13 C Preprocessor

O b j e c t i v e s
In this chapter, you’ll:

■ Use #include to develop
large programs.

■ Use #define to create
macros with and without
arguments.

■ Use conditional compilation
to specify portions of a
program that should not
always be compiled (such as
code that assists you in
debugging).

■ Display error messages during
conditional compilation.

■ Use assertions to test
whether the values of
expressions are correct.

13.1 Introduction 519

13.1 Introduction
The C preprocessor executes before a program is compiled. Some actions it performs are:

• the inclusion of other files into the file being compiled,

• definition of symbolic constants and macros,

• conditional compilation of program code and

• conditional execution of preprocessor directives.

Preprocessor directives begin with #, and only whitespace characters and comments delim-
ited by /* and */ may appear before a preprocessor directive on a line.

C has perhaps the largest installed base of “legacy code” of any modern programming
language. It’s been in active use for more than four decades. As a professional C pro-
grammer, you’re likely to encounter code written many years ago using older program-
ming techniques. To help you prepare for this, we discuss a number of those techniques
in this chapter and recommend some newer techniques that can replace them.

13.2 #include Preprocessor Directive
The #include preprocessor directive has been used throughout this text. It causes a copy
of a specified file to be included in place of the directive. The two forms of the #include
directive are:

The difference between these is the location at which the preprocessor begins searches for
the file to be included. If the filename is enclosed in angle brackets (< and >)—used for
standard library headers—the search is performed in an implementation-dependent man-
ner, normally through predesignated compiler and system directories. If the filename is en-
closed in quotes, the preprocessor starts searches in the same directory as the file being

13.1 Introduction
13.2 #include Preprocessor Directive
13.3 #define Preprocessor Directive:

Symbolic Constants
13.4 #define Preprocessor Directive: Macros

13.4.1 Macro with One Argument
13.4.2 Macro with Two Arguments
13.4.3 Macro Continuation Character
13.4.4 #undef Preprocessor Directive
13.4.5 Standard Library Functions and Macros
13.4.6 Do Not Place Expressions with Side

Effects in Macros
13.5 Conditional Compilation

13.5.1 #if…#endif Preprocessor Directive

13.5.2 Commenting Out Blocks of Code
with #if…#endif

13.5.3 Conditionally Compiling
Debugging Code

13.6 #error and #pragma
Preprocessor Directives

13.7 # and ## Operators
13.8 Line Numbers
13.9 Predefined Symbolic Constants

13.10 Assertions
13.11 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

#include <filename>
#include "filename"

520 Chapter 13 C Preprocessor

compiled for the file to be included. This method is normally used to include program-
mer-defined headers. If the compiler cannot find the file in the current directory, then it
will search through the predesignated compiler and system directories.

The #include directive is used to include standard library headers such as stdio.h
and stdlib.h (see Fig. 5.10) and with programs consisting of multiple source files that are
to be compiled together. A header containing declarations common to the separate pro-
gram files is often created and included in the file. Examples of such declarations are:

• structure and union declarations,

• typedefs,

• enumerations and

• function prototypes.

13.3 #define Preprocessor Directive: Symbolic Constants
The #define directive creates symbolic constants—constants represented as symbols—and
macros—operations defined as symbols. The #define directive format is

When this line appears in a file, all subsequent occurrences of identifier that do not appear
in string literals or comments will be replaced by replacement text automatically before the
program is compiled. For example,

replaces all subsequent occurrences of the symbolic constant PI with the numeric constant
3.14159. Symbolic constants enable you to create a name for a constant and use the name
throughout the program.

#define identifier replacement-text

#define PI 3.14159

Error-Prevention Tip 13.1
Everything to the right of the symbolic constant name replaces the symbolic constant. For
example, #define PI = 3.14159 causes the preprocessor to replace every occurrence of the
identifier PI with = 3.14159. This is the cause of many subtle logic and syntax errors. For
this reason, you may prefer to use const variable declarations, such as const double PI
= 3.14159; in preference to the preceding #define.

Common Programming Error 13.1
Attempting to redefine a symbolic constant with a new value is an error.

Software Engineering Observation 13.1
Using symbolic constants makes programs easier to modify. Rather than search for every
occurrence of a value in your code, you modify a symbolic contant once in its #define
directive. When the program is recompiled, all occurrences of that constant in the program
are modified accordingly.

Good Programming Practice 13.1
Using meaningful names for symbolic constants helps make programs self-documenting.

13.4 #define Preprocessor Directive: Macros 521

13.4 #define Preprocessor Directive: Macros
A macro is an identifier defined in a #define preprocessor directive. As with symbolic con-
stants, the macro-identifier is replaced with replacement-text before the program is com-
piled. Macros may be defined with or without arguments. A macro without arguments is
processed like a symbolic constant. In a macro with arguments, the arguments are substi-
tuted in the replacement text, then the macro is expanded—the replacement-text replaces
the identifier and argument list in the program. A symbolic constant is a type of macro.

13.4.1 Macro with One Argument
Consider the following one-argument macro definition that calculates the area of a circle:

Expanding a Macro with an Argument
Wherever CIRCLE_AREA(y) appears in the file, the value of y is substituted for x in the re-
placement-text, the symbolic constant PI is replaced by its value (defined previously) and
the macro is expanded in the program. For example, the statement

is expanded to

then, at compile time, the value of the expression is evaluated and assigned to variable area.

Importance of Parentheses
The parentheses around each x in the replacement-text force the proper order of evaluation
when the macro argument is an expression. For example, the statement

is expanded to

which evaluates correctly because the parentheses force the proper order of evaluation. If
the parentheses in the macro definition are omitted, the macro expansion is

which evaluates incorrectly as

because of the rules of operator precedence.

Good Programming Practice 13.2
By convention, symbolic constants are defined using only uppercase letters and underscores.

#define CIRCLE_AREA(x) ((PI) * (x) * (x))

area = CIRCLE_AREA(4);

area = ((3.14159) * (4) * (4));

area = CIRCLE_AREA(c + 2);

area = ((3.14159) * (c + 2) * (c + 2));

area = 3.14159 * c + 2 * c + 2;

area = (3.14159 * c) + (2 * c) + 2;

Error-Prevention Tip 13.2
Enclose macro arguments in parentheses in the replacement-text to prevent logic errors.

522 Chapter 13 C Preprocessor

Better to Use a Function
Macro CIRCLE_AREA could be defined more safely as a function. Function circleArea

performs the same calculation as macro CIRCLE_AREA, but the function’s argument is eval-
uated only once when the function is called. Also, the compiler performs type checking on
functions—the preprocessor does not support type checking.

13.4.2 Macro with Two Arguments
The following two-argument macro calculates the area of a rectangle:

Wherever RECTANGLE_AREA(x, y) appears in the program, the values of x and y are sub-
stituted in the macro replacement-text and the macro is expanded in place of the macro
name. For example, the statement

is expanded to

The value of the expression is evaluated at runtime and assigned to variable rectArea.

13.4.3 Macro Continuation Character
The replacement-text for a macro or symbolic constant is normally any text on the line after
the identifier in the #define directive. If the replacement-text for a macro or symbolic con-
stant is longer than the remainder of the line, a backslash (\) continuation character must be
placed at the end of the line, indicating that the replacement-text continues on the next line.

13.4.4 #undef Preprocessor Directive
Symbolic constants and macros can be discarded by using the #undef preprocessor direc-
tive. Directive #undef “undefines” a symbolic constant or macro name. The scope of a sym-
bolic constant or macro is from its definition until it’s undefined with #undef, or until the
end of the file. Once undefined, a name can be redefined with #define.

13.4.5 Standard Library Functions and Macros
Functions in the standard library sometimes are defined as macros based on other library
functions. A macro commonly defined in the <stdio.h> header is

double circleArea(double x)
{
 return 3.14159 * x * x;
}

Performance Tip 13.1
In the past, macros were often used to replace function calls with inline code to eliminate
the function-call overhead. Today’s optimizing compilers often inline function calls for
you, so many programmers no longer use macros for this purpose. You can also use the C
standard’s inline keyword (see Appendix E).

#define RECTANGLE_AREA(x, y) ((x) * (y))

rectArea = RECTANGLE_AREA(a + 4, b + 7);

rectArea = ((a + 4) * (b + 7));

#define getchar() getc(stdin)

13.5 Conditional Compilation 523

The macro definition of getchar uses function getc to get one character from the stan-
dard input stream. Function putchar of the <stdio.h> header and the character-handling
functions of the <ctype.h> header often are implemented as macros as well.

13.4.6 Do Not Place Expressions with Side Effects in Macros
Expressions with side effects (e.g., variable values are modified) should not be passed to a
macro because macro arguments may be evaluated more than once. We’ll show an exam-
ple of this in Section 13.11.

13.5 Conditional Compilation
Conditional compilation enables you to control the execution of preprocessor directives
and the compilation of program code. Each conditional preprocessor directive evaluates a
constant integer expression. Cast expressions, sizeof expressions and enumeration con-
stants cannot be evaluated in preprocessor directives.

13.5.1 #if…#endif Preprocessor Directive
The conditional preprocessor construct is much like the if selection statement. Consider
the following preprocessor code:

which determines whether MY_CONSTANT is defined—that is, whether MY_CONSTANT has al-
ready appeared in an earlier #define directive. The expression defined(MY_CONSTANT)
evaluates to 1 if MY_CONSTANT is defined and 0 otherwise. If the result is 0, !de-
fined(MY_CONSTANT) evaluates to 1 and MY_CONSTANT is defined. Otherwise, the #define
directive is skipped. Every #if construct ends with #endif. Directives #ifdef and #ifndef
are shorthand for #if defined(name) and #if !defined(name). A multiple-part condi-
tional preprocessor construct may be tested by using the #elif (the equivalent of else if
in an if statement) and the #else (the equivalent of else in an if statement) directives.
These directives are frequently used to prevent header files from being included multiple times
in the same source file—we use this technique extensively in the C++ part of this book.
These directives also are frequently used to enable and disable code that makes software
compatible with a range of platforms.

13.5.2 Commenting Out Blocks of Code with #if…#endif
During program development, it’s often helpful to “comment out” portions of code to
prevent them from being compiled. If the code contains multiline comments, /* and */
cannot be used to accomplish this task, because such comments cannot be nested. Instead,
you can use the following preprocessor construct:

To enable the code to be compiled, replace the 0 in the preceding construct with 1.

#if !defined(MY_CONSTANT)
 #define MY_CONSTANT 0
#endif

#if 0
 code prevented from compiling
#endif

524 Chapter 13 C Preprocessor

13.5.3 Conditionally Compiling Debugging Code
Conditional compilation is sometimes used as a debugging aid. Debuggers provide much
more powerful features than conditional compilation, but if a debugger is not available,
printf statements can be used to print variable values and to confirm the flow of control.
These printf statements can be enclosed in conditional preprocessor directives so the
statements are compiled only while the debugging process is not completed. For example,

compiles the printf statement if the symbolic constant DEBUG is defined (#define DEBUG)
before #ifdef DEBUG. When debugging is completed, you remove or comment out the
#define directive from the source file and the printf statements inserted for debugging
purposes are ignored during compilation. In larger programs, it may be desirable to define
several symbolic constants that control the conditional compilation in separate sections of
the source file. Many compilers allow you to define and undefine symbolic constants like
DEBUG with a compiler flag that you supply each time you compile the code so that you do
not need to change the code.

13.6 #error and #pragma Preprocessor Directives
The #error directive

prints an implementation-dependent message including the tokens specified in the di-
rective. The tokens are sequences of characters separated by spaces. For example,

contains 6 tokens. When a #error directive is processed on some systems, the tokens in
the directive are displayed as an error message, preprocessing stops and the program does
not compile.

The #pragma directive

causes an implementation-defined action. A pragma not recognized by the implementation
is ignored. For more information on #error and #pragma, see the documentation for your
C implementation.

13.7 # and ## Operators
The # operator causes a replacement-text token to be converted to a string surrounded by
quotes. Consider the following macro definition:

#ifdef DEBUG
 printf("Variable x = %d\n", x);
#endif

Error-Prevention Tip 13.3
When inserting conditionally compiled printf statements in locations where C expects a
single statement (e.g., the body of a control statement), ensure that the conditionally com-
piled statements are enclosed in blocks.

#error tokens

#error 1 - Out of range error

#pragma tokens

#define HELLO(x) puts("Hello, " #x);

13.8 Line Numbers 525

When HELLO(John) appears in a program file, it’s expanded to

The string "John" replaces #x in the replacement-text. Strings separated by whitespace are
concatenated during preprocessing, so the preceding statement is equivalent to

The # operator must be used in a macro with arguments because the operand of # refers
to an argument of the macro.

The ## operator concatenates two tokens. Consider the following macro definition:

When TOKENCONCAT appears in the program, its arguments are concatenated and used to
replace the macro. For example, TOKENCONCAT(O, K) is replaced by OK in the program. The
operator must have two operands.

13.8 Line Numbers
The #line preprocessor directive causes the subsequent source-code lines to be renum-
bered starting with the specified constant integer value. The directive

starts line numbering from 100 beginning with the next source-code line. A filename can
be included in the #line directive. The directive

indicates that lines are numbered from 100 beginning with the next source-code line and
that the name of the file for the purpose of any compiler messages is "file1.c". The di-
rective normally is used to help make the messages produced by syntax errors and compiler
warnings more meaningful. The line numbers do not appear in the source file.

13.9 Predefined Symbolic Constants
Standard C provides predefined symbolic constants, several of which are shown in
Fig. 13.1—the rest are in Section 6.10.8 of the C standard document. These identifiers
begin and end with two underscores and often are useful to include additional information
in error messages. These identifiers and the defined identifier (used in Section 13.5) can-
not be used in #define or #undef directives.

puts("Hello, " "John");

puts("Hello, John");

#define TOKENCONCAT(x, y) x ## y

#line 100

#line 100 "file1.c"

Symbolic constant Explanation

__LINE__ The line number of the current source-code line (an integer constant).
__FILE__ The name of the source file (a string).
__DATE__ The date the source file was compiled (a string of the form

"Mmm dd yyyy" such as "Jan 19 2002").

Fig. 13.1 | Some predefined symbolic constants. (Part 1 of 2.)

526 Chapter 13 C Preprocessor

13.10 Assertions
The assert macro—defined in <assert.h>—tests the value of an expression at execution
time. If the value is false (0), assert prints an error message and calls function abort (of the
general utilities library—<stdlib.h>) to terminate program execution. This is a useful de-
bugging tool for testing whether a variable has a correct value. For example, suppose variable
x should never be larger than 10 in a program. An assertion may be used to test the value of
x and print an error message if the value of x is greater than 10. The statement would be

If x is greater than 10 when the preceding statement executes, the program displays an er-
ror message containing the line number and filename where the assert statement appears,
then terminates. You then concentrate on this area of the code to find the error.

If the symbolic constant NDEBUG is defined, subsequent assertions will be ignored.
Thus, when assertions are no longer needed, you can insert the line

in the code file rather than delete each assertion manually. Many compilers have debug
and release modes that automatically define and undefine NDEBUG, respectively.

[Note: The new C standard includes a capability called _Static_assert, which is
essentially a compile-time version of assert that produces a compilation error if the asser-
tion fails. We discuss _Static_assert in Appendix E.]

13.11 Secure C Programming
The CIRCLE_AREA macro defined in Section 13.4

is considered to be an unsafe macro because it evaluates its argument x more than once. This
can cause subtle errors. If the macro argument contains side effects—such as incrementing
a variable or calling a function that modifies a variable’s value—those side effects would
be performed multiple times.

For example, if we call CIRCLE_AREA as follows:

__TIME__ The time the source file was compiled (a string literal of the form "hh:mm:ss").
__STDC__ The value 1 if the compiler supports Standard C; 0 otherwise. Requires the

compiler flag /Za in Visual C++.

assert(x <= 10);

#define NDEBUG

Software Engineering Observation 13.2
Assertions are not meant as a substitute for error handling during normal runtime
conditions. Their use should be limited to finding logic errors during program development.

#define CIRCLE_AREA(x) ((PI) * (x) * (x))

result = CIRCLE_AREA(++radius);

Symbolic constant Explanation

Fig. 13.1 | Some predefined symbolic constants. (Part 2 of 2.)

 Summary 527

the call to the macro CIRCLE_AREA is expanded to:

which increments radius twice in the statement. In addition, the result of the preceding
statement is undefined because C allows a variable to be modified only once in a statement.
In a function call, the argument is evaluated only once before it’s passed to the function. So,
functions are always preferred to unsafe macros.

result = ((3.14159) * (++radius) * (++radius));

Summary
Section 13.1 Introduction
• The preprocessor (p. 519) executes before a program is compiled.

• All preprocessor directives (p. 519) begin with #.

• Only whitespace characters and comments may appear before a preprocessor directive on a line.

Section 13.2 #include Presprocessor Directive
• The #include directive (p. 519) includes a copy of the specified file. If the filename is enclosed

in quotes, the preprocessor begins searching in the same directory as the file being compiled for
the file to be included. If the filename is enclosed in angle brackets (< and >), as is the case for C
standard library headers, the search is performed in an implementation-defined manner.

Section 13.3 #define Preprocessor Directive: Symbolic Constants
• The #define preprocessor directive (p. 520) is used to create symbolic constants and macros.

• A symbolic constant (p. 520) is a name for a constant.

Section 13.4 #define Preprocessor Directive: Macros
• A macro is an operation defined in a #define preprocessor directive. Macros may be defined with

or without arguments (p. 521).

• Replacement-text (p. 520) is specified after a symbolic constant’s identifier or after the closing
right parenthesis of a macro’s argument list. If the replacement-text for a macro or symbolic con-
stant is longer than the remainder of the line, a backslash (\; p. 522) is placed at the end of the
line, indicating that the replacement-text continues on the next line.

• Symbolic constants and macros can be discarded by using the #undef preprocessor directive
(p. 522). Directive #undef “undefines” the symbolic constant or macro name.

• The scope (p. 522) of a symbolic constant or macro is from its definition until it’s undefined
with #undef or until the end of the file.

Section 13.5 Conditional Compilation
• Conditional compilation (p. 523) enables you to control the execution of preprocessor directives

and the compilation of program code.

• The conditional preprocessor directives evaluate constant integer expressions. Cast expressions,
sizeof expressions and enumeration constants cannot be evaluated in preprocessor directives.

• Every #if construct ends with #endif (p. 523).

• Directives #ifdef and #ifndef (p. 523) are provided as shorthand for #if defined(name) and
#if !defined(name).

528 Chapter 13 C Preprocessor

• Multiple-part conditional preprocessor constructs may be tested with directives #elif and
#else (p. 523).

Section 13.6 #error and #pragma Preprocessor Directives
• The #error directive (p. 524) prints an implementation-dependent message that includes the to-

kens specified in the directive.

• The #pragma directive (p. 524) causes an implementation-defined action. If the pragma is not
recognized by the implementation, the pragma is ignored.

Section 13.7 # and ## Operators
• The # operator causes a replacement-text token to be converted to a string surrounded by quotes.

The # operator must be used in a macro with arguments, because the operand of # must be an
argument of the macro.

• The ## operator concatenates two tokens. The ## operator must have two operands.

Section 13.8 Line Numbers
• The #line preprocessor directive (p. 525) causes the subsequent source-code lines to be renum-

bered starting with the specified constant integer value.

Section 13.9 Predefined Symbolic Constants
• Constant __LINE__ (p. 525) is the line number (an integer) of the current source-code line.

• Constant __FILE__ (p. 525) is the name of the file (a string).

• Constant __DATE__ (p. 525) is the date the source file is compiled (a string).

• Constant __TIME__ (p. 525) is the time the source file is compiled (a string).

• Constant __STDC__ (p. 525) indicates whether the compiler supports Standard C.

• Each of the predefined symbolic constants begins and ends with two underscores.

Section 13.10 Assertions
• Macro assert (p. 526; <assert.h> header) tests the value of an expression. If the value is 0 (false),

assert prints an error message and calls function abort (p. 526) to terminate program execution.

Self-Review Exercises
13.1 Fill in the blanks in each of the following:

a) Every preprocessor directive must begin with .
b) The conditional compilation construct may be extended to test for multiple cases by us-

ing the and directives.
c) The directive creates macros and symbolic constants.
d) Only characters may appear before a preprocessor directive on a line.
e) The directive discards symbolic constant and macro names.
f) The and directives are provided as shorthand notation for #if de-

fined(name) and #if !defined(name).
g) enables you to control the execution of preprocessor directives and the com-

pilation of program code.
h) The macro prints a message and terminates program execution if the value of

the expression the macro evaluates is 0.
i) The directive inserts a file in another file.
j) The operator concatenates its two arguments.
k) The operator converts its operand to a string.

 Answers to Self-Review Exercises 529

l) The character indicates that the replacement-text for a symbolic constant or
macro continues on the next line.

m) The directive causes the source-code lines to be numbered from the indicated
value beginning with the next source-code line.

13.2 Write a program to print the values of the predefined symbolic constants listed in Fig. 13.1.

13.3 Write a preprocessor directive to accomplish each of the following:
a) Define symbolic constant YES to have the value 1.
b) Define symbolic constant NO to have the value 0.
c) Include the header common.h. The header is found in the same directory as the file being

compiled.
d) Renumber the remaining lines in the file beginning with line number 3000.
e) If symbolic constant TRUE is defined, undefine it and redefine it as 1. Do not use #ifdef.
f) If symbolic constant TRUE is defined, undefine it and redefine it as 1. Use the #ifdef

preprocessor directive.
g) If symbolic constant TRUE is not equal to 0, define symbolic constant FALSE as 0. Oth-

erwise define FALSE as 1.
h) Define macro CUBE_VOLUME that computes the volume of a cube. The macro takes one

argument.

Answers to Self-Review Exercises
13.1 a) #. b) #elif, #else. c) #define. d) whitespace. e) #undef. f) #ifdef, #ifndef.
g) Conditional compilation. h) assert. i) #include. j) ##. k) #. l) \. m) #line.

13.2 See below. [Note: __STDC__ works in Visual C++ only with the /Za compiler flag.]

13.3 a) #define YES 1
b) #define NO 0
c) #include "common.h"
d) #line 3000
e) #if defined(TRUE)

 #undef TRUE
 #define TRUE 1
#endif

1 // Print the values of the predefined macros

2 #include <stdio.h>
3 int main(void)
4 {

5 printf("__LINE__ = %d\n", __LINE__);
6 printf("__FILE__ = %s\n", __FILE__);
7 printf("__DATE__ = %s\n", __DATE__);
8 printf("__TIME__ = %s\n", __TIME__);
9 printf("__STDC__ = %s\n", __STDC__);

10 }

__LINE__ = 5
__FILE__ = ex13_02.c
__DATE__ = Jan 5 2012
__TIME__ = 09:38:58
__STDC__ = 1

530 Chapter 13 C Preprocessor

f) #ifdef TRUE
 #undef TRUE
 #define TRUE 1
#endif

g) #if TRUE
 #define FALSE 0
#else
 #define FALSE 1
#endif

h) #define CUBE_VOLUME(x) ((x) * (x) * (x))

Exercises
13.4 (Volume of a Sphere) Write a program that defines a macro with one argument to compute
the volume of a sphere. The program should compute the volume for spheres of radius 1 to 10 and
print the results in tabular format. The formula for the volume of a sphere is

(4.0 / 3) * π * r3

where π is 3.14159.

13.5 (Adding Two Numbers) Write a program that defines macro SUM with two arguments, x and
y, and use SUM to produce the following output:

13.6 (Smallest of Two Numbers) Write a program that defines and uses macro MINIMUM2 to de-
termine the smallest of two numeric values. Input the values from the keyboard.

13.7 (Smallest of Three Numbers) Write a program that defines and uses macro MINIMUM3 to de-
termine the smallest of three numeric values. Macro MINIMUM3 should use macro MINIMUM2 defined
in Exercise 13.6 to determine the smallest number. Input the values from the keyboard.

13.8 (Printing a String) Write a program that defines and uses macro PRINT to print a string value.

13.9 (Printing an Array) Write a program that defines and uses macro PRINTARRAY to print an
array of integers. The macro should receive the array and the number of elements in the array as
arguments.

13.10 (Totaling an Array’s Contents) Write a program that defines and uses macro SUMARRAY to
sum the values in a numeric array. The macro should receive the array and the number of elements
in the array as arguments.

The sum of x and y is 13

14Other C Topics

O b j e c t i v e s
In this chapter, you’ll:

■ Redirect program input to
come from a file.

■ Redirect program output to
be placed in a file.

■ Write functions that use
variable-length argument
lists.

■ Process command-line
arguments.

■ Compile multiple-source-file
programs.

■ Assign specific types to
numeric constants.

■ Terminate programs with
exit and atexit.

■ Process external
asynchronous events in a
program.

■ Dynamically allocate arrays
and resize memory that was
dynamically allocated
previously.

532 Chapter 14 Other C Topics

14.1 Introduction
This chapter presents additional topics not ordinarily covered in introductory courses.
Many of the capabilities discussed here are specific to particular operating systems, espe-
cially Linux/UNIX and Windows.

14.2 Redirecting I/O
In command-line applications, normally the input is received from the keyboard (standard
input), and the output is displayed on the screen (standard output). On most computer
systems—Linux/UNIX, Mac OS X and Windows systems in particular—it’s possible to
redirect inputs to come from a file rather than the keyboard and redirect outputs to be
placed in a file rather than on the screen. Both forms of redirection can be accomplished
without using the file-processing capabilities of the standard library (e.g., by changing your
code to use fprintf rather than printf, etc.). Students often find it difficult to un-
derstand that redirection is an operating-system function, not another C feature.

14.2.1 Redirecting Input with <
There are several ways to redirect input and output from the command line—that is, a
Command Prompt window in Windows, a shell in Linux or a Terminal window in Mac OS
X. Consider the executable file sum (on Linux/UNIX systems) that inputs integers one at
a time and keeps a running total of the values until the end-of-file indicator is set, then
prints the result. Normally the user inputs integers from the keyboard and enters the end-
of-file key combination to indicate that no further values will be input. With input
redirection, the input can be read from a file. For example, if the data is stored in file in-
put, the command line

executes the program sum; the redirect input symbol (<) indicates that the data in file input
is to be used as the program’s input. Redirecting input on a Windows system or in a Termi-
nal window on OS X is performed identically. The character $ shown in the line above is a
typical Linux/UNIX command-line prompt (some systems use a % prompt or other symbol).

14.1 Introduction
14.2 Redirecting I/O

14.2.1 Redirecting Input with <
14.2.2 Redirecting Input with |
14.2.3 Redirecting Output

14.3 Variable-Length Argument Lists
14.4 Using Command-Line Arguments
14.5 Compiling Multiple-Source-File

Programs
14.5.1 extern Declarations for Global

Variables in Other Files
14.5.2 Function Prototypes

14.5.3 Restricting Scope with static
14.5.4 Makefiles

14.6 Program Termination with exit and
atexit

14.7 Suffixes for Integer and Floating-Point
Literals

14.8 Signal Handling
14.9 Dynamic Memory Allocation:

Functions calloc and realloc
14.10 Unconditional Branching with goto

Summary | Self-Review Exercise | Answers to Self-Review Exercise | Exercises

$ sum < input

14.3 Variable-Length Argument Lists 533

14.2.2 Redirecting Input with |
The second method of redirecting input is piping. A pipe (|) causes the output of one pro-
gram to be redirected as the input to another. Suppose program random outputs a series of
random integers; the output of random can be “piped” directly to program sum using the
command line

This causes the sum of the integers produced by random to be calculated. Piping is per-
formed identically in Linux/UNIX, Windows and OS X.

14.2.3 Redirecting Output
The standard output stream can be redirected to a file by using the redirect output symbol
(>). For example, to redirect the output of program random to file out, use

Finally, program output can be appended to the end of an existing file by using the
append output symbol (>>). For example, to append the output from program random to
file out created in the preceding command line, use the command line

14.3 Variable-Length Argument Lists
It’s possible to create functions that receive an unspecified number of arguments. Most pro-
grams in the text have used the standard library function printf, which, as you know,
takes a variable number of arguments. As a minimum, printf must receive a string as its
first argument, but printf can receive any number of additional arguments. The function
prototype for printf is

The ellipsis (…) in the function prototype indicates that the function receives a variable
number of arguments of any type. The ellipsis must always be placed at the end of the pa-
rameter list.

The macros and definitions of the variable arguments headers <stdarg.h>
(Fig. 14.1) provide the capabilities necessary to build functions with variable-length argu-
ment lists. Figure 14.2 demonstrates function average (lines 25–39) that receives a vari-
able number of arguments. The first argument of average is always the number of values
to be averaged.

$ random | sum

$ random > out

$ random >> out

int printf(const char *format, ...);

Identifier Explanation

va_list A type suitable for holding information needed by macros va_start,
va_arg and va_end. To access the arguments in a variable-length argu-
ment list, an object of type va_list must be defined.

Fig. 14.1 | stdarg.h variable-length argument-list type and macros. (Part 1 of 2.)

534 Chapter 14 Other C Topics

va_start A macro that’s invoked before the arguments of a variable-length argu-
ment list can be accessed. The macro initializes the object declared with
va_list for use by the va_arg and va_end macros.

va_arg A macro that expands to the value of the next argument in the variable-
length argument list—the value has the type specified as the macro’s sec-
ond argument. Each invocation of va_arg modifies the object declared
with va_list so that it points to the next argument in the list.

va_end A macro that facilitates a normal return from a function whose variable-
length argument list was referred to by the va_start macro.

1 // Fig. 14.2: fig14_02.c

2 // Using variable-length argument lists

3 #include <stdio.h>
4
5
6
7
8 int main(void)
9 {

10 double w = 37.5;
11 double x = 22.5;
12 double y = 1.7;
13 double z = 10.2;
14
15 printf("%s%.1f\n%s%.1f\n%s%.1f\n%s%.1f\n\n",
16 "w = ", w, "x = ", x, "y = ", y, "z = ", z);
17 printf("%s%.3f\n%s%.3f\n%s%.3f\n",
18 "The average of w and x is ", ,
19 "The average of w, x, and y is ", ,

20 "The average of w, x, y, and z is ",
21);
22 }

23
24 // calculate average
25
26 {

27 double total = 0; // initialize total
28

29
30
31
32 // process variable-length argument list

33 for (int j = 1; j <= i; ++j) {
34

35 }

Fig. 14.2 | Using variable-length argument lists. (Part 1 of 2.)

Identifier Explanation

Fig. 14.1 | stdarg.h variable-length argument-list type and macros. (Part 2 of 2.)

#include <stdarg.h>

double average(int i, ...); // prototype

average(2, w, x)
average(3, w, x, y)

average(4, w, x, y, z)

double average(int i, ...)

va_list ap; // stores information needed by va_start and va_end

va_start(ap, i); // initializes the va_list object

total += va_arg(ap, double);

14.4 Using Command-Line Arguments 535

Function average (lines 25–39) uses all the definitions and macros of header
<stdarg.h>, except va_copy (Section E.8.10), which was added in C11. Object ap, of
type va_list (line 28), is used by macros va_start, va_arg and va_end to process the
variable-length argument list of function average. The function begins by invoking macro
va_start (line 30) to initialize object ap for use in va_arg and va_end. The macro receives
two arguments—object ap and the identifier of the rightmost argument in the argument
list before the ellipsis—i in this case (va_start uses i here to determine where the variable-
length argument list begins). Next, function average repeatedly adds the arguments in the
variable-length argument list to variable total (lines 33–35). The value to be added to
total is retrieved from the argument list by invoking macro va_arg. Macro va_arg
receives two arguments—object ap and the type of the value expected in the argument
list—double in this case. The macro returns the value of the argument. Function average
invokes macro va_end (line 37) with object ap as an argument to facilitate a normal return
to main from average. Finally, the average is calculated and returned to main.

You might wonder how functions with variable-length argument lists like printf and
function scanf know what type to use in each va_arg macro. The answer is that, as the
program executes, they scan the format conversion specifiers in the format control string
to determine the type of the next argument to be processed.

14.4 Using Command-Line Arguments
On many systems, it’s possible to pass arguments to main from a command line by includ-
ing parameters int argc and char *argv[] in the parameter list of main. Parameter argc
receives the number of command-line arguments that the user has entered. Parameter
argv is an array of strings in which the actual command-line arguments are stored. Com-
mon uses of command-line arguments include passing options to a program and passing
filenames to a program.

36
37

38 return total / i; // calculate average
39 }

w = 37.5
x = 22.5
y = 1.7
z = 10.2

The average of w and x is 30.000
The average of w, x, and y is 20.567
The average of w, x, y, and z is 17.975

Common Programming Error 14.1
Placing an ellipsis in the middle of a function parameter list is a syntax error—an ellipsis
may be placed only at the end of the parameter list.

Fig. 14.2 | Using variable-length argument lists. (Part 2 of 2.)

va_end(ap); // clean up variable-length argument list

536 Chapter 14 Other C Topics

Figure 14.3 copies a file into another file one character at a time. We assume that the
executable file for the program is called mycopy. A typical command line for the mycopy
program on a Linux/UNIX system is

This command line indicates that file input is to be copied to file output. When the pro-
gram is executed, if argc is not 3 (mycopy counts as one of the arguments), the program
prints an error message and terminates. Otherwise, array argv contains the strings "mycopy",
"input" and "output". The second and third arguments on the command line are used as
filenames by the program. The files are opened using function fopen. If both files are opened
successfully, characters are read from file input and written to file output until the end-of-
file indicator for file input is set. Then the program terminates. The result is an exact copy
of file input (if no errors occur during processing). See your system documentation for more
information on command-line arguments. [Note: In Visual C++, you specify command-line
arguments by right clicking the project name in the Solution Explorer and selecting Proper-
ties, then expanding Configuration Properties, selecting Debugging and entering the argu-
ments in the textbox to the right of Command Arguments.]

$ mycopy input output

1 // Fig. 14.3: fig14_03.c
2 // Using command-line arguments

3 #include <stdio.h>
4
5 int main()

6 {

7 // check number of command-line arguments
8 if () {

9 puts("Usage: mycopy infile outfile");
10 }
11 else {
12 FILE *inFilePtr; // input file pointer

13
14 // try to open the input file

15 if ((inFilePtr = fopen(, "r")) != NULL) {
16 FILE *outFilePtr; // output file pointer
17
18 // try to open the output file

19 if ((outFilePtr = fopen(, "w")) != NULL) {
20 int c; // holds characters read from source file
21
22 // read and output characters
23 while ((c = fgetc(inFilePtr)) != EOF) {
24 fputc(c, outFilePtr);

25 }
26
27 fclose(outFilePtr); // close the output file

28 }
29 else { // output file could not be opened

30 printf("File \"%s\" could not be opened\n", argv[2]);
31 }
32

Fig. 14.3 | Using command-line arguments. (Part 1 of 2.)

int argc, char *argv[]

argc != 3

argv[1]

argv[2]

14.5 Compiling Multiple-Source-File Programs 537

14.5 Compiling Multiple-Source-File Programs
It’s possible to build programs that consist of multiple source files. There are several con-
siderations when creating programs in multiple files. For example, the definition of a func-
tion must be entirely contained in one file—it cannot span two or more files.

14.5.1 extern Declarations for Global Variables in Other Files
In Chapter 5, we introduced the concepts of storage class and scope. We learned that vari-
ables declared outside any function definition are referred to as global variables. Global vari-
ables are accessible to any function defined in the same file after the variable is declared.
Global variables also are accessible to functions in other files. However, the global variables
must be declared in each file in which they’re used. For example, to refer to global integer
variable flag in another file, you can use the declaration

This declaration uses the storage-class specifier extern to indicate that variable flag is de-
fined either later in the same file or in a different file. The compiler informs the linker that
unresolved references to variable flag appear in the file. If the linker finds a proper global
definition, the linker resolves the references by indicating where flag is located. If the
linker cannot locate a definition of flag, it issues an error message and does not produce
an executable file. Any identifier that’s declared at file scope is extern by default.

14.5.2 Function Prototypes
Just as extern declarations can be used to declare global variables to other program files,
function prototypes can extend the scope of a function beyond the file in which it’s defined (the
extern specifier is not required in a function prototype). Simply include the function pro-
totype in each file in which the function is invoked and compile the files together (see
Section 13.2). Function prototypes indicate to the compiler that the specified function is
defined either later in the same file or in a different file. Again, the compiler does not attempt
to resolve references to such a function—that task is left to the linker. If the linker cannot
locate a proper function definition, the linker issues an error message.

33 fclose(inFilePtr); // close the input file

34 }

35 else { // input file could not be opened
36 printf("File \"%s\" could not be opened\n", argv[1]);
37 }

38 }
39 }

extern int flag;

Software Engineering Observation 14.1
Global variables should be avoided unless application performance is critical because they
violate the principle of least privilege.

Fig. 14.3 | Using command-line arguments. (Part 2 of 2.)

538 Chapter 14 Other C Topics

As an example of using function prototypes to extend the scope of a function, consider
any program containing the preprocessor directive #include <stdio.h>, which includes a
file containing the function prototypes for functions such as printf and scanf. Other
functions in the file can use printf and scanf to accomplish their tasks. The printf and
scanf functions are defined in other files. We do not need to know where they’re defined.
We’re simply reusing their code in our programs. The linker resolves our references to
these functions automatically. This process enables us to use the functions in the standard
library.

14.5.3 Restricting Scope with static
It’s possible to restrict the scope of a global variable or a function to the file in which it’s defined.
The storage-class specifier static, when applied to a global variable or a function, pre-
vents it from being used by any function that’s not defined in the same file. This is referred
to as internal linkage. Global variables and functions that are not preceded by static in
their definitions have external linkage—they can be accessed in other files if those files
contain proper declarations and/or function prototypes.

The global variable declaration

creates constant variable PI of type double, initializes it to 3.14159 and indicates that PI
is known only to functions in the file in which it’s defined.

The static specifier is commonly used with utility functions that are called only by
functions in a particular file. If a function is not required outside a particular file, the prin-
ciple of least privilege should be enforced by applying static to both the function’s defi-
nition and prototype.

14.5.4 Makefiles
When building large programs in multiple source files, compiling the program becomes
tedious if small changes are made to one file and the entire program is needlessly re-
compiled. Many systems provide special utilities that recompile only the modified program
files. On Linux/UNIX systems the utility is called make. Utility make reads a file called
makefile that contains instructions for compiling and linking the program. Products such
as Eclipse™ and Microsoft® Visual C++® provide similar utilities.

14.6 Program Termination with exit and atexit
The general utilities library (<stdlib.h>) provides methods of terminating program exe-
cution by means other than a conventional return from function main. Function exit

Software Engineering Observation 14.2
Creating programs in multiple source files facilitates software reusability and good
software engineering. Functions may be common to many applications. In such instances,
those functions should be stored in their own source files, and each source file should have
a corresponding header file containing function prototypes. This enables programmers of
different applications to reuse the same code by including the proper header file and
compiling their applications with the corresponding source file.

static const double PI = 3.14159;

14.6 Program Termination with exit and atexit 539

causes a program to terminate immediately. The function often is used to terminate a pro-
gram when an input error is detected, or when a file to be processed by the program cannot
be opened. Function atexit registers a function that should be called when the program
terminates by reaching the end of main or when exit is invoked.

Function atexit takes as an argument a pointer to a function (i.e., the function name).
Functions called at program termination cannot have arguments and cannot return a value.

Function exit takes one argument. The argument is normally the symbolic constant
EXIT_SUCCESS or the symbolic constant EXIT_FAILURE. If exit is called with
EXIT_SUCCESS, the implementation-defined value for successful termination is returned to
the calling environment. If exit is called with EXIT_FAILURE, the implementation-defined
value for unsuccessful termination is returned. When function exit is invoked, any func-
tions previously registered with atexit are invoked in the reverse order of their registra-
tion.

Figure 14.4 tests functions exit and atexit. The program prompts the user to deter-
mine whether the program should be terminated with exit or by reaching the end of main.
Function print is executed at program termination in each case.

1 // Fig. 14.4: fig14_04.c
2 // Using the exit and atexit functions

3 #include <stdio.h>
4 #include <stdlib.h>
5
6 void print(void); // prototype
7
8 int main(void)
9 {

10
11 puts("Enter 1 to terminate program with function exit"
12 "\nEnter 2 to terminate program normally");
13 int answer; // user's menu choice
14 scanf("%d", &answer);
15
16 // call exit if answer is 1
17 if (answer == 1) {
18 puts("\nTerminating program with function exit");
19
20 }

21
22 puts("\nTerminating program by reaching the end of main");
23 }

24
25 // display message before termination
26

27 {

28 puts("Executing function print at program "
29 "termination\nProgram terminated");
30 }

Fig. 14.4 | Using the exit and atexit functions. (Part 1 of 2.)

atexit(print); // register function print

exit(EXIT_SUCCESS);

void print(void)

540 Chapter 14 Other C Topics

14.7 Suffixes for Integer and Floating-Point Literals
C provides integer and floating-point suffixes for explicitly specifying the data types of in-
teger and floating-point literal values. (The C standard refers to such literal values as con-
stants). If an integer literal is not suffixed, its type is determined by the first type capable
of storing a value of that size (first int, then long int, then unsigned long int, etc.). A
floating-point literal that’s not suffixed is automatically of type double.

The integer suffixes are: u or U for an unsigned int, l or L for a long int, and ll or
LL for a long long int. You can combine u or U with those for long int and long long
int to create unsigned literals for the larger integer types. The following literals are of type
unsigned int, long int, unsigned long int and unsigned long long int, respectively:

The floating-point suffixes are: f or F for a float, and l or L for a long double. The
following constants are of type float and long double, respectively:

14.8 Signal Handling
An external asynchronous event, or signal, can cause a program to terminate prematurely.
Some events include interrupts (typing <Ctrl> c on a Linux/UNIX or Windows system or
<command> c on OS X) and termination orders from the operating system. The signal-
handling library (<signal.h>) provides the capability to trap unexpected events with
function signal. Function signal receives two arguments—an integer signal number and
a pointer to the signal-handling function. Signals can be generated by function raise, which

Enter 1 to terminate program with function exit
Enter 2 to terminate program normally
1
Terminating program with function exit
Executing function print at program termination
Program terminated

Enter 1 to terminate program with function exit
Enter 2 to terminate program normally
2
Terminating program by reaching the end of main
Executing function print at program termination
Program terminated

174u
8358L
28373ul
9876543210llu

1.28f
3.14159L

Fig. 14.4 | Using the exit and atexit functions. (Part 2 of 2.)

14.8 Signal Handling 541

takes an integer signal number as an argument. Figure 14.5 summarizes the standard sig-
nals defined in header file <signal.h>.

Figure 14.6 uses function signal to trap a SIGINT. Line 12 calls signal with SIGINT
and a pointer to function signalHandler (remember that the name of a function is a
pointer to the function). When a signal of type SIGINT occurs, control passes to function
signalHandler, which prints a message and gives the user the option to continue normal
execution of the program. If the user wishes to continue execution, the signal handler is
reinitialized by calling signal again and control returns to the point in the program at
which the signal was detected.

In this program, function raise (line 21) is used to simulate a SIGINT. A random
number between 1 and 50 is chosen. If the number is 25, raise is called to generate the
signal. Normally, SIGINTs are initiated outside the program. For example, typing <Ctrl> c
during program execution on a Linux/UNIX or Windows system generates a SIGINT that
terminates program execution. Signal handling can be used to trap the SIGINT and prevent
the program from being terminated.

Signal Explanation

SIGABRT Abnormal termination of the program (such as a call to function abort).

SIGFPE An erroneous arithmetic operation, such as a divide-by-zero or an opera-
tion resulting in overflow.

SIGILL Detection of an illegal instruction.

SIGINT Receipt of an interactive attention signal (<Ctrl> c or <command> c).

SIGSEGV An attempt to access memory that is not allocated to a program.

SIGTERM A termination request sent to the program.

Fig. 14.5 | signal.h standard signals.

1 // Fig. 14.6: fig14_06.c

2 // Using signal handling

3 #include <stdio.h>
4 #include <signal.h>
5 #include <stdlib.h>
6 #include <time.h>
7
8
9

10 int main(void)
11 {

12
13 srand(time(NULL));
14

15 // output numbers 1 to 100
16 for (int i = 1; i <= 100; ++i) {
17 int x = 1 + rand() % 50; // generate random number to raise SIGINT

Fig. 14.6 | Using signal handling. (Part 1 of 3.)

void signalHandler(int signalValue); // prototype

signal(SIGINT, signalHandler); // register signal handler

542 Chapter 14 Other C Topics

18

19 // raise SIGINT when x is 25

20 if (x == 25) {
21

22 }

23
24 printf("%4d", i);
25

26 // output \n when i is a multiple of 10
27 if (i % 10 == 0) {
28 printf("%s", "\n");
29 }
30 }

31 }

32
33 // handles signal

34
35 {

36 printf("%s%d%s\n%s",
37 "\nInterrupt signal (", signalValue, ") received.",
38 "Do you wish to continue (1 = yes or 2 = no)? ");
39 int response; // user's response to signal (1 or 2)
40 scanf("%d", &response);
41

42 // check for invalid responses
43 while (response != 1 && response != 2) {
44 printf("%s", "(1 = yes or 2 = no)? ");
45 scanf("%d", &response);
46 }

47

48 // determine whether it's time to exit
49 if (response == 1) {
50

51
52 }

53 else {
54 exit(EXIT_SUCCESS);
55 }

56 }

 1 2 3 4 5 6 7 8 9 10
 11 12 13 14 15 16 17 18 19 20
 21 22 23 24 25 26 27 28 29 30
 31 32 33 34 35 36 37 38 39 40
 41 42 43 44 45 46 47 48 49 50
 51 52 53 54 55 56 57 58 59 60
 61 62 63 64 65 66 67 68 69 70
 71 72 73 74 75 76 77 78 79 80
 81 82 83 84 85 86 87 88 89 90
 91 92 93
Interrupt signal (2) received.
Do you wish to continue (1 = yes or 2 = no)? 1

Fig. 14.6 | Using signal handling. (Part 2 of 3.)

raise(SIGINT);

void signalHandler(int signalValue)

// reregister signal handler for next SIGINT

signal(SIGINT, signalHandler);

14.9 Dynamic Memory Allocation: Functions calloc and realloc 543

14.9 Dynamic Memory Allocation: Functions
calloc and realloc
Chapter 12 introduced the notion of dynamically allocating memory using function mal-
loc. As we stated in Chapter 12, arrays are better than linked lists for rapid sorting, search-
ing and data access. However, arrays are normally static data structures. The general
utilities library (stdlib.h) provides two other functions for dynamic memory alloca-
tion—calloc and realloc. These functions can be used to create and modify dynamic
arrays. Function calloc dynamically allocates memory for an array. The prototype for
calloc is

Its two arguments represent the number of elements (nmemb) and the size of each element
(size). Function calloc also initializes the elements of the array to zero. The function re-
turns a pointer to the allocated memory, or a NULL pointer if the memory is not allocated.
The primary difference between malloc and calloc is that calloc clears the memory it al-
locates and malloc does not.

Function realloc changes the size of an object allocated by a previous call to malloc,
calloc or realloc. The original object’s contents are not modified provided that the
amount of memory allocated is larger than the amount allocated previously. Otherwise,
the contents are unchanged up to the size of the new object. The prototype for realloc is

The two arguments are a pointer to the original object (ptr) and the new size of the object
(size). If ptr is NULL, realloc works identically to malloc. If ptr is not NULL and size is
greater than zero, realloc tries to allocate a new block of memory for the object. If the new
space cannot be allocated, the object pointed to by ptr is unchanged. Function realloc
returns either a pointer to the reallocated memory, or a NULL pointer to indicate that the
memory was not reallocated.

14.10 Unconditional Branching with goto
We’ve stressed the importance of using structured programming techniques to build reli-
able software that’s easy to debug, maintain and modify. In some cases, performance is
more important than strict adherence to structured programming techniques. In these
cases, some unstructured programming techniques may be used. For example, we can use

 94 95 96
Interrupt signal (2) received.
Do you wish to continue (1 = yes or 2 = no)? 2

void *calloc(size_t nmemb, size_t size);

void *realloc(void *ptr, size_t size);

Error-Prevention Tip 14.1
Avoid zero-sized allocations in calls to malloc, calloc and realloc.

Fig. 14.6 | Using signal handling. (Part 3 of 3.)

544 Chapter 14 Other C Topics

break to terminate execution of an iteration statement before the loop-continuation con-
dition becomes false. This saves unnecessary iterations of the loop if the task is completed
before loop termination.

Another instance of unstructured programming is the goto statement—an uncondi-
tional branch. The result of the goto statement is a change in the flow of control to the
first statement after the label specified in the goto statement. A label is an identifier fol-
lowed by a colon. A label must appear in the same function as the goto statement that
refers to it. Labels need not be unique among functions. Figure 14.7 uses goto statements
to loop ten times and print the counter value each time. After initializing count to 1, line
11 tests count to determine whether it’s greater than 10 (the label start: is skipped
because labels do not perform any action). If so, control is transferred from the goto to the
first statement after the label end: (which appears at line 20). Otherwise, lines 15–16 print
and increment count, and control transfers from the goto (line 18) to the first statement
after the label start: (which appears at line 9).

In Chapter 3, we stated that only three control structures are required to write any
program—sequence, selection and iteration. When the rules of structured programming
are followed, it’s possible to create deeply nested control structures within a function from
which it’s difficult to escape efficiently. Some programmers use goto statements in such
situations as a quick exit from a deeply nested structure. This eliminates the need to test
multiple conditions to escape from a control structure. There are some additional situa-
tions where goto is actually recommended—see, for example, CERT recommendation

1 // Fig. 14.7: fig14_07.c
2 // Using the goto statement

3 #include <stdio.h>
4
5 int main(void)
6 {

7 int count = 1; // initialize count
8
9

10
11 if (count > 10) {
12

13 }
14
15 printf("%d ", count);
16 ++count;
17
18

19
20

21 putchar('\n');
22 }

1 2 3 4 5 6 7 8 9 10

Fig. 14.7 | Using the goto statement.

start: // label

goto end;

goto start; // goto start on line 9

end: // label

 Summary 545

MEM12-C, “Consider using a Goto-Chain when leaving a function on error when using
and releasing resources.”

Performance Tip 14.1
The goto statement can be used to exit from deeply nested control structures efficiently.

Software Engineering Observation 14.3
The goto statement is unstructured and can lead to programs that are more difficult to
debug, maintain and modify.

Summary
Section 14.2 Redirecting I/O
• On many computer systems it’s possible to redirect input (p. 532) to a program and output from

a program.

• Input is redirected from the command line using the redirect input symbol (<; p. 532) or a pipe
(|; p. 533).

• Output is redirected from the command line using the redirect output symbol (>; p. 533) or the
append output symbol (>>; p. 533). The redirect output symbol simply stores the program out-
put in a file, and the append output symbol appends the output to the end of a file.

Section 14.3 Variable-Length Argument Lists
• The macros and definitions of the variable arguments header <stdarg.h> (p. 533) provide the

capabilities necessary to build functions with variable-length argument lists (p. 533).

• An ellipsis (...; p. 533) in a function prototype indicates a variable number of arguments.

• Type va_list (p. 535) is suitable for holding information needed by macros va_start, va_arg
and va_end. To access the arguments in a variable-length argument list, an object of type va_list
must be declared.

• Invoke macro va_start (p. 535) before accessing the arguments of a variable-length argument list.
The macro initializes the object declared with va_list for use by the va_arg and va_end macros.

• Macro va_arg (p. 535) expands to an expression of the value and type of the next argument in
the variable-length argument list. Each invocation of va_arg modifies the object declared with
va_list so that the object points to the next argument in the list.

• Macro va_end (p. 535) facilitates a normal return from a function whose variable-length argu-
ment list was referred to by the va_start macro.

Section 14.4 Using Command-Line Arguments
• On many systems it’s possible to pass arguments to main from the command line by including

the parameters int argc (p. 535) and char *argv[] (p. 535) in the parameter list of main. Param-
eter argc receives the number of command-line arguments. Parameter argv is an array of strings
in which the actual command-line arguments are stored.

Section 14.5 Compiling Multiple-Source-File Programs
• A function definition must be entirely contained in one file—it cannot span two or more files.

546 Chapter 14 Other C Topics

• The storage-class specifier extern (p. 537) indicates that a variable is defined either later in the
same file or in a different file of the program.

• Global variables must be declared in each file in which they’re used.

• Function prototypes can extend the scope of a function beyond the file in which it’s defined.
This is accomplished by including the function prototype in each file in which the function is
invoked (often by using #include to include a header containing the prototype) and compiling
the files together.

• The storage-class specifier static, when applied to a global variable or a function, prevents it
from being used by any function that’s not defined in the same file. This is referred to as internal
linkage (p. 538). Global variables and functions that are not preceded by static in their defini-
tions have external linkage (p. 538)—they can be accessed in other files if those files contain
proper declarations or function prototypes.

• The static specifier is commonly used with utility functions that are called only by functions in
a particular file. If a function is not required outside a particular file, the principle of least privi-
lege should be enforced by applying static to the function’s definition and prototype.

• When building large programs in multiple source files, compiling the program becomes tedious
if small changes are made to one file and the entire program must be recompiled. Many systems
provide special utilities that recompile only the modified program file. On Linux/UNIX systems
the utility is called make. Utility make (p. 538) reads a file called makefile (p. 538) that contains
instructions for compiling and linking the program, and recompiles only those files that have
changed since the last time the project was built.

Section 14.6 Program Termination with exit and atexit
• Function exit (p. 538) forces a program to terminate.

• Function atexit (p. 539) registers a function to be called when the program terminates by reach-
ing the end of main or when exit is invoked.

• Function atexit takes a pointer to a function as an argument. Functions called at program ter-
mination cannot have arguments and cannot return a value.

• Function exit takes one argument. The argument is normally the symbolic constant
EXIT_SUCCESS (p. 539) or the symbolic constant EXIT_FAILURE (p. 539).

• When function exit is invoked, any functions registered with atexit are invoked in the reverse
order of their registration.

Section 14.7 Suffixes for Integer and Floating-Point Literals
• C provides integer and floating-point suffixes for specifying the types of integer and floating-

point constants. The integer suffixes are: u or U for an unsigned integer, l or L for a long integer,
and ul or UL for an unsigned long integer. If an integer constant is not suffixed, its type is deter-
mined by the first type capable of storing a value of that size (first int, then long int, then un-
signed long int, etc.). The floating-point suffixes are: f or F for a float, and l or L for a long
double. A floating-point constant that’s not suffixed is of type double.

Section 14.8 Signal Handling
• The signal-handling library (p. 540) enables trapping of unexpected events with function sig-

nal (p. 540). Function signal receives two arguments—an integer signal number and a pointer
to the signal-handling function.

• Signals can also be generated with function raise (p. 540) and an integer argument.

 Self-Review Exercise 547

Section 14.9 Dynamic Memory Allocation: Functions calloc and realloc
• The general utilities library (<stdlib.h>; p. 543) provides two functions for dynamic memory

allocation—calloc and realloc. These functions can be used to create dynamic arrays (p. 543).

• Function calloc (p. 543) allocates memory for an array. It receives two arguments—the number
of elements and the size of each element—and initializes the elements of the array to zero. The
function returns either a pointer to the allocated memory, or a NULL pointer if the memory is not
allocated.

• Function realloc changes the size of an object allocated by a previous call to malloc, calloc or
realloc. The original object’s contents are not modified, provided that the amount of memory
allocated is larger than the amount allocated previously.

• Function realloc takes two arguments—a pointer to the original object and the new size of the
object. If ptr is NULL, realloc works identically to malloc. Otherwise, if ptr is not NULL and size
is greater than zero, realloc tries to allocate a new block of memory for the object. If the new
space cannot be allocated, the object pointed to by ptr is unchanged. Function realloc returns
either a pointer to the reallocated memory, or a NULL pointer to indicate that memory was not
reallocated.

Section 14.10 Unconditional Branching with goto
• The result of the goto statement (p. 544) is a change in the flow of control of the program. Pro-

gram execution continues at the first statement after the label (p. 544) specified in the goto state-
ment.

• A label is an identifier followed by a colon. A label must appear in the same function as the goto
statement that refers to it.

Self-Review Exercise
14.1 Fill in the blanks in each of the following:

a) The symbol redirects input data from a file rather than the keyboard.
b) The symbol is used to redirect the screen output so that it’s placed in a file.
c) The symbol is used to append the output of a program to the end of a file.
d) A(n) directs the output of one program to be the input of another program.
e) A(n) in the parameter list of a function indicates that the function can receive

a variable number of arguments.
f) Macro must be invoked before the arguments in a variable-length argument

list can be accessed.
g) Macro accesses the individual arguments of a variable-length argument list.
h) Macro facilitates a normal return from a function whose variable-length argu-

ment list was referred to by macro va_start.
i) Argument of main receives the number of arguments in a command line.
j) Argument of main stores command-line arguments as character strings.
k) Linux/UNIX utility reads a file called that contains instructions for

compiling and linking a program consisting of multiple source files.
l) Function forces a program to terminate execution.
m) Function registers a function to be called upon normal program termination.
n) An integer or floating-point can be appended to an integer or floating-point

constant to specify the exact type of the constant.
o) Function can be used to trap unexpected events.
p) Function generates a signal from within a program.

548 Chapter 14 Other C Topics

q) Function dynamically allocates memory for an array and initializes the el-
ements to zero.

r) Function changes the size of a block of previously allocated dynamic memory.

Answers to Self-Review Exercise
14.1 a) redirect input (<). b) redirect output (>). c) append output (>>). d) pipe (|). e) ellipsis
(...). f) va_start. g) va_arg. h) va_end. i) argc. j) argv. k) make, makefile. l) exit. m) atexit.
n) suffix. o) signal. p) raise. q) calloc. r) realloc.

Exercises
14.2 (Variable-Length Argument List: Calculating Products) Write a program that calculates the
product of a series of integers that are passed to function product using a variable-length argument
list. Test your function with several calls, each with a different number of arguments.

14.3 (Printing Command-Line Arguments) Write a program that prints the command-line ar-
guments of the program.

14.4 (Sorting Integers) Write a program that sorts an array of integers into ascending or descend-
ing order. Use command-line arguments to pass either argument -a for ascending order or -d for
descending order. [Note: This is the standard format for passing options to a program in UNIX.]

14.5 (Signal Handling) Read the documentation for your compiler to determine what signals
are supported by the signal-handling library (<signal.h>). Write a program that contains signal
handlers for the standard signals SIGABRT and SIGINT. The program should test the trapping of these
signals by calling function abort to generate a signal of type SIGABRT and by having the user type
<Ctrl> c (<control> C on OS X) to generate a signal of type SIGINT.

14.6 (Dynamic Array Allocation) Write a program that dynamically allocates an array of inte-
gers. The size of the array should be input from the keyboard. The elements of the array should be
assigned values input from the keyboard. Print the values of the array. Next, reallocate the memory
for the array to half of the current number of elements. Print the values remaining in the array to
confirm that they match the first half of the values in the original array.

14.7 (Command-Line Arguments) Write a program that takes two command-line arguments
that are filenames, reads the characters from the first file one at a time and writes the characters in
reverse order to the second file.

14.8 (goto Statement) Write a program that uses goto statements and only the following three
printf statements to simulate a nested looping structure that prints a square of asterisks as shown
below:

printf("%s", "*");
printf("%s", " ");
printf("%s", "\n");

* *
* *
* *

15C++ as a Better C;
Introducing Object
Technology

O b j e c t i v e s
In this chapter you’ll:

■ Learn key C++ enhancements
to C.

■ Learn the C++ Standard
Library’s header files.

■ Use inline functions to
improve performance.

■ Use references to pass
arguments to functions by
reference.

■ Use default arguments that
the compiler passes to a
function if the corresponding
arguments are not provided
in a function call.

■ Use the unary scope
resolution operator to access
a global variable.

■ Overload functions to create
several functions of the same
name that perform similar
tasks, but on data of different
types.

■ Create and use function
templates that perform
identical operations on data
of different types.

550 Chapter 15 C++ as a Better C; Introducing Object Technology

15.1 Introduction
We now begin the second section of this unique text. The first 14 chapters presented a
thorough treatment of procedural programming and top-down program design with C.
The C++ section (Chapters 4–23) introduces two additional programming paradigms—
object-oriented programming (with classes, encapsulation, objects, operator overloading,
inheritance and polymorphism) and generic programming (with function templates and
class templates). These chapters emphasize “crafting valuable classes” to create reusable
software componentry.

15.2 C++
C++ improves on many of C’s features and provides object-oriented-programming (OOP)
capabilities that increase software productivity, quality and reusability. This chapter dis-
cusses many of C++’s enhancements to C.

C’s designers and early implementers never anticipated that the language would
become such a phenomenon. When a programming language becomes as entrenched as
C, new requirements demand that the language evolve rather than simply be displaced by
a new language. C++ was developed by Bjarne Stroustrup at Bell Laboratories and was

15.1 Introduction

15.2 C++

15.3 A Simple Program: Adding Two
Integers

15.3.1 Addition Program in C++
15.3.2 <iostream> Header
15.3.3 main Function
15.3.4 Variable Declarations
15.3.5 Standard Output Stream and Standard

Input Stream Objects
15.3.6 std::endl Stream Manipulator
15.3.7 std:: Explained
15.3.8 Concatenated Stream Outputs
15.3.9 return Statement Not Required in

main

15.3.10 Operator Overloading
15.4 C++ Standard Library

15.5 Header Files

15.6 Inline Functions

15.7 C++ Keywords

15.8 References and Reference Parameters
15.8.1 Reference Parameters
15.8.2 Passing Arguments by Value and by

Reference
15.8.3 References as Aliases within a Function

15.8.4 Returning a Reference from a Function
15.8.5 Error Messages for Uninitialized

References
15.9 Empty Parameter Lists

15.10 Default Arguments
15.11 Unary Scope Resolution Operator
15.12 Function Overloading
15.13 Function Templates

15.13.1 Defining a Function Template
15.13.2 Using a Function Template

15.14 Introduction to Object Technology
and the UML

15.14.1 Basic Object Technology Concepts
15.14.2 Classes, Data Members and Member

Functions
15.14.3 Object-Oriented Analysis and Design
15.14.4 The Unified Modeling Language

15.15 Introduction to C++ Standard Library
Class Template vector

15.15.1 Problems Associated with C-Style
Pointer-Based Arrays

15.15.2 Class Template vector
15.15.3 Exception Handling: Processing an

Out-of-Range Index
15.16 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

15.3 A Simple Program: Adding Two Integers 551

originally called “C with classes.” The name C++ includes C’s increment operator (++) to
indicate that C++ is an enhanced version of C.

Chapters 4–23 provide an introduction to the version of C++11 standardized in the
United States through the American National Standards Institute (ANSI) and worldwide
through the International Standards Organization (ISO). We have done a careful walk-
through of the ANSI/ISO C++ standard document and audited our presentation against
it for completeness and accuracy. However, C++ is a rich language, and there are some sub-
tleties in the language and some advanced subjects that we have not covered. If you need
additional technical details on C++, we suggest that you read the C++ standard document
“Programming languages—C++” (document number ISO/IEC 14882-2011), which can
be purchased from various standards organization websites, such as ansi.org and
iso.org. A near-final draft of the standard document can be found at:

15.3 A Simple Program: Adding Two Integers
This section revisits the addition program of Fig. 2.5 and illustrates several important fea-
tures of the C++ language as well as some differences between C and C++. C file names
have the .c (lowercase) extension. C++ file names can have one of several extensions, such
as .cpp, .cxx or .C (uppercase). We use the extension .cpp.

15.3.1 Addition Program in C++
Figure 15.1 uses C++-style input and output to obtain two integers typed by a user at the
keyboard, computes the sum of these values and outputs the result. Lines 1 and 2 each
begin with //, indicating that the remainder of each line is a comment. You may also use
/*…*/ comments, which can be more than one line long.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf

1 // Fig. 15.1: fig15_01.cpp
2 // Addition program that displays the sum of two numbers.

3
4
5 int main()
6 {

7 std::cout << "Enter first integer: "; // prompt user for data
8 int number1;
9 std::cin >> number1; // read first integer from user into number1

10
11 std::cout << "Enter second integer: "; // prompt user for data
12 int number2;
13 std::cin >> number2; // read second integer from user into number2
14 int sum = number1 + number2; // add the numbers; store result in sum
15 std::cout << "Sum is " << sum << std::endl; // display sum; end line
16 }

Enter first integer: 45
Enter second integer: 72
Sum is 117

Fig. 15.1 | Addition program that displays the sum of two numbers.

#include <iostream> // allows program to perform input and output

552 Chapter 15 C++ as a Better C; Introducing Object Technology

15.3.2 <iostream> Header
The C++ preprocessor directive in line 3 exhibits the standard C++ style for including
header files from the standard library. This line tells the C++ preprocessor to include the
contents of the input/output stream header file <iostream>. This file must be included
for any program that outputs data to the screen or inputs data from the keyboard using
C++-style stream input/output. We discuss iostream’s many features in detail in
Chapter 21, Stream Input/Output: A Deeper Look.

15.3.3 main Function
As in C, every C++ program begins execution with function main (line 5). Keyword int
to the left of main indicates that main returns an integer value. C++ requires you to specify
the return type, possibly void, for all functions. In C++, specifying a parameter list with
empty parentheses is equivalent to specifying a void parameter list in C. In C, using empty
parentheses in a function definition or prototype is dangerous. It disables compile-time ar-
gument checking in function calls, which allows the caller to pass any arguments to the
function. This could lead to runtime errors.

15.3.4 Variable Declarations
Lines 8, 12 and 14 are familiar variable declarations. Declarations can be placed almost
anywhere in a C++ program, but they must appear before their corresponding variables are
used in the program.

15.3.5 Standard Output Stream and Standard Input Stream Objects
Line 7 uses the standard output stream object—std::cout—and the stream insertion
operator, <<, to display the string "Enter first integer: ". Output and input in C++
are accomplished with streams of characters. Thus, when line 7 executes, it sends the
stream of characters "Enter first integer: " to std::cout, which is normally “connect-
ed” to the screen. We like to pronounce the preceding statement as “std::cout gets the
character string "Enter first integer: ".”

Line 9 uses the standard input stream object—std::cin—and the stream extraction
operator, >>, to obtain a value from the keyboard. Using the stream extraction operator
with std::cin takes character input from the standard input stream, which is usually the
keyboard. We like to pronounce the preceding statement as, “std::cin gives a value to
number1” or simply “std::cin gives number1.”

When the computer executes the statement in line 9, it waits for the user to enter a
value for variable number1. The user responds by typing an integer (as characters), then
pressing the Enter key. The computer converts the character representation of the number
to an integer and assigns this value to the variable number1.

Line 11 displays "Enter second integer: " on the screen, prompting the user to take
action. Line 13 obtains a value for variable number2 from the user.

Common Programming Error 15.1
Omitting the return type in a C++ function definition is a syntax error.

15.3 A Simple Program: Adding Two Integers 553

15.3.6 std::endl Stream Manipulator
Line 14 calculates the sum of the variables number1 and number2 and assigns the result to
variable sum. Line 15 displays the character string Sum is followed by the numerical value
of variable sum followed by std::endl—a so-called stream manipulator. The name endl
is an abbreviation for “end line.” The std::endl stream manipulator outputs a newline,
then “flushes the output buffer.” This simply means that, on some systems where outputs
accumulate in the machine until there are enough to “make it worthwhile” to display on
the screen, std::endl forces any accumulated outputs to be displayed at that moment.
This can be important when the outputs are prompting the user for an action, such as en-
tering data.

15.3.7 std:: Explained
We place std:: before cout, cin and endl. This is required when we use standard C++
header files. The notation std::cout specifies that we’re using a name, in this case cout,
that belongs to “namespace” std. Namespaces are an advanced C++ feature that we do not
discuss in detail. For now, you should simply remember to include std:: before each
mention of cout, cin and endl in a program. This can be cumbersome—in Fig. 15.3, we
introduce the using statement, which will enable us to avoid placing std:: before each
use of a namespace std name.

15.3.8 Concatenated Stream Outputs
The statement in line 15 outputs values of different types. The stream insertion operator
“knows” how to output each type of data. Using multiple stream insertion operators (<<)
in a single statement is referred to as concatenating, chaining or cascading stream inser-
tion operations.

Calculations can also be performed in output statements. We could have combined
the statements in lines 14–15 into the statement

thus eliminating the need for the variable sum.

15.3.9 return Statement Not Required in main
You’ll notice that we did not have a return 0; statement at the end of main in this exam-
ple. According to the C++ standard, if program execution reaches the end of main without
encountering a return statement, it’s assumed that the program terminated successfully—
exactly as when the last statement in main is a return statement with the value 0. For that
reason, we omit the return statement at the end of main in our C++ programs.

15.3.10 Operator Overloading
A powerful C++ feature is that users can create their own types called classes (we introduce
this capability in Chapter 16 and explore it in depth in Chapter 17). Users can then
“teach” C++ how to input and output values of these new data types using the >> and <<
operators (this is called operator overloading—a topic we explore in Chapter 18).

std::cout << "Sum is " << number1 + number2 << std::endl;

554 Chapter 15 C++ as a Better C; Introducing Object Technology

15.4 C++ Standard Library
C++ programs consist of pieces called classes and functions. You can program each piece
that you need to form a C++ program. Instead, most C++ programmers take advantage of
the rich collections of existing classes and functions in the C++ Standard Library. Thus,
there are really two parts to learning the C++ “world.” The first is learning the C++ lan-
guage itself; the second is learning how to use the classes and functions in the C++ Stan-
dard Library. In the C++ part of this book, we discuss some of these classes and functions,
and we cover more of them in our book C++ How to Program, 9/e. The standard class li-
braries generally are provided by compiler vendors. Many special-purpose class libraries are
supplied by independent software vendors.

The advantage of creating your own functions and classes is that you’ll know exactly
how they work. You’ll be able to examine the C++ code. The disadvantage is the time-con-
suming and complex effort that goes into designing, developing and maintaining new
functions and classes that are correct and that operate efficiently.

15.5 Header Files
The C++ Standard Library is divided into many portions, each with its own header file.
The header files contain the function prototypes for the related functions that form each
portion of the library. The header files also contain definitions of various class types and
functions, as well as constants needed by those functions. A header file “instructs” the
compiler on how to interface with library and user-written components.

Figure 15.2 lists some common C++ Standard Library header files. Header file names
ending in .h are “old-style” header files that have been superceded by the C++ Standard
Library header files.

Software Engineering Observation 15.1
Use a “building-block” approach to create programs. Avoid reinventing the wheel. Use
existing pieces wherever possible. Called software reuse, this practice is central to object-
oriented programming.

Software Engineering Observation 15.2
When programming in C++, you typically will use the following building blocks: classes
and functions from the C++ Standard Library, classes and functions you and your
colleagues create and classes and functions from various popular third-party libraries.

Performance Tip 15.1
Using C++ Standard Library functions and classes instead of writing your own versions
can improve program performance, because they are written to perform efficiently. This
technique also shortens program development time.

Portability Tip 15.1
Using C++ Standard Library functions and classes instead of writing your own improves
program portability, because they are included in every C++ implementation.

15.5 Header Files 555

C++ Standard
Library header
file Explanation

<iostream> Contains function prototypes for the C++ standard input and output func-
tions, introduced in Section 15.3, and is covered in more detail in
Chapter 21, Stream Input/Output: A Deeper Look.

<iomanip> Contains function prototypes for stream manipulators that format streams of
data. This header is first used in Section 15.15 and is discussed in more detail
in Chapter 21.

<cmath> Contains function prototypes for the math library functions.
<cstdlib> Contains function prototypes for conversions of numbers to text, text to

numbers, memory allocation, random numbers and various other utility
functions. Portions of the header are covered in Chapter 18, Operator Over-
loading; Class string and Chapter 22, Exception Handling: A Deeper Look.

<ctime> Contains function prototypes and types for manipulating the time and date.

<array>,
<vector>, <list>,
<forward_list>,
<deque>, <queue>,
<stack>, <map>,
<unordered_map>,
<unordered_set>,
<set>, <bitset>

These headers contain classes that implement the C++ Standard Library con-
tainers. Containers store data during a program’s execution. The <vector>
header is first introduced in Section 15.15.

<cctype> Contains function prototypes for functions that test characters for certain
properties (such as whether the character is a digit or a punctuation), and
function prototypes for functions that can be used to convert lowercase let-
ters to uppercase letters and vice versa.

<cstring> Contains function prototypes for C-style string-processing functions. This
header is used in Chapter 18.

<typeinfo> Contains classes for runtime type identification (determining data types at
execution time). This header is discussed in Section 20.8.

<exception>,
<stdexcept>

These headers contain classes that are used for exception handling (discussed
in Chapter 22).

<memory> Contains classes and functions used by the C++ Standard Library to allocate
memory to the C++ Standard Library containers. This header is used in
Chapter 22.

<fstream> Contains function prototypes for functions that perform input from and out-
put to files on disk.

<string> Contains the definition of class string from the C++ Standard Library.
<sstream> Contains function prototypes for functions that perform input from strings

in memory and output to strings in memory.
<functional> Contains classes and functions used by C++ Standard Library algorithms.
<iterator> Contains classes for accessing data in the C++ Standard Library containers.

Fig. 15.2 | C++ Standard Library header files. (Part 1 of 2.)

556 Chapter 15 C++ as a Better C; Introducing Object Technology

You can create custom header files. Programmer-defined header files should end in
.h. A programmer-defined header file can be included by using the #include preprocessor
directive. For example, the header file square.h can be included in a program by placing
the directive #include "square.h" at the beginning of the program.

15.6 Inline Functions
Implementing a program as a set of functions is good from a software engineering stand-
point, but function calls involve execution-time overhead. C++ provides inline functions
to help reduce function call overhead—especially for small functions. Placing the qualifier
inline before a function’s return type in the function definition “advises” the compiler to
generate a copy of the function’s code in place (when appropriate) to avoid a function call.
The trade-off is that multiple copies of the function code are inserted in the program (of-
ten making the program larger) rather than there being a single copy of the function to
which control is passed each time the function is called. The compiler can ignore the
inline qualifier and typically does so for all but the smallest functions.

<algorithm> Contains functions for manipulating data in C++ Standard Library containers.
<cassert> Contains macros for adding diagnostics that aid program debugging.
<cfloat> Contains the floating-point size limits of the system.
<climits> Contains the integral size limits of the system.
<cstdio> Contains function prototypes for the C’s standard I/O functions.
<locale> Contains classes and functions normally used by stream processing to process

data in the natural form for different languages (e.g., monetary formats, sort-
ing strings, character presentation, etc.).

<limits> Contains classes for defining the numerical data type limits on each com-
puter platform.

<utility> Contains classes and functions that are used by many C++ Standard Library
headers.

Software Engineering Observation 15.3
Changing to an inline function could require clients of the function to be recompiled.
This can be significant in program development and maintenance situations.

Performance Tip 15.2
Using inline functions can reduce execution time but may increase program size.

Software Engineering Observation 15.4
The inline qualifier should be used only with small, frequently used functions.

C++ Standard
Library header
file Explanation

Fig. 15.2 | C++ Standard Library header files. (Part 2 of 2.)

15.6 Inline Functions 557

Defining an inline Function
Figure 15.3 uses inline function cube (lines 11–14) to calculate the volume of a cube of
side length side. Keyword const in the parameter list of function cube tells the compiler
that the function does not modify variable side. This ensures that the value of side is not
changed by the function when the calculation is performed. Notice that the complete def-
inition of function cube appears before it’s used in the program. This is required so that
the compiler knows how to expand a cube function call into its inlined code. For this rea-
son, reusable inline functions are typically placed in header files, so that their definitions
can be included in each source file that uses them.

Lines 4–6 are using statements that help us eliminate the need to repeat the std::
prefix. Once we include these using statements, we can write cout instead of std::cout,
cin instead of std::cin and endl instead of std::endl, in the remainder of the program.
From this point forward, every C++ example contains one or more using statements.

Software Engineering Observation 15.5
The const qualifier should be used to enforce the principle of least privilege. Using the
principle of least privilege to properly design software can greatly reduce debugging time
and improper side effects, and can make a program easier to modify and maintain.

1 // Fig. 15.3: fig15_03.cpp

2 // inline function that calculates the volume of a cube.
3 #include <iostream>
4 using std::cout;
5 using std::cin;
6 using std::endl;
7
8 // Definition of inline function cube. Definition of function appears
9 // before function is called, so a function prototype is not required.

10 // First line of function definition acts as the prototype.

11
12
13
14
15
16 int main()
17 {
18 double sideValue; // stores value entered by user
19
20 for (int i = 1; i <= 3; i++)
21 {

22 cout << "\nEnter the side length of your cube: ";
23 cin >> sideValue; // read value from user
24
25 // calculate cube of sideValue and display result

26 cout << "Volume of cube with side "
27 << sideValue << " is " << << endl;

28 }

29 }

Fig. 15.3 | inline function that calculates the volume of a cube. (Part 1 of 2.)

inline double cube(const double side)
{
 return side * side * side; // calculate the cube of side
}

cube(sideValue)

558 Chapter 15 C++ as a Better C; Introducing Object Technology

In place of lines 4–6, many programmers prefer to use the declaration

which enables a program to use all the names in any standard C++ header file (such as
<iostream>) that a program might include. From this point forward in this chapter, we’ll
use the preceding declaration in our programs.

The for statement’s condition (line 20) evaluates to either 0 (false) or nonzero (true).
This is consistent with C. C++ also provides type bool for representing boolean (true/false)
values. The two possible values of a bool are the keywords true and false. When true
and false are converted to integers, they become the values 1 and 0, respectively. When
non-boolean values are converted to type bool, non-zero values become true, and zero or
null pointer values become false.

15.7 C++ Keywords
Figure 15.4 lists the keywords common to C and C++, the keywords unique to C++ and
the keywords that were added to C++ in the C++11 standard.

Enter the side length of your cube: 1.0
Volume of cube with side 1 is 1

Enter the side length of your cube: 2.3
Volume of cube with side 2.3 is 12.167

Enter the side length of your cube: 5.4
Volume of cube with side 5.4 is 157.464

using namespace std;

C++ Keywords

Keywords common to the C and C++ programming languages

auto break case char const

continue default do double else

enum extern float for goto

if int long register return

short signed sizeof static struct

switch typedef union unsigned void

volatile while

C++-only keywords

and and_eq asm bitand bitor

bool catch class compl const_cast

delete dynamic_cast explicit export false

Fig. 15.4 | C++ keywords. (Part 1 of 2.)

Fig. 15.3 | inline function that calculates the volume of a cube. (Part 2 of 2.)

15.8 References and Reference Parameters 559

15.8 References and Reference Parameters
Two ways to pass arguments to functions in many programming languages are pass-by-
value and pass-by-reference. When an argument is passed by value, a copy of the argu-
ment’s value is made and passed (on the function call stack) to the called function.
Changes to the copy do not affect the original variable’s value in the caller. This prevents
the accidental side effects that can greatly hinder the development of correct and reliable
software systems. Each argument that has been passed in the programs in this chapter so
far has been passed by value.

15.8.1 Reference Parameters
This section introduces reference parameters—the first of two means that C++ provides
for performing pass-by-reference. With pass-by-reference, the caller gives the called func-
tion the ability to access the caller’s data directly, and to modify that data if the called func-
tion chooses to do so.

Later, we’ll show how to achieve the performance advantage of pass-by-reference
while simultaneously achieving the software engineering advantage of protecting the
caller’s data from corruption.

friend inline mutable namespace new

not not_eq operator or or_eq

private protected public reinterpret_cast static_cast

template this throw true try

typeid typename using virtual wchar_t

xor xor_eq

C++11 keywords

alignas alignof char16_t char32_t constexpr

decltype noexcept nullptr static_assert thread_local

Performance Tip 15.3
One disadvantage of pass-by-value is that, if a large data item is being passed, copying that
data can take a considerable amount of execution time and memory space.

Performance Tip 15.4
Pass-by-reference is good for performance reasons, because it can eliminate the pass-by-val-
ue overhead of copying large amounts of data.

Software Engineering Observation 15.6
Pass-by-reference can weaken security; the called function can corrupt the caller’s data.

C++ Keywords

Fig. 15.4 | C++ keywords. (Part 2 of 2.)

560 Chapter 15 C++ as a Better C; Introducing Object Technology

A reference parameter is an alias for its corresponding argument in a function call. To
indicate that a function parameter is passed by reference, simply follow the parameter’s
type in the function prototype and function definition by an ampersand (&). For example,
the following parameter declaration

when read from right to left is pronounced “count is a reference to an int.” In the function
call, simply mention the variable by name to pass it by reference. Then, mentioning the
variable by its parameter name in the body of the called function actually refers to the orig-
inal variable in the calling function, and the original variable can be modified directly by
the called function.

15.8.2 Passing Arguments by Value and by Reference
Figure 15.5 compares pass-by-value and pass-by-reference with reference parameters. The
“styles” of the arguments in the calls to function squareByValue (line 15) and function
squareByReference (line 21) are identical—both variables are simply mentioned by name
in the function calls. Without checking the function prototypes or function definitions,
it’s not possible to tell from the calls alone whether either function can modify its argu-
ments. Because function prototypes are mandatory, however, the compiler has no trouble
resolving the ambiguity. Recall that a function prototype tells the compiler the type of data
returned by the function, the number of parameters the function expects to receive, the
types of the parameters, and the order in which they’re expected. The compiler uses this
information to validate function calls. In C, function prototypes are not required. Making
them mandatory in C++ enables type-safe linkage, which ensures that the types of the ar-
guments conform to the types of the parameters. Otherwise, the compiler reports an error.
Locating such type errors at compile time helps prevent the runtime errors that can occur
in C when arguments of incorrect data types are passed to functions.

int &count

1 // Fig. 15.5: fig15_05.cpp

2 // Comparing pass-by-value and pass-by-reference with references.

3 #include <iostream>
4 using namespace std;
5
6
7
8

9 int main()
10 {

11 // demonstrate squareByValue

12 int x = 2;
13 cout << "x = " << x << " before squareByValue\n";
14 cout << "Value returned by squareByValue: "
15 << << endl;
16 cout << "x = " << x << " after squareByValue\n" << endl;
17
18 // demonstrate squareByReference
19 int z = 4;

Fig. 15.5 | Comparing pass-by-value and pass-by-reference with references. (Part 1 of 2.)

int squareByValue(int); // function prototype (value pass)
void squareByReference(int &); // function prototype (reference pass)

squareByValue(x)

15.8 References and Reference Parameters 561

To specify a reference to a constant, place the const qualifier before the type specifier
in the parameter declaration. Note in line 34 of Fig. 15.5 the placement of & in the
parameter list of function squareByReference. Some C++ programmers prefer to write

20 cout << "z = " << z << " before squareByReference" << endl;
21 ;

22 cout << "z = " << z << " after squareByReference" << endl;
23 }

24
25
26
27
28
29
30
31
32
33
34
35
36
37

x = 2 before squareByValue
Value returned by squareByValue: 4
x = 2 after squareByValue

z = 4 before squareByReference
z = 16 after squareByReference

Common Programming Error 15.2
Because reference parameters are mentioned only by name in the body of the called func-
tion, you might inadvertently treat reference parameters as pass-by-value parameters. This
can cause unexpected side effects if the original copies of the variables are changed by the
function.

\

Performance Tip 15.5
For passing large objects efficiently, use a constant reference parameter to simulate the ap-
pearance and security of pass-by-value and avoid the overhead of passing a copy of the
large object. The called function will not be able to modify the object in the caller.

Software Engineering Observation 15.7
Many programmers do not declare parameters passed by value as const, even when the
called function should not modify the passed argument. Keyword const in this context
would protect only a copy of the original argument, not the original argument itself, which
when passed by value is safe from modification by the called function.

Fig. 15.5 | Comparing pass-by-value and pass-by-reference with references. (Part 2 of 2.)

squareByReference(z)

// squareByValue multiplies number by itself, stores the

// result in number and returns the new value of number
int squareByValue(int number)
{

 return number *= number; // caller's argument not modified
}

// squareByReference multiplies numberRef by itself and stores the result
// in the variable to which numberRef refers in the caller

void squareByReference(int &numberRef)
{
 numberRef *= numberRef; // caller's argument modified

}

562 Chapter 15 C++ as a Better C; Introducing Object Technology

int& numberRef with the ampersand abutting int—both forms are equivalent to the
compiler.

15.8.3 References as Aliases within a Function
References can also be used as aliases for other variables within a function (although they
typically are used with functions as shown in Fig. 15.5). For example, the code

increments variable count by using its alias cRef. Reference variables must be initialized
in their declarations, as we show in line 9 of both Fig. 15.6 and Fig. 15.7, and cannot be
reassigned as aliases to other variables. Once a reference is declared as an alias for a variable,
all operations “performed” on the alias (i.e., the reference) are actually performed on the
original variable. The alias is simply another name for the original variable. Taking the ad-
dress of a reference and comparing references do not cause syntax errors; rather, each op-
eration occurs on the variable for which the reference is an alias. Unless it’s a reference to
a constant, a reference argument must be an lvalue (e.g., a variable name), not a constant
or expression that returns an rvalue (e.g., the result of a calculation).

Software Engineering Observation 15.8
For the combined reasons of clarity and performance, many C++ programmers prefer that
modifiable arguments be passed to functions by using pointers, small nonmodifiable
arguments be passed by value and large nonmodifiable arguments be passed by using
references to constants.

int count = 1; // declare integer variable count
int &cRef = count; // create cRef as an alias for count
cRef++; // increment count (using its alias cRef)

1 // Fig. 15.6: fig15_06.cpp
2 // Initializing and using a reference.

3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 int x = 3;
9

10
11 cout << "x = " << x << endl << "y = " << y << endl;
12 y = 7; // actually modifies x

13 cout << "x = " << x << endl << "y = " << y << endl;
14 }

x = 3
y = 3
x = 7
y = 7

Fig. 15.6 | Initializing and using a reference.

int &y = x; // y refers to (is an alias for) x

15.8 References and Reference Parameters 563

15.8.4 Returning a Reference from a Function
Returning references from functions can be dangerous. When returning a reference to a
variable declared in the called function, the variable should be declared static within that
function. Otherwise, the reference refers to an automatic variable that is discarded when
the function terminates; such a variable is “undefined,” and the program’s behavior is un-
predictable. References to undefined variables are called dangling references.

1 // Fig. 15.7: fig15_07.cpp

2 // Uninitialized reference is a syntax error.

3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {

8 int x = 3;
9

10
11 cout << "x = " << x << endl << "y = " << y << endl;
12 y = 7;
13 cout << "x = " << x << endl << "y = " << y << endl;
14 }

Microsoft Visual C++ compiler error message:

fig15_07.cpp(9) : error C2530: 'y' :
 references must be initialized

GNU C++ compiler error message:

fig15_07.cpp:9: error: 'y' declared as a reference but not initialized

Xcode LLVM compiler error message:

Declaration of reference variable 'y' requires an initializer

Fig. 15.7 | Uninitialized reference is a syntax error.

Common Programming Error 15.3
Not initializing a reference variable when it’s declared is a compilation error, unless the
declaration is part of a function’s parameter list. Reference parameters are initialized
when the function in which they’re declared is called.

Common Programming Error 15.4
Attempting to reassign a previously declared reference to be an alias to another variable is
a logic error. The value of the other variable is simply assigned to the variable for which
the reference is already an alias.

Common Programming Error 15.5
Returning a reference to an automatic variable in a called function is a logic error. Some
compilers issue a warning when this occurs.

int &y; // Error: y must be initialized

564 Chapter 15 C++ as a Better C; Introducing Object Technology

15.8.5 Error Messages for Uninitialized References
The C++ standard does not specify the error messages that compilers use to indicate par-
ticular errors. For this reason, we show in Fig. 15.7 the error messages produced by several
compilers when a reference is not initialized.

15.9 Empty Parameter Lists
C++, like C, allows you to define functions with no parameters. In C++, an empty param-
eter list is specified by writing either void or nothing at all in parentheses. The prototypes

each specify that function print does not take arguments and does not return a value.
These prototypes are equivalent.

15.10 Default Arguments
It’s not uncommon for a program to invoke a function repeatedly with the same argument
value for a particular parameter. In such cases, you can specify that such a parameter has a
default argument, i.e., a default value to be passed to that parameter. When a program
omits an argument for a parameter with a default argument in a function call, the compiler
rewrites the function call and inserts the default value of that argument to be passed as an
argument in the function call.

Default arguments must be the rightmost (trailing) arguments in a function’s
parameter list. When calling a function with two or more default arguments, if an omitted
argument is not the rightmost argument in the argument list, then all arguments to the
right of that argument also must be omitted. Default arguments should be specified with
the first occurrence of the function name—typically, in the function prototype. If the
function prototype is omitted because the function definition also serves as the prototype,
then the default arguments should be specified in the function header. Default values can
be any expression, including constants, global variables or function calls. Default argu-
ments also can be used with inline functions.

Figure 15.8 demonstrates using default arguments in calculating the volume of a box.
The function prototype for boxVolume (line 7) specifies that all three parameters have been
given default values of 1. We provided variable names in the function prototype for read-
ability, but these are not required.

void print();
void print(void);

Portability Tip 15.2
The meaning of an empty function parameter list in C++ is dramatically different than
in C. In C, it means all argument checking is disabled (i.e., the function call can pass any
arguments it wants). In C++, it means that the function takes no arguments. Thus, C
programs using this feature might cause compilation errors when compiled in C++.

Common Programming Error 15.6
It’s a compilation error to specify default arguments in both a function’s prototype and
header.

15.10 Default Arguments 565

The first call to boxVolume (line 12) specifies no arguments, thus using all three
default values of 1. The second call (line 16) passes a length argument, thus using default
values of 1 for the width and height arguments. The third call (line 20) passes arguments
for length and width, thus using a default value of 1 for the height argument. The last
call (line 24) passes arguments for length, width and height, thus using no default values.
Any arguments passed to the function explicitly are assigned to the function’s parameters
from left to right. Therefore, when boxVolume receives one argument, the function assigns
the value of that argument to its length parameter (i.e., the leftmost parameter in the

1 // Fig. 15.8: fig15_08.cpp

2 // Using default arguments.

3 #include <iostream>
4 using namespace std;
5
6 // function prototype that specifies default arguments
7
8
9 int main()

10 {

11 // no arguments--use default values for all dimensions

12 cout << "The default box volume is: " << ;
13

14 // specify length; default width and height

15 cout << "\n\nThe volume of a box with length 10,\n"
16 << "width 1 and height 1 is: " << ;

17

18 // specify length and width; default height

19 cout << "\n\nThe volume of a box with length 10,\n"
20 << "width 5 and height 1 is: " << ;

21

22 // specify all arguments
23 cout << "\n\nThe volume of a box with length 10,\n"
24 << "width 5 and height 2 is: " <<
25 << endl;
26 }

27
28
29
30
31
32

The default box volume is: 1

The volume of a box with length 10,
width 1 and height 1 is: 10

The volume of a box with length 10,
width 5 and height 1 is: 50

The volume of a box with length 10,
width 5 and height 2 is: 100

Fig. 15.8 | Using default arguments.

int boxVolume(int length = 1, int width = 1, int height = 1);

boxVolume()

boxVolume(10)

boxVolume(10, 5)

boxVolume(10, 5, 2)

// function boxVolume calculates the volume of a box

int boxVolume(int length, int width, int height)
{

 return length * width * height;
}

566 Chapter 15 C++ as a Better C; Introducing Object Technology

parameter list). When boxVolume receives two arguments, the function assigns the values
of those arguments to its length and width parameters in that order. Finally, when box-
Volume receives all three arguments, the function assigns the values of those arguments to
its length, width and height parameters, respectively.

15.11 Unary Scope Resolution Operator
It’s possible to declare local and global variables of the same name. This causes the global
variable to be “hidden” by the local variable in the local scope. C++ provides the unary
scope resolution operator (::) to access a global variable when a local variable of the same
name is in scope. The unary scope resolution operator cannot be used to access a local vari-
able of the same name in an outer block. A global variable can be accessed directly without
the unary scope resolution operator if the name of the global variable is not the same as
that of a local variable in scope.

Figure 15.9 demonstrates the unary scope resolution operator with global and local
variables of the same name (lines 6 and 10, respectively). To emphasize that the local and
global versions of variable number are distinct, the program declares one variable of type
int and the other double.

Good Programming Practice 15.1
Using default arguments can simplify writing function calls. However, some programmers
feel that explicitly specifying all arguments is clearer.

Software Engineering Observation 15.9
If the default values for a function change, all client code must be recompiled.

Common Programming Error 15.7
In a function definition, specifying and attempting to use a default argument that is not
a rightmost (trailing) argument (while not simultaneously defaulting all the rightmost ar-
guments) is a syntax error.

1 // Fig. 15.9: fig15_09.cpp
2 // Using the unary scope resolution operator.

3 #include <iostream>
4 using namespace std;
5
6
7
8 int main()
9 {

10
11
12 // display values of local and global variables

13 cout << "Local double value of number = " <<
14 << "\nGlobal int value of number = " << << endl;

15 }

Fig. 15.9 | Using the unary scope resolution operator. (Part 1 of 2.)

int number = 7; // global variable named number

double number = 10.5; // local variable named number

number

::number

15.12 Function Overloading 567

Using the unary scope resolution operator (::) with a given variable name is optional
when the only variable with that name is a global variable.

15.12 Function Overloading
C++ enables several functions of the same name to be defined, as long as these functions
have different sets of parameters (at least as far as the parameter types or the number of
parameters or the order of the parameter types are concerned). This capability is called
function overloading. When an overloaded function is called, the C++ compiler selects
the proper function by examining the number, types and order of the arguments in the
call. Function overloading is commonly used to create several functions of the same name
that perform similar tasks, but on data of different types. For example, many functions in
the math library are overloaded for different numeric data types.1

Local double value of number = 10.5
Global int value of number = 7

Common Programming Error 15.8
It’s an error to attempt to use the unary scope resolution operator (::) to access a nonglobal
variable in an outer block. If no global variable with that name exists, a compilation error
occurs. If a global variable with that name exists, this is a logic error, because the program
will refer to the global variable when you intended to access the nonglobal variable in the
outer block.

Good Programming Practice 15.2
Always using the unary scope resolution operator (::) to refer to global variables makes it
clear that you intend to access a global variable rather than a nonglobal variable.

Software Engineering Observation 15.10
Always using the unary scope resolution operator (::) to refer to global variables makes
programs easier to modify by reducing the risk of name collisions with nonglobal variables.

Error-Prevention Tip 15.1
Always using the unary scope resolution operator (::) to refer to a global variable elimi-
nates logic errors that might occur if a nonglobal variable hides the global variable.

Error-Prevention Tip 15.2
Avoid using variables of the same name for different purposes in a program. Although this
is allowed in various circumstances, it can lead to errors.

Good Programming Practice 15.3
Overloading functions that perform closely related tasks can make programs more read-
able and understandable.

Fig. 15.9 | Using the unary scope resolution operator. (Part 2 of 2.)

568 Chapter 15 C++ as a Better C; Introducing Object Technology

Overloaded square Functions
Figure 15.10 uses overloaded square functions to calculate the square of an int (lines 7–
11) and the square of a double (lines 14–18). Line 22 invokes the int version of function
square by passing the literal value 7. C++ treats whole-number literal values as type int
by default. Similarly, line 24 invokes the double version of function square by passing the
literal value 7.5, which C++ treats as a double value by default. In each case the compiler
chooses the proper function to call, based on the type of the argument. The outputs con-
firm that the proper function was called in each case.

How the Compiler Differentiates Overloaded Functions
Overloaded functions are distinguished by their signatures—a combination of a func-
tion’s name and its parameter types in order (but not its return type). The compiler en-
codes each function identifier with the number and types of its parameters (sometimes
referred to as name mangling or name decoration) to enable type-safe linkage. This en-
sures that the proper overloaded function is called and that the argument types conform
to the parameter types.

1. The C++ standard requires float, double and long double overloaded versions of the math library
functions discussed in Section 5.3.

1 // Fig. 15.10: fig15_10.cpp

2 // Overloaded square functions.

3 #include <iostream>
4 using namespace std;
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20 int main()
21 {

22 cout << ; // calls int version
23 cout << endl;

24 cout << ; // calls double version

25 cout << endl;
26 }

square of integer 7 is 49
square of double 7.5 is 56.25

Fig. 15.10 | Overloaded square functions.

// function square for int values

int square(int x)
{

 cout << "square of integer " << x << " is ";
 return x * x;
}

// function square for double values

double square(double y)
{

 cout << "square of double " << y << " is ";
 return y * y;
}

square(7)

square(7.5)

15.12 Function Overloading 569

Figure 15.11 was compiled with GNU C++. Rather than showing the execution output
of the program (as we normally would), we show the mangled function names produced in
assembly language by GNU C++. Each mangled name (other than main) begins with two
underscores (__) followed by the letter Z, a number and the function name. The number that
follows Z specifies how many characters are in the function’s name. For example, function
square has 6 characters in its name, so its mangled name is prefixed with __Z6.

Common Programming Error 15.9
Creating overloaded functions with identical parameter lists and different return types is
a compilation error.

1 // Fig. 15.11: fig15_11.cpp

2 // Name mangling to enable type-safe linkage.

3
4 // function square for int values

5
6 {

7 return x * x;
8 }

9
10 // function square for double values
11
12 {

13 return y * y;
14 }

15
16 // function that receives arguments of types
17 // int, float, char and int &

18
19 {
20 // empty function body

21 }

22
23 // function that receives arguments of types

24 // char, int, float & and double &

25
26 {

27 return 0;
28 }
29
30 int main()
31 {
32 return 0; // indicates successful termination
33 }

__Z6squarei
__Z6squared
__Z8nothing1ifcRi
__Z8nothing2ciRfRd
_main

Fig. 15.11 | Name mangling to enable type-safe linkage.

int square(int x)

double square(double y)

void nothing1(int a, float b, char c, int &d)

int nothing2(char a, int b, float &c, double &d)

570 Chapter 15 C++ as a Better C; Introducing Object Technology

The function name is then followed by an encoding of its parameter list. In the
parameter list for function nothing2 (line 25; see the fourth output line), c represents a
char, i represents an int, Rf represents a float & (i.e., a reference to a float) and Rd rep-
resents a double & (i.e., a reference to a double). In the parameter list for function noth-
ing1, i represents an int, f represents a float, c represents a char and Ri represents an
int &. The two square functions are distinguished by their parameter lists; one specifies d
for double and the other specifies i for int.

The return types of the functions are not specified in the mangled names. Overloaded
functions can have different return types, but if they do, they must also have different
parameter lists. Again, you cannot have two functions with the same signature and dif-
ferent return types. Function-name mangling is compiler specific. Also, function main is
not mangled, because it cannot be overloaded.

The compiler uses only the parameter lists to distinguish between functions of the
same name. Overloaded functions need not have the same number of parameters. Pro-
grammers should use caution when overloading functions with default parameters,
because this may cause ambiguity.

Overloaded Operators
In Chapter 18, we discuss how to overload operators to define how they should operate
on objects of user-defined data types. (In fact, we’ve been using overloaded operators, in-
cluding the stream insertion operator << and the stream extraction operator >>, each of
which is overloaded to be able to display data of all the fundamental types. We say more
about overloading << and >> to be able to handle objects of user-defined types in
Chapter 18.) Section 15.13 introduces function templates for automatically generating
overloaded functions that perform identical tasks on data of different types.

15.13 Function Templates
Overloaded functions are typically used to perform similar operations that may involve dif-
ferent program logic on different data types. If the program logic and operations are identical
for each data type, overloading may be performed more compactly and conveniently by us-
ing function templates. You write a single function template definition. Given the argument
types provided in calls to this function, C++ automatically generates separate function tem-
plate specializations to handle each type of call appropriately. Thus, defining a single func-
tion template essentially defines a whole family of overloaded functions.

15.13.1 Defining a Function Template
Figure 15.12 contains the definition of a function template (lines 4–18) for a maximum
function that determines the largest of three values. All function template definitions be-

Common Programming Error 15.10
A function with default arguments omitted might be called identically to another over-
loaded function; this is a compilation error. For example, having in a program both a
function that explicitly takes no arguments and a function of the same name that contains
all default arguments results in a compilation error when an attempt is made to call that
function with no arguments. The compiler does not know which version of the function
to choose.

15.13 Function Templates 571

gin with the template keyword (line 4) followed by a template parameter list to the func-
tion template enclosed in angle brackets (< and >). Every parameter in the template
parameter list (each is referred to as a formal type parameter) is preceded by keyword
typename or keyword class (which are synonyms). The formal type parameters are place-
holders for fundamental types or user-defined types. These placeholders are used to specify
the types of the function’s parameters (line 5), to specify the function’s return type and to
declare variables within the body of the function definition (line 7). A function template
is defined like any other function, but uses the formal type parameters as placeholders for
actual data types.

The function template in Fig. 15.12 declares a single formal type parameter T (line 4)
as a placeholder for the type of the data to be tested by function maximum. The name of a
type parameter must be unique in the template parameter list for a particular template
definition. When the compiler detects a maximum invocation in the program source code,
the type of the data passed to maximum is substituted for T throughout the template defini-
tion, and C++ creates a complete source-code function for determining the maximum of
three values of the specified data type. Then the newly created function is compiled. Thus,
templates are a means of code generation for a range of similar functions.

15.13.2 Using a Function Template
Figure 15.13 uses the maximum function template (lines 18, 28 and 38) to determine the
largest of three int values, three double values and three char values.

1 // Fig. 15.12: maximum.h

2 // Function template maximum header file.

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Fig. 15.12 | Function template maximum header file.

Common Programming Error 15.11
Not placing keyword class or keyword typename before every formal type parameter of
a function template (e.g., writing <class S, T> instead of <class S, class T>) is a syn-
tax error.

template < class T > // or template< typename T >
T maximum(T value1, T value2, T value3)

{

 T maximumValue = value1; // assume value1 is maximum

 // determine whether value2 is greater than maximumValue

 if (value2 > maximumValue)
 maximumValue = value2;

 // determine whether value3 is greater than maximumValue

 if (value3 > maximumValue)
 maximumValue = value3;

 return maximumValue;
}

572 Chapter 15 C++ as a Better C; Introducing Object Technology

In Fig. 15.13, three functions are created as a result of the calls in lines 18, 28 and
38—expecting three int values, three double values and three char values, respectively.

1 // Fig. 15.13: fig15_13.cpp

2 // Demonstrating function template maximum.

3 #include <iostream>
4 using namespace std;
5
6
7
8 int main()
9 {

10 // demonstrate maximum with int values

11 int int1, int2, int3;
12
13 cout << "Input three integer values: ";
14 cin >> int1 >> int2 >> int3;

15
16 // invoke int version of maximum

17 cout << "The maximum integer value is: "
18 << ;

19
20 // demonstrate maximum with double values

21 double double1, double2, double3;
22
23 cout << "\n\nInput three double values: ";
24 cin >> double1 >> double2 >> double3;

25
26 // invoke double version of maximum

27 cout << "The maximum double value is: "
28 << ;
29
30 // demonstrate maximum with char values

31 char char1, char2, char3;
32
33 cout << "\n\nInput three characters: ";
34 cin >> char1 >> char2 >> char3;
35
36 // invoke char version of maximum

37 cout << "The maximum character value is: "
38 << << endl;

39 }

Input three integer values: 1 2 3
The maximum integer value is: 3

Input three double values: 3.3 2.2 1.1
The maximum double value is: 3.3

Input three characters: A C B
The maximum character value is: C

Fig. 15.13 | Demonstrating function template maximum.

#include "maximum.h" // include definition of function template maximum

maximum(int1, int2, int3)

maximum(double1, double2, double3)

maximum(char1, char2, char3)

15.14 Introduction to Object Technology and the UML 573

For example, the function template specialization created for type int replaces each occur-
rence of T with int as follows:

15.14 Introduction to Object Technology and the UML
In this section, we discuss object orientation, a natural way of thinking about the world
and writing computer programs. Our goal here is to help you develop an object-oriented
way of thinking and to introduce you to the Unified Modeling Language™ (UML™)—
a graphical language that allows people who design object-oriented software systems to use
an industry-standard notation to represent them. Here, we’ll first review some object-
oriented programming concepts we introduced in Section 1.8, then introduce some addi-
tional terminology that we use in Section 15.15 and Chapters 16–23.

15.14.1 Basic Object Technology Concepts
Everywhere you look in the real world you see objects—people, animals, plants, cars,
planes, buildings, computers and so on. Humans think in terms of objects. Telephones,
houses, traffic lights, microwave ovens and water coolers are just a few more objects we see
around us every day.

Attributes and Behaviors
Objects have some things in common. They all have attributes (e.g., size, shape, color and
weight), and they all exhibit behaviors (e.g., a ball rolls, bounces, inflates and deflates; a
baby cries, sleeps, crawls, walks and blinks; a car accelerates, brakes and turns; a towel ab-
sorbs water). Humans learn about existing objects by studying their attributes and observ-
ing their behaviors. Different objects can have similar attributes and can exhibit similar
behaviors. Comparisons can be made, for example, between babies and adults and between
humans and chimpanzees. We’ll study the kinds of attributes and behaviors that software
objects have.

Object-Oriented Design and Inheritance
Object-oriented design (OOD) models software in terms similar to those that people use
to describe real-world objects. It takes advantage of class relationships, where objects of a
certain class, such as a class of vehicles, have the same characteristics—cars, trucks, little
red wagons and roller skates have much in common. OOD takes advantage of inheritance
relationships, where new classes of objects are derived by absorbing characteristics of exist-
ing classes and adding unique characteristics of their own. An object of class “convertible”

int maximum(int value1, int value2, int value3)
{
 int maximumValue = value1; // assume value1 is maximum
 // determine whether value2 is greater than maximumValue
 if (value2 > maximumValue)
 maximumValue = value2;

 // determine whether value3 is greater than maximumValue

 if (value3 > maximumValue)
 maximumValue = value3;

 return maximumValue;
}

574 Chapter 15 C++ as a Better C; Introducing Object Technology

certainly has the characteristics of the more general class “automobile,” but more specifi-
cally, the roof goes up and down.

Object-oriented design provides a natural and intuitive way to view the software
design process—namely, modeling objects by their attributes, behaviors and interrelation-
ships just as we describe real-world objects. OOD also models communication between
objects. Just as people send messages to one another (e.g., a sergeant commands a soldier
to stand at attention), objects also communicate via messages. A bank account object may
receive a message to decrease its balance by a certain amount because the customer has
withdrawn that amount of money.

Encapsulation and Information Hiding
OOD encapsulates (i.e., wraps) attributes and operations (behaviors) into objects—an
object’s attributes and operations are intimately tied together. Objects have the property
of information hiding. This means that objects may know how to communicate with one
another across well-defined interfaces, but normally they’re not allowed to know how oth-
er objects are implemented—implementation details are hidden within the objects them-
selves. We can drive a car effectively, for instance, without knowing the details of how
engines, transmissions, brakes and exhaust systems work internally—as long as we know
how to use the accelerator pedal, the brake pedal, the steering wheel and so on. Informa-
tion hiding, as we’ll see, is crucial to good software engineering.

Object-Oriented Programming
Languages like C++ are object oriented. Programming in such a language is called object-
oriented programming (OOP), and it allows you to implement an object-oriented design
as a working software system. Languages like C, on the other hand, are procedural, so pro-
gramming tends to be action oriented. In C, the unit of programming is the function. In
C++, the unit of programming is the “class” from which objects are eventually instantiated
(an OOP term for “created”). C++ classes contain functions that implement operations
and data that implements attributes.

C programmers concentrate on writing functions. Programmers group actions that
perform some common task into functions, and group functions to form programs. Data
is certainly important in C, but the view is that data exists primarily in support of the
actions that functions perform. The verbs in a system specification help you determine the
set of functions that will work together to implement the system.

15.14.2 Classes, Data Members and Member Functions
C++ programmers concentrate on creating their own user-defined types called classes.
Each class contains data as well as the set of functions that manipulate that data and pro-
vide services to clients (i.e., other classes or functions that use the class). The data compo-
nents of a class are called data members. For example, a bank account class might include
an account number and a balance. The function components of a class are called member
functions (typically called methods in other object-oriented programming languages such
as Java). For example, a bank account class might include member functions to make a
deposit (increasing the balance), make a withdrawal (decreasing the balance) and inquire
what the current balance is. You use built-in types (and other user-defined types) as the
“building blocks” for constructing new user-defined types (classes). The nouns in a system

15.14 Introduction to Object Technology and the UML 575

specification help the C++ programmer determine the set of classes from which objects are
created that work together to implement the system.

Classes are to objects as blueprints are to houses—a class is a “plan” for building an
object of the class. Just as we can build many houses from one blueprint, we can instantiate
(create) many objects from one class. You cannot cook meals in the kitchen of a blueprint;
you can cook meals in the kitchen of a house. You cannot sleep in the bedroom of a blue-
print; you can sleep in the bedroom of a house.

Classes can have relationships with other classes. In an object-oriented design of a
bank, the “bank teller” class relates to other classes, such as the “customer” class, the “cash
drawer” class, the “safe” class, and so on. These relationships are called associations. Pack-
aging software as classes makes it possible for future software systems to reuse the classes.

Indeed, with object technology, you can build much of the new software you’ll need
by combining existing classes, just as automobile manufacturers combine interchangeable
parts. Each new class you create can become a valuable software asset that you and others
can reuse to speed and enhance the quality of future software development efforts.

15.14.3 Object-Oriented Analysis and Design
Soon you’ll be writing larger programs in C++. How will you create the code for your pro-
grams? Perhaps, like many beginning programmers, you’ll simply turn on your computer
and start typing. This approach may work for small programs, but what if you were asked
to create a software system to control thousands of automated teller machines for a major
bank? Or what if you were asked to work on a team of 1000 software developers building
the next generation of the U.S. air traffic control system? For projects so large and com-
plex, you could not simply sit down and start writing programs.

To create the best solutions, you should follow a detailed process for analyzing your
project’s requirements (i.e., determining what the system is supposed to do) and devel-
oping a design that satisfies them (i.e., deciding how the system should do it). Ideally, you
would go through this process and carefully review the design (or have your design
reviewed by other software professionals) before writing any code. If this process involves
analyzing and designing your system from an object-oriented point of view, it’s called
object-oriented analysis and design (OOAD). Experienced programmers know that anal-
ysis and design can save many hours by helping avoid an ill-planned system development
approach that has to be abandoned partway through its implementation, possibly wasting
considerable time, money and effort.

OOAD is the generic term for the process of analyzing a problem and developing an
approach for solving it. Small problems like the ones discussed in the next few chapters do
not require an exhaustive OOAD process.

As problems and the groups of people solving them increase in size, the methods of
OOAD quickly become more appropriate than pseudocode. Ideally, a group should agree
on a strictly defined process for solving its problem and a uniform way of communicating

Software Engineering Observation 15.11
Reuse of existing classes when building new classes and programs saves time, money and
effort. Reuse also helps you build more reliable and effective systems, because existing classes
often have gone through extensive testing, debugging and performance tuning.

576 Chapter 15 C++ as a Better C; Introducing Object Technology

the results of that process to one another. Although many different OOAD processes exist,
a single graphical language for communicating the results of any OOAD process has come
into wide use. This language, known as the Unified Modeling Language (UML), was
developed in the mid-1990s under the initial direction of three software methodologists:
Grady Booch, James Rumbaugh and Ivar Jacobson.

15.14.4 The Unified Modeling Language
In the 1980s, increasing numbers of organizations began using OOP to build their appli-
cations, and a need developed for a standard OOAD process. Many methodologists—in-
cluding Booch, Rumbaugh and Jacobson—individually produced and promoted separate
processes to satisfy this need. Each process had its own notation, or “language” (in the
form of graphical diagrams), to convey the results of analysis and design.

In 1994, James Rumbaugh joined Grady Booch at Rational Software Corporation
(now a division of IBM), and the two began working to unify their popular processes.
They soon were joined by Ivar Jacobson. In 1996, the group released early versions of the
UML to the software engineering community and requested feedback. Around the same
time, an organization known as the Object Management Group™ (OMG™) invited
submissions for a common modeling language. The OMG (www.omg.org) is a nonprofit
organization that promotes the standardization of object-oriented technologies by issuing
guidelines and specifications, such as the UML. Several corporations—among them HP,
IBM, Microsoft, Oracle and Rational Software—had already recognized the need for a
common modeling language. In response to the OMG’s request for proposals, these com-
panies formed UML Partners—the consortium that developed the UML version 1.1 and
submitted it to the OMG. The OMG accepted the proposal and, in 1997, assumed
responsibility for the continuing maintenance and revision of the UML. We present the
terminology and notation of the current version of the UML—UML version 2—
throughout the C++ section of this book.

The Unified Modeling Language is now the most widely used graphical representa-
tion scheme for modeling object-oriented systems. Those who design systems use the lan-
guage (in the form of diagrams) to model their systems, as we do throughout the C++
section of this book. An attractive feature of the UML is its flexibility. The UML is exten-
sible (i.e., capable of being enhanced with new features) and is independent of any partic-
ular OOAD process. UML modelers are free to use various processes in designing systems,
but all developers can now express their designs with one standard set of graphical nota-
tions. For more information, visit our UML Resource Center at www.deitel.com/UML/.

15.15 Introduction to C++ Standard Library Class
Template vector
We now introduce C++ Standard Library class template vector, which represents a more
robust type of array featuring many additional capabilities.

15.15.1 Problems Associated with C-Style Pointer-Based Arrays
C-style pointer-based arrays (i.e., the type of arrays presented thus far) have great poten-
tial for errors. For example, as mentioned earlier, a program can easily “walk off” either

15.15 Introduction to C++ Standard Library Class Template vector 577

end of an array, because neither C nor C++ check whether indices fall outside the range
of an array.

Two arrays cannot be meaningfully compared with equality operators or relational
operators. As you learned in Chapter 7, pointer variables (known more commonly as
pointers) contain memory addresses as their values. Array names are simply pointers to
where the arrays begin in memory, and, of course, two different arrays will always be at
different memory locations.

When an array is passed to a general-purpose function designed to handle arrays of
any size, the size of the array must be passed as an additional argument. Furthermore, one
array cannot be assigned to another with the assignment operator(s)—array names are
const pointers, so they cannot be used on the left side of an assignment operator.

These and other capabilities certainly seem like “naturals” for dealing with arrays, but
C++ does not provide such capabilities. However, the C++ Standard Library provides class
template vector to allow you to create a more powerful and less error-prone alternative to
arrays. In Chapter 18, we present the means to implement such array capabilities as those
provided by vector. You’ll learn how to customize operators for use with your own classes
(a technique known as operator overloading).

15.15.2 Using Class Template vector
The vector class template is available to anyone building C++ applications. The notations
that the vector example uses might be unfamiliar to you, because vectors use template
notation. In Section 15.13, we discussed function templates. In Chapter 23, we discuss
creating your own class templates. For now, you should feel comfortable using class tem-
plate vector by mimicking the syntax in the example we show in this section.

The program of Fig. 15.14 demonstrates capabilities provided by C++ Standard
Library class template vector that are not available for C-style pointer-based arrays. Stan-
dard class template vector provides many of the same features as the Array class that we
construct in Chapter 18. Standard class template vector is defined in header <vector>
(line 5) and belongs to namespace std. At the end of this section, we’ll demonstrate class
vector’s bounds checking capabilities and introduce C++’s exception-handling mecha-
nism, which can be used to detect and handle an out-of-bounds vector index.

1 // Fig. 15.14: fig15_14.cpp

2 // Demonstrating C++ Standard Library class template vector.

3 #include <iostream>
4 #include <iomanip>
5
6 using namespace std;
7
8 void outputVector(); // display the vector

9 void inputVector(); // input values into the vector
10
11 int main()
12 {
13

14

Fig. 15.14 | Demonstrating C++ Standard Library class template vector. (Part 1 of 4.)

#include <vector>

const vector< int > &
vector< int > &

vector< int > integers1(7); // 7-element vector< int >
vector< int > integers2(10); // 10-element vector< int >

578 Chapter 15 C++ as a Better C; Introducing Object Technology

15

16 // print integers1 size and contents

17 cout << "Size of vector integers1 is " <<
18 << "\nvector after initialization:" << endl;
19 outputVector(integers1);

20
21 // print integers2 size and contents

22 cout << "\nSize of vector integers2 is " <<
23 << "\nvector after initialization:" << endl;
24 outputVector(integers2);

25
26 // input and print integers1 and integers2
27 cout << "\nEnter 17 integers:" << endl;
28 inputVector(integers1);

29 inputVector(integers2);
30
31 cout << "\nAfter input, the vectors contain:\n"
32 << "integers1:" << endl;
33 outputVector(integers1);
34 cout << "integers2:" << endl;
35 outputVector(integers2);

36
37 // use inequality (!=) operator with vector objects

38 cout << "\nEvaluating: integers1 != integers2" << endl;
39
40 if ()

41 cout << "integers1 and integers2 are not equal" << endl;
42
43

44

45
46
47 cout << "\nSize of vector integers3 is " <<
48 << "\nvector after initialization:" << endl;
49 outputVector(integers3);

50

51
52

53

54
55 cout << "integers1:" << endl;
56 outputVector(integers1);

57 cout << "integers2:" << endl;
58 outputVector(integers2);

59
60 // use equality (==) operator with vector objects
61 cout << "\nEvaluating: integers1 == integers2" << endl;
62
63 if ()
64 cout << "integers1 and integers2 are equal" << endl;
65
66 // use square brackets to create rvalue
67 cout << "\nintegers1[5] is " << integers1[5];

Fig. 15.14 | Demonstrating C++ Standard Library class template vector. (Part 2 of 4.)

integers1.size()

integers2.size()

integers1 != integers2

// create vector integers3 using integers1 as an
// initializer; print size and contents

vector< int > integers3(integers1); // copy constructor

integers3.size()

// use overloaded assignment (=) operator

cout << "\nAssigning integers2 to integers1:" << endl;
integers1 = integers2; // assign integers2 to integers1

integers1 == integers2

15.15 Introduction to C++ Standard Library Class Template vector 579

68
69 // use square brackets to create lvalue

70 cout << "\n\nAssigning 1000 to integers1[5]" << endl;
71

72 cout << "integers1:" << endl;
73 outputVector(integers1);
74
75

76
77

78

79
80

81

82
83

84

85 }

86
87 // output vector contents

88 void outputVector()

89 {
90

91
92 for (i = 0; i < ; ++i)
93 {

94 cout << setw(12) << ;

95
96 if ((i + 1) % 4 == 0) // 4 numbers per row of output
97 cout << endl;

98 }
99
100 if (i % 4 != 0)
101 cout << endl;
102 }

103
104 // input vector contents
105 void inputVector()

106 {

107 for (size_t i = 0; i < ; ++i)
108 cin >> ;

109 }

Size of vector integers1 is 7
vector after initialization:
 0 0 0 0
 0 0 0

Size of vector integers2 is 10
vector after initialization:
 0 0 0 0
 0 0 0 0
 0 0

Fig. 15.14 | Demonstrating C++ Standard Library class template vector. (Part 3 of 4.)

integers1[5] = 1000;

// attempt to use out-of-range index

try
{
 cout << "\nAttempt to display integers1.at(15)" << endl;
 cout << integers1.at(15) << endl; // ERROR: out of range
}
catch (out_of_range &ex)
{

 cout << "An exception occurred: " << ex.what() << endl;
}

const vector< int > &array

size_t i; // declare control variable

array.size()

array[i]

vector< int > &array

array.size()

array[i]

580 Chapter 15 C++ as a Better C; Introducing Object Technology

Creating vector Objects
Lines 13–14 create two vector objects that store values of type int—integers1 contains
seven elements, and integers2 contains 10 elements. By default, all the elements of each
vector object are set to 0. Note that vectors can be defined to store any data type, by re-
placing int in vector<int> with the appropriate data type. This notation, which specifies
the type stored in the vector, is similar to the template notation that Section 15.13 intro-
duced with function templates.

vector Member Function size; Function outputVector
Line 17 uses vector member function size to obtain the size (i.e., the number of elements)
of integers1. To invoke a member function, you access it with the dot (.) operator, just as

Enter 17 integers:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
After input, the vectors contain:
integers1:
 1 2 3 4
 5 6 7
integers2:
 8 9 10 11
 12 13 14 15
 16 17

Evaluating: integers1 != integers2
integers1 and integers2 are not equal

Size of vector integers3 is 7
vector after initialization:
 1 2 3 4
 5 6 7

Assigning integers2 to integers1:
integers1:
 8 9 10 11
 12 13 14 15
 16 17
integers2:
 8 9 10 11
 12 13 14 15
 16 17

Evaluating: integers1 == integers2
integers1 and integers2 are equal

integers1[5] is 13

Assigning 1000 to integers1[5]
integers1:
 8 9 10 11
 12 1000 14 15
 16 17

Attempt to display integers1.at(15)
An exception occurred: invalid vector<T> subscript

Fig. 15.14 | Demonstrating C++ Standard Library class template vector. (Part 4 of 4.)

15.15 Introduction to C++ Standard Library Class Template vector 581

you do with struct and union members. Line 19 passes integers1 to function outputVec-
tor (lines 88–102), which uses square brackets, [] (line 94), to obtain the value in each ele-
ment of the vector for output. Note the resemblance of this notation to that used to access
the value of an array element. Lines 22 and 24 perform the same tasks for integers2.

Member function size of class template vector returns the number of elements in a
vector as a value of type size_t (which represents the type unsigned int on many sys-
tems). As a result, line 90 declares the control variable i to be of type size_t, too. On
some compilers, declaring i as an int causes the compiler to issue a warning message, since
the loop-continuation condition (line 92) would compare a signed value (i.e., int i) and
an unsigned value (i.e., a value of type size_t returned by function size).

Function inputVector
Lines 28–29 pass integers1 and integers2 to function inputVector (lines 105–109) to
read values for each vector’s elements from the user. The function uses square brackets
([]) to form lvalues that are used to store the input values in each vector element.

Comparing vector Objects for Inequality
Line 40 demonstrates that vector objects can be compared with one another using the !=
operator. If the contents of two vectors are not equal, the operator returns true; other-
wise, it returns false.

Initializing One vector with the Contents of Another
The C++ Standard Library class template vector allows you to create a new vector object
that is initialized with the contents of an existing vector. Line 45 creates a vector object
integers3 and initializes it with a copy of integers1. This invokes vector’s so-called
copy constructor to perform the copy operation. You’ll learn how to create copy construc-
tors in Chapter 18. Lines 47–49 output the size and contents of integers3 to demonstrate
that it was initialized correctly.

Assigning vectors and Comparing vectors for Equality
Line 53 assigns integers2 to integers1, demonstrating that the assignment (=) operator
can be used with vector objects. Lines 55–58 output the contents of both objects to show
that they now contain identical values. Line 63 then compares integers1 to integers2
with the equality (==) operator to determine whether the contents of the two objects are
equal after the assignment in line 53 (which they are).

Using the [] Operator to Access and Modify vector Elements
Lines 67 and 71 use square brackets ([]) to obtain a vector element as an rvalue and as
an lvalue, respectively. An rvalue cannot be modified, but an lvalue can. As is the case with
C-style pointer-based arrays, C++ does not perform any bounds checking when vector ele-
ments are accessed with square brackets. Therefore, you must ensure that operations using
[] do not accidentally attempt to manipulate elements outside the bounds of the vector.
Standard class template vector does, however, provide bounds checking in its member
function at, which we use at line 79 and discuss shortly.

15.15.3 Exception Handling: Processing an Out-of-Range Index
An exception indicates a problem that occurs while a program executes. The name “excep-
tion” suggests that the problem occurs infrequently—if the “rule” is that a statement nor-

582 Chapter 15 C++ as a Better C; Introducing Object Technology

mally executes correctly, then the problem represents the “exception to the rule.”
Exception handling enables you to create fault-tolerant programs that can resolve (or
handle) exceptions. In many cases, this allows a program to continue executing as if no
problems were encountered. For example, Fig. 15.14 still runs to completion, even though
an attempt was made to access an out-of-range index. More severe problems might prevent
a program from continuing normal execution, instead requiring the program to notify the
user of the problem, then terminate. When a function detects a problem, such as an invalid
array index or an invalid argument, it throws an exception—that is, an exception occurs.
Here we introduce exception handling briefly. We’ll discuss it in detail in Chapter 22.

The try Statement
To handle an exception, place any code that might throw an exception in a try statement
(lines 76–84). The try block (lines 76–80) contains the code that might throw an excep-
tion, and the catch block (lines 81–84) contains the code that handles the exception if one
occurs. You can have many catch blocks to handle different types of exceptions that might
be thrown in the corresponding try block. If the code in the try block executes success-
fully, lines 81–84 are ignored. The braces that delimit try and catch blocks’ bodies are
required.

The vector member function at provides bounds checking and throws an exception
if its argument is an invalid index. By default, this causes a C++ program to terminate. If
the index is valid, function at returns the element at the specified location as a modifiable
lvalue or an unmodifiable lvalue, depending on the context in which the call appears. An
unmodifiable lvalue is an expression that identifies an object in memory (such as an ele-
ment in a vector), but cannot be used to modify that object.

Executing the catch Block
When the program calls vector member function at with the argument 15 (line 79), the
function attempts to access the element at location 15, which is outside the vector’s
bounds—integers1 has only 10 elements at this point. Because bounds checking is per-
formed at execution time, vector member function at generates an exception—specifically
line 79 throws an out_of_range exception (from header <stdexcept>) to notify the pro-
gram of this problem. At this point, the try block terminates immediately and the catch
block begins executing—if you declared any variables in the try block, they’re now out of
scope and are not accessible in the catch block. [Note: To avoid compilation errors with
GNU C++, you may need to include header <stdexcept> to use class out_of_range.]

The catch block declares a type (out_of_range) and an exception parameter (ex) that
it receives as a reference. The catch block can handle exceptions of the specified type. Inside
the block, you use the parameter’s identifier to interact with a caught exception object.

what Member Function of the Exception Parameter
When lines 81–84 catch the exception, the program displays a message indicating the
problem that occurred. Line 83 calls the exception object’s what member function to get
the error message that is stored in the exception object and display it. Once the message is
displayed in this example, the exception is considered handled and the program continues
with the next statement after the catch block’s closing brace. In this example, the end of
the program is reached, so the program terminates. We use exception handling throughout
our treatment of C++; Chapter 22 presents a deeper look at exception handling.

15.16 Wrap-Up 583

Summary of This Example
In this section, we demonstrated the C++ Standard Library class template vector, a ro-
bust, reusable class that can replace C-style pointer-based arrays. In Chapter 18, you’ll see
that vector achieves many of its capabilities by “overloading” C++’s built-in operators,
and you’ll learn how to customize operators for use with your own classes in similar ways.
For example, we create an Array class that, like class template vector, improves upon basic
array capabilities. Our Array class also provides additional features, such as the ability to
input and output entire arrays with operators >> and <<, respectively.

15.16 Wrap-Up
In this chapter, you learned several of C++’s enhancements to C. We presented basic C++-
style input and output with cin and cout and overviewed the C++ Standard Library head-
er files. We discussed inline functions for improving performance by eliminating the
overhead of function calls. You learned how to use pass-by-reference with C++’s reference
parameters, which enable you to create aliases for existing variables. You learned that mul-
tiple functions can be overloaded by providing functions with the same name and different
signatures; such functions can be used to perform the same or similar tasks, using different
types or different numbers of parameters. We then demonstrated a simpler way of over-
loading functions using function templates, where a function is defined once but can be
used for several different types. You learned the basic terminology of object technology
and were introduced to the UML—the most widely used graphical representation scheme
for modeling OO systems. In Chapter 16, you’ll learn how to implement your own classes
and use objects of those classes in applications.

Summary
Section 15.2 C++
• C++ improves on many of C’s features and provides object-oriented-programming (OOP;

p. 550) capabilities that increase software productivity, quality and reusability.

• C++ was developed by Bjarne Stroustrup at Bell Labs and was originally called “C with classes.”

Section 15.3 A Simple Program: Adding Two Integers
• C++ filenames can have one of several extensions, such as .cpp, .cxx or .C (uppercase).

• C++ allows you to begin a comment with // and use the remainder of the line as comment text.
C++ programmers may also use comments delimited by /* and */.

• The input/output stream header file <iostream> (p. 552) must be included for any program that
outputs data to the screen or inputs data from the keyboard using C++-style stream input/output.

• As in C, every C++ program begins execution with function main. Keyword int to the left of
main indicates that main “returns” an integer value.

• In C, you need not specify a return type for functions. However, C++ requires you to specify the
return type, possibly void, for all functions; otherwise, a syntax error occurs.

• Declarations can be placed almost anywhere in a C++ program, but they must appear before their
corresponding variables are used in the program.

• The standard output stream object (std::cout; p. 552) and the stream insertion operator (<<;
p. 552) are used to display text on the screen.

584 Chapter 15 C++ as a Better C; Introducing Object Technology

• The standard input stream object (std::cin; p. 552) and the stream extraction operator (>>;
p. 552) are used to obtain values from the keyboard.

• The stream manipulator std::endl (p. 553) outputs a newline, then “flushes the output buffer.”

• The notation std::cout specifies that cout belongs to “namespace” std.

• Using multiple stream insertion operators (<<) in a single statement is referred to as concatenat-
ing, chaining or cascading stream insertion operations (p. 553).

Section 15.4 C++ Standard Library
• C++ programs consist of pieces called classes and functions. You can program each piece you may

need to form a C++ program. However, most C++ programmers take advantage of the rich col-
lections of existing classes and functions in the C++ Standard Library (p. 554).

Section 15.5 Header Files
• The C++ Standard Library is divided into many portions, each with its own header file. The

header files contain the function prototypes for the related functions that form each portion of
the library. The header files also contain definitions of various class types and functions, as well
as constants needed by those functions.

• Header file names ending in .h are “old-style” header files that have been superceded by the C++
Standard Library header files.

Section 15.6 Inline Functions
• C++ provides inline functions (p. 556) to help reduce function call overhead. Placing the qual-

ifier inline (p. 556) before a function’s return type in the function definition “advises” the com-
piler to generate a copy of the function’s code in place to avoid a function call.

Section 15.8 References and Reference Parameters
• Two ways to pass arguments to functions in many programming languages are pass-by-value and

pass-by-reference.

• When an argument is passed by value, a copy of its value is made and passed (on the function
call stack) to the called function. Changes to the copy do not affect the original in the caller.

• With pass-by-reference, the caller gives the called function the ability to access the caller’s data
directly and to modify it if the called function chooses to do so.

• A reference parameter (p. 559) is an alias for its corresponding argument in a function call.

• Type-safe linkage ensures that the proper overloaded function is called and that the types of the
arguments conform to the types of the parameters.

• To indicate that a function parameter is passed by reference, simply follow the parameter’s type
in the function prototype by an ampersand (&); use the same notation when listing the pa-
rameter’s type in the function header.

• Once a reference is declared as an alias for another variable, all operations supposedly performed
on the alias (i.e., the reference) are actually performed on the original variable. The alias is simply
another name for the original variable.

Section 15.9 Empty Parameter Lists
• In C++, an empty parameter list is specified by writing either void or nothing in parentheses.

Section 15.10 Default Arguments
• It’s not uncommon for a program to invoke a function repeatedly with the same argument value

for a particular parameter. In such cases, the programmer can specify that such a parameter has
a default argument (p. 564), i.e., a default value to be passed to that parameter.

 Summary 585

• When a program omits an argument for a parameter with a default argument, the compiler in-
serts the default value of that argument to be passed as an argument in the function call.

• Default arguments must be the rightmost (trailing) arguments in a function’s parameter list.

• Default arguments should be specified with the first occurrence of the function name—typically,
in the function prototype.

Section 15.11 Unary Scope Resolution Operator
• C++ provides the unary scope resolution operator (::, p. 566) to access a global variable when

a local variable of the same name is in scope.

Section 15.12 Function Overloading
• C++ enables several functions of the same name to be defined, as long as they have different sets of

parameters (by number, type and/or order). This capability is called function overloading (p. 567).

• When an overloaded function is called, the C++ compiler selects the proper function by exam-
ining the number, types and order of the arguments in the call.

• Overloaded functions are distinguished by their signatures (p. 568).

• The compiler encodes each function identifier with the number and types of its parameters to
enable type-safe linkage.

Section 15.13 Function Templates
• Overloaded functions are used to perform similar operations that may involve different program

logic on data of different types. If the program logic and operations are identical for each data
type, overloading may be performed more compactly and conveniently using function templates
(p. 570).

• The programmer writes a single function template definition. Given the argument types provid-
ed in calls to this function, C++ automatically generates separate function template specializa-
tions (p. 570) to handle each type of call appropriately. Thus, defining a single function template
essentially defines a family of overloaded functions.

• All function template definitions begin with the template keyword followed by a template pa-
rameter list (p. 571) to the function template enclosed in angle brackets (< and >).

• The formal type parameters (p. 571) are placeholders for fundamental types or user-defined
types. These placeholders are used to specify the types of the function’s parameters, to specify the
function’s return type and to declare variables within the body of the function definition.

Section 15.14 Introduction to Object Technology and the UML
• The Unified Modeling Language (UML; p. 573) is a graphical language that allows people who

build systems to represent their object-oriented designs in a common notation.

• Object-oriented design (OOD; p. 573) models software components in terms of real-world ob-
jects. It takes advantage of class relationships, where objects (p. 573) of a certain class have the
same characteristics. It also takes advantage of inheritance relationships, where newly created
classes of objects are derived by absorbing characteristics of existing classes and adding unique
characteristics of their own. OOD encapsulates data (attributes; p. 573) and functions (behav-
ior; p. 573) into objects—the data and functions of an object are intimately tied together.

• Objects have the property of information hiding (p. 574)—objects normally are not allowed to
know how other objects are implemented.

• Object-oriented programming (OOP) allows programmers to implement object-oriented de-
signs as working systems.

586 Chapter 15 C++ as a Better C; Introducing Object Technology

• C++ programmers create their own user-defined types called classes. Each class contains data
(known as data members; p. 574) and the set of functions (known as member functions; p. 574)
that manipulate that data and provide services to clients.

• Classes can have relationships with other classes called associations (p. 575).

• Packaging software as classes makes it possible for future software systems to reuse (p. 575) the
classes. Groups of related classes are often packaged as reusable components.

• An instance of a class is called an object.

• With object technology, programmers can build much of the software they will need by combin-
ing standardized, interchangeable parts called classes.

• The process of analyzing and designing a system from an object-oriented point of view is called
object-oriented analysis and design (OOAD; p. 575).

Section 15.15 Introduction to C++ Standard Library Class Template vector
• C++ Standard Library class template vector (p. 576) represents a more robust alternative to ar-

rays featuring many capabilities that are not provided for C-style pointer-based arrays.

• By default, all the elements of an integer vector object are set to 0.

• A vector can be defined to store any data type using a declaration of the form

vector<type> name(size);

• Member function size (p. 580) of class template vector returns the number of elements in the
vector on which it’s invoked.

• The value of an element of a vector can be accessed or modified using square brackets ([]).

• Objects of standard class template vector can be compared directly with the equality (==) and
inequality (!=) operators. The assignment (=) operator can also be used with vector objects.

• An unmodifiable lvalue is an expression that identifies an object in memory (such as an element
in a vector), but cannot be used to modify that object. A modifiable lvalue also identifies an ob-
ject in memory, but can be used to modify the object.

• An exception (p. 581) indicates a problem that occurs while a program executes. The name “ex-
ception” suggests that the problem occurs infrequently—if the “rule” is that a statement normally
executes correctly, then the problem represents the “exception to the rule.”

• Exception handling (p. 582) enables you to create fault-tolerant programs (p. 582) that can re-
solve exceptions.

• To handle an exception, place any code that might throw an exception (p. 582) in a try state-
ment.

• The try block (p. 582) contains the code that might throw an exception, and the catch block
(p. 582) contains the code that handles the exception if one occurs.

• When a try block terminates any variables declared in the try block go out of scope.

• A catch block declares a type and an exception parameter. Inside the catch block, you can use
the parameter’s identifier to interact with a caught exception object.

• An exception object’s what method (p. 582) returns the exception’s error message.

Self-Review Exercises
15.1 Answer each of the following:

a) In C++, it’s possible to have various functions with the same name that operate on dif-
ferent types or numbers of arguments. This is called function .

 Answers to Self-Review Exercises 587

b) The enables access to a global variable with the same name as a variable in the
current scope.

c) A function enables a single function to be defined to perform the same task
on data of many different types.

d) is the most widely used graphical representation scheme for OO modeling.
e) models software components in terms of real-world objects.
f) C++ programmers create their own user-defined types called .

15.2 Why would a function prototype contain a parameter type declaration such as double &?

15.3 (True/False) All arguments to function calls in C++ are passed by value.

15.4 Write a complete program that prompts the user for the radius of a sphere, and calculates
and prints the volume of that sphere. Use an inline function sphereVolume that returns the result
of the following expression: (4.0 / 3.0) * 3.14159 * pow(radius, 3).

Answers to Self-Review Exercises
15.1 a) overloading. b) unary scope resolution operator (::). c) template. d) The UML.
e) Object-oriented design (OOD). f) classes.

15.2 This creates a reference parameter of type “reference to double” that enables the function
to modify the original variable in the calling function.

15.3 False. C++ enables pass-by-reference using reference parameters.

15.4 See the following program:

1 // Exercise 15.4 Solution: Ex15_04.cpp

2 // Inline function that calculates the volume of a sphere.

3 #include <iostream>
4 #include <cmath>
5
6 const double PI = 3.14159; // define global constant PI
7
8 // calculates volume of a sphere

9 inline double sphereVolume(const double radius)
10 {

11 return 4.0 / 3.0 * PI * pow(radius, 3);
12 }

13
14 int main()
15 {

16 double radiusValue;
17
18 // prompt user for radius

19 cout << "Enter the length of the radius of your sphere: ";
20 cin >> radiusValue; // input radius

21
22 // use radiusValue to calculate volume of sphere and display result

23 cout << "Volume of sphere with radius " << radiusValue
24 << " is " << sphereVolume(radiusValue) << endl;
25 }

Enter the length of the radius of your sphere: 2
Volume of sphere with radius 2 is 33.5103

588 Chapter 15 C++ as a Better C; Introducing Object Technology

Exercises
15.5 Write a C++ program that prompts the user for the radius of a circle, then calls inline func-
tion circleArea to calculate the area of that circle.

15.6 Write a complete C++ program with the two alternate functions specified below, each of
which simply triples the variable count defined in main. Then compare and contrast the two ap-
proaches. These two functions are

a) function tripleByValue that passes a copy of count by value, triples the copy and re-
turns the new value and

b) function tripleByReference that passes count by reference via a reference parameter
and triples the original value of count through its alias (i.e., the reference parameter).

15.7 What is the purpose of the unary scope resolution operator?

15.8 Write a program that uses a function template called min to determine the smaller of two
arguments. Test the program using integer, character and floating-point number arguments.

15.9 Write a program that uses a function template called max to determine the larger of two ar-
guments. Test the program using integer, character and floating-point number arguments.

15.10 Determine whether the following program segments contain errors. For each error, explain
how to correct it. [Note: It’s possible that no errors are present in the segment.]

a) template < class A >
int sum(int num1, int num2, int num3)
{

 return num1 + num2 + num3;
}

b) void printResults(int x, int y)
{

 cout << "The sum is " << x + y << '\n';
 return x + y;
}

c) template < A >
A product(A num1, A num2, A num3)

{

 return num1 * num2 * num3;
}

d) double cube(int);
int cube(int);

16Introduction to Classes,
Objects and Strings

O b j e c t i v e s
In this chapter you’ll learn:

■ How to define a class and use
it to create an object.

■ How to implement a class’s
behaviors as member
functions.

■ How to implement a class’s
attributes as data members.

■ How to call a member
function of an object to
perform a task.

■ The differences between data
members of a class and local
variables of a function.

■ How to use a constructor to
initialize an object’s data
when the object is created.

■ How to engineer a class to
separate its interface from its
implementation and
encourage reuse.

■ How to use objects of class
string.

590 Chapter 16 Introduction to Classes, Objects and Strings

16.1 Introduction
In this chapter, you’ll begin writing programs that employ the basic concepts of object-ori-
ented programming that we introduced in Sections 1.8 and 15.14. Typically, the programs
you develop in this portion of the book will consist of function main and one or more class-
es, each containing data members and member functions. If you become part of a develop-
ment team in industry, you might work on software systems that contain hundreds, or
even thousands, of classes. In this chapter, we develop a simple, well-engineered frame-
work for organizing object-oriented programs in C++.

We present a carefully paced sequence of complete working programs to demonstrate
creating and using your own classes. These examples begin our integrated case study on
developing a grade-book class that instructors can use to maintain student test scores. We
also introduce the C++ standard library class string.

16.2 Defining a Class with a Member Function
We begin with an example (Fig. 16.1) that consists of class GradeBook (lines 8–16)—
which will represent a grade book that an instructor can use to maintain student test
scores—and a main function (lines 19–23) that creates a GradeBook object. Function main
uses this object and its displayMessage member function (lines 12–15) to display a mes-
sage on the screen welcoming the instructor to the grade-book program.

16.1 Introduction
16.2 Defining a Class with a Member

Function
16.3 Defining a Member Function with a

Parameter
16.4 Data Members, set Member

Functions and get Member Functions
16.5 Initializing Objects with

Constructors

16.6 Placing a Class in a Separate File for
Reusability

16.7 Separating Interface from
Implementation

16.8 Validating Data with set Functions
16.9 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

1 // Fig. 16.1: fig16_01.cpp

2 // Define class GradeBook with a member function displayMessage,
3 // create a GradeBook object, and call its displayMessage function.

4 #include <iostream>
5 using namespace std;
6

Fig. 16.1 | Define class GradeBook with a member function displayMessage, create a
GradeBook object and call its displayMessage function. (Part 1 of 2.)

16.2 Defining a Class with a Member Function 591

Class GradeBook
Before function main (lines 19–23) can create a GradeBook object, we must tell the com-
piler what member functions and data members belong to the class. The GradeBook class
definition (lines 8–16) contains a member function called displayMessage (lines 12–15)
that displays a message on the screen (line 14). We need to make an object of class Grade-
Book (line 21) and call its displayMessage member function (line 22) to get line 14 to
execute and display the welcome message. We’ll soon explain lines 21–22 in detail.

The class definition begins in line 8 with the keyword class followed by the class
name GradeBook. By convention, the name of a user-defined class begins with a capital
letter, and for readability, each subsequent word in the class name begins with a capital
letter. This capitalization style is often referred to as Pascal case, because the convention
was widely used in the Pascal programming language. The occasional uppercase letters
resemble a camel’s humps. More generally, camel case capitalization style allows the first
letter to be either lowercase or uppercase (e.g., myGradeBook in line 21).

Every class’s body is enclosed in a pair of left and right braces ({ and }), as in lines 9
and 16. The class definition terminates with a semicolon (line 16).

Recall that the function main is always called automatically when you execute a pro-
gram. Most functions do not get called automatically. As you’ll soon see, you must call
member function displayMessage explicitly to tell it to perform its task.

7
8
9

10
11
12
13
14
15
16
17
18 // function main begins program execution
19 int main()
20 {

21
22

23 } // end main

Welcome to the Grade Book!

Common Programming Error 16.1
Forgetting the semicolon at the end of a class definition is a syntax error.

Fig. 16.1 | Define class GradeBook with a member function displayMessage, create a
GradeBook object and call its displayMessage function. (Part 2 of 2.)

// GradeBook class definition
class GradeBook
{

public:
 // function that displays a welcome message to the GradeBook user

 void displayMessage() const
 {
 cout << "Welcome to the Grade Book!" << endl;
 } // end function displayMessage

}; // end class GradeBook

GradeBook myGradeBook; // create a GradeBook object named myGradeBook

myGradeBook.displayMessage(); // call object's displayMessage function

592 Chapter 16 Introduction to Classes, Objects and Strings

Line 10 contains the keyword public, which is an access specifier. Lines 12–15 define
member function displayMessage. This member function appears after access specifier
public: to indicate that the function is “available to the public”—that is, it can be called
by other functions in the program (such as main), and by member functions of other
classes (if there are any). Access specifiers are always followed by a colon (:). For the
remainder of the text, when we refer to the access specifier public in the text, we’ll omit
the colon as we did in this sentence. Section 16.4 introduces the access specifier private.
Later in the book we’ll study the access specifier protected.

Each function in a program performs a task and may return a value when it completes
its task—for example, a function might perform a calculation, then return the result of
that calculation. When you define a function, you must specify a return type to indicate
the type of the value returned by the function when it completes its task. In line 12, key-
word void to the left of the function name displayMessage is the function’s return type.
Return type void indicates that displayMessage will not return any data to its calling
function (in this example, line 22 of main, as we’ll see in a moment) when it completes its
task. In Fig. 16.5, you’ll see an example of a function that does return a value.

The name of the member function, displayMessage, follows the return type (line
12). By convention, our function names use the camel case style with a lowercase first letter.
The parentheses after the member function name indicate that this is a function. An empty
set of parentheses, as shown in line 12, indicates that this member function does not
require additional data to perform its task. You’ll see an example of a member function
that does require additional data in Section 16.3.

We declared member function displayMessage const in line 12 because in the pro-
cess of displaying "Welcome to the Grade Book!" the function does not, and should not,
modify the GradeBook object on which it’s called. Declaring displayMessage const tells
the compiler, “this function should not modify the object on which it’s called—if it does,
please issue a compilation error.” This can help you locate errors if you accidentally insert
code in displayMessage that would modify the object. Line 12 is commonly referred to
as a function header.

Every function’s body is delimited by left and right braces ({ and }), as in lines 13 and
15. The function body contains statements that perform the function’s task. In this case,
member function displayMessage contains one statement (line 14) that displays the mes-
sage "Welcome to the Grade Book!". After this statement executes, the function has com-
pleted its task.

Testing Class GradeBook
Next, we’d like to use class GradeBook in a program. The function main (lines 19–23) be-
gins the program’s execution. In this program, we’d like to call class GradeBook’s dis-
playMessage member function to display the welcome message. Typically, you cannot call
a member function of a class until you create an object of that class. (As you’ll learn in
Section 17.14, static member functions are an exception.) Line 21 creates an object of
class GradeBook called myGradeBook. The variable’s type is GradeBook—the class we de-
fined in lines 8–16. When we declare variables of type int, the compiler knows what int
is—it’s a fundamental type that’s “built into” C++. In line 21, however, the compiler does
not automatically know what type GradeBook is—it’s a user-defined type. We tell the
compiler what GradeBook is by including the class definition (lines 8–16). If we omitted

16.3 Defining a Member Function with a Parameter 593

these lines, the compiler would issue an error message. Each class you create becomes a new
type that can be used to create objects. You can define new class types as needed; this is one
reason why C++ is known as an extensible programming language.

Line 22 calls the member function displayMessage using variable myGradeBook fol-
lowed by the dot operator (.), the function name displayMessage and an empty set of
parentheses. This call causes the displayMessage function to perform its task. At the
beginning of line 22, “myGradeBook.” indicates that main should use the GradeBook object
that was created in line 21. The empty parentheses in line 12 indicate that member function
displayMessage does not require additional data to perform its task, which is why we
called this function with empty parentheses in line 22. (In Section 16.3, you’ll see how to
pass data to a function.) When displayMessage completes its task, the program reaches
the end of main (line 23) and terminates.

UML Class Diagram for Class GradeBook
Recall from Section 15.14 that the UML is a standardized graphical language used by soft-
ware developers to represent their object-oriented systems. In the UML, each class is mod-
eled in a UML class diagram as a rectangle with three compartments. Figure 16.2 presents
a class diagram for class GradeBook (Fig. 16.1). The top compartment contains the class’s
name centered horizontally and in boldface type. The middle compartment contains the
class’s attributes, which correspond to data members in C++. This compartment is cur-
rently empty, because class GradeBook does not yet have any attributes. (Section 16.4 pres-
ents a version of class GradeBook with an attribute.) The bottom compartment contains the
class’s operations, which correspond to member functions in C++. The UML models op-
erations by listing the operation name followed by a set of parentheses. Class GradeBook
has only one member function, displayMessage, so the bottom compartment of Fig. 16.2
lists one operation with this name. Member function displayMessage does not require ad-
ditional information to perform its tasks, so the parentheses following displayMessage in
the class diagram are empty, just as they are in the member function’s header in line 12 of
Fig. 16.1. The plus sign (+) in front of the operation name indicates that displayMessage
is a public operation in the UML (i.e., a public member function in C++).

16.3 Defining a Member Function with a Parameter
In our car analogy from Section 1.8, we mentioned that pressing a car’s gas pedal sends a
message to the car to perform a task—make the car go faster. But how fast should the car
accelerate? As you know, the farther down you press the pedal, the faster the car acceler-
ates. So the message to the car includes both the task to perform and additional information
that helps the car perform the task. This additional information is known as a parameter—

Fig. 16.2 | UML class diagram indicating that class GradeBook has a public
displayMessage operation.

GradeBook

+ displayMessage()

594 Chapter 16 Introduction to Classes, Objects and Strings

the value of the parameter helps the car determine how fast to accelerate. Similarly, a mem-
ber function can require one or more parameters that represent additional data it needs to
perform its task. A function call supplies values—called arguments—for each of the func-
tion’s parameters. For example, to make a deposit into a bank account, suppose a deposit
member function of an Account class specifies a parameter that represents the deposit
amount. When the deposit member function is called, an argument value representing
the deposit amount is copied to the member function’s parameter. The member function
then adds that amount to the account balance.

Defining and Testing Class GradeBook
Our next example (Fig. 16.3) redefines class GradeBook (lines 9–18) with a display-
Message member function (lines 13–17) that displays the course name as part of the wel-
come message. The new version of displayMessage requires a parameter (courseName in
line 13) that represents the course name to output.

1 // Fig. 16.3: fig16_03.cpp

2 // Define class GradeBook with a member function that takes a parameter,

3 // create a GradeBook object and call its displayMessage function.
4 #include <iostream>
5
6 using namespace std;
7
8 // GradeBook class definition

9 class GradeBook
10 {

11 public:
12 // function that displays a welcome message to the GradeBook user
13 void displayMessage() const
14 {

15 cout << "Welcome to the grade book for\n" << << "!"
16 << endl;

17 } // end function displayMessage

18 }; // end class GradeBook
19
20 // function main begins program execution

21 int main()
22 {

23 // string of characters to store the course name

24 GradeBook myGradeBook; // create a GradeBook object named myGradeBook
25

26 // prompt for and input course name

27 cout << "Please enter the course name:" << endl;
28

29 cout << endl; // output a blank line

30
31 // call myGradeBook's displayMessage function

32 // and pass nameOfCourse as an argument

33
34 } // end main

Fig. 16.3 | Define class GradeBook with a member function that takes a parameter, create a
GradeBook object and call its displayMessage function. (Part 1 of 2.)

#include <string> // program uses C++ standard string class

string courseName

courseName

string nameOfCourse;

getline(cin, nameOfCourse); // read a course name with blanks

myGradeBook.displayMessage(nameOfCourse);

16.3 Defining a Member Function with a Parameter 595

Before discussing the new features of class GradeBook, let’s see how the new class is
used in main (lines 21–34). Line 23 creates a variable of type string called nameOfCourse
that will be used to store the course name entered by the user. A variable of type string
represents a string of characters such as “CS101 Introduction to C++ Programming". A
string is actually an object of the C++ Standard Library class string. This class is defined
in header <string>, and the name string, like cout, belongs to namespace std. To
enable lines 13 and 23 to compile, line 5 includes the <string> header. The using direc-
tive in line 6 allows us to simply write string in line 23 rather than std::string. For
now, you can think of string variables like variables of other types such as int. You’ll
learn additional string capabilities in Section 16.8.

Line 24 creates an object of class GradeBook named myGradeBook. Line 27 prompts
the user to enter a course name. Line 28 reads the name from the user and assigns it to the
nameOfCourse variable, using the library function getline to perform the input. Before
we explain this line of code, let’s explain why we cannot simply write

to obtain the course name.
In our sample program execution, we use the course name “CS101 Introduction to

C++ Programming,” which contains multiple words separated by blanks. (Recall that we
highlight user-entered data in bold.) When reading a string with the stream extraction
operator, cin reads characters until the first white-space character is reached. Thus, only
“CS101” would be read by the preceding statement. The rest of the course name would
have to be read by subsequent input operations.

In this example, we’d like the user to type the complete course name and press Enter
to submit it to the program, and we’d like to store the entire course name in the string
variable nameOfCourse. The function call getline(cin, nameOfCourse) in line 28 reads
characters (including the space characters that separate the words in the input) from the
standard input stream object cin (i.e., the keyboard) until the newline character is encoun-
tered, places the characters in the string variable nameOfCourse and discards the newline
character. When you press Enter while entering data, a newline is inserted in the input
stream. The <string> header must be included in the program to use function getline,
which belongs to namespace std.

Line 33 calls myGradeBook’s displayMessage member function. The nameOfCourse
variable in parentheses is the argument that’s passed to member function displayMessage so
that it can perform its task. The value of variable nameOfCourse in main is copied to member
function displayMessage’s parameter courseName in line 13. When you execute this pro-
gram, member function displayMessage outputs as part of the welcome message the course
name you type (in our sample execution, CS101 Introduction to C++ Programming).

Please enter the course name:
CS101 Introduction to C++ Programming
Welcome to the grade book for
CS101 Introduction to C++ Programming!

cin >> nameOfCourse;

Fig. 16.3 | Define class GradeBook with a member function that takes a parameter, create a
GradeBook object and call its displayMessage function. (Part 2 of 2.)

596 Chapter 16 Introduction to Classes, Objects and Strings

More on Arguments and Parameters
To specify in a function definition that the function requires data to perform its task, you
place additional information in the function’s parameter list, which is located in the pa-
rentheses following the function name. The parameter list may contain any number of pa-
rameters, including none at all (represented by empty parentheses as in Fig. 16.1, line 12)
to indicate that a function does not require any parameters. The displayMessage member
function’s parameter list (Fig. 16.3, line 13) declares that the function requires one param-
eter. Each parameter specifies a type and an identifier. The type string and the identifier
courseName indicate that member function displayMessage requires a string to perform
its task. The member function body uses the parameter courseName to access the value
that’s passed to the function in the function call (line 33 in main). Lines 15–16 display
parameter courseName’s value as part of the welcome message.

A function can specify multiple parameters by separating each from the next with a
comma. The number and order of arguments in a function call must match the number
and order of parameters in the parameter list of the called member function’s header. Also,
the argument types in the function call must be consistent with the types of the corre-
sponding parameters in the function header. (As you’ll learn in subsequent chapters, an
argument’s type and its corresponding parameter’s type need not always be identical, but
they must be “consistent.”) In our example, the one string argument in the function call
(i.e., nameOfCourse) exactly matches the one string parameter in the member-function
definition (i.e., courseName).

Updated UML Class Diagram for Class GradeBook
The UML class diagram of Fig. 16.4 models class GradeBook of Fig. 16.3. Like the class
GradeBook defined in Fig. 16.1, this GradeBook class contains public member function
displayMessage. However, this version of displayMessage has a parameter. The UML
models a parameter by listing the parameter name, followed by a colon and the parameter
type in the parentheses following the operation name. The UML has its own data types
similar to those of C++.

The UML is language independent—it’s used with many different programming lan-
guages—so its terminology does not exactly match that of C++. For example, the UML
type String corresponds to the C++ type string. Member function displayMessage of
class GradeBook (Fig. 16.3, lines 13–17) has a string parameter named courseName, so
Fig. 16.4 lists courseName : String between the parentheses following the operation
name displayMessage. This version of the GradeBook class still does not have any data
members.

Fig. 16.4 | UML class diagram indicating that class GradeBook has a public
displayMessage operation with a courseName parameter of UML type String.

GradeBook

+ displayMessage(courseName : String)

16.4 Data Members, set Member Functions and get Member Functions 597

16.4 Data Members, set Member Functions and get
Member Functions
As you know, variables declared in a function definition’s body are known as local vari-
ables and can be used only from the line of their declaration in the function to the closing
right brace (}) of the block in which they’re declared. A local variable must be declared
before it can be used in a function. A local variable cannot be accessed outside the function
in which it’s declared.

A class normally consists of one or more member functions that manipulate the attri-
butes that belong to a particular object of the class. Attributes are represented as variables
in a class definition. Such variables are called data members and are declared inside a class
definition but outside the bodies of the class’s member-function definitions. Each object
of a class maintains its own attributes in memory. These attributes exist throughout the
life of the object. The example in this section demonstrates a GradeBook class that contains
a courseName data member to represent a particular GradeBook object’s course name. If
you create more than one GradeBook object, each will have its own courseName data
member, and these can contain different values.

GradeBook Class with a Data Member, and set and get Member Functions
In our next example, class GradeBook (Fig. 16.5) maintains the course name as a data
member so that it can be used or modified throughout a program’s execution. The class con-
tains member functions setCourseName, getCourseName and displayMessage. Member
function setCourseName stores a course name in a GradeBook data member. Member func-
tion getCourseName obtains the course name from that data member. Member function
displayMessage—which now specifies no parameters—still displays a welcome message
that includes the course name. However, as you’ll see, the function now obtains the course
name by calling another function in the same class—getCourseName.

1 // Fig. 16.5: fig16_05.cpp
2 // Define class GradeBook that contains a courseName data member

3 // and member functions to set and get its value;

4 // Create and manipulate a GradeBook object with these functions.
5 #include <iostream>
6 #include <string> // program uses C++ standard string class
7 using namespace std;
8
9 // GradeBook class definition

10 class GradeBook
11 {

12 public:
13
14

15

16
17

Fig. 16.5 | Defining and testing class GradeBook with a data member and set and get member
functions. (Part 1 of 2.)

// function that sets the course name

void setCourseName(string name)
{

 courseName = name; // store the course name in the object

} // end function setCourseName

598 Chapter 16 Introduction to Classes, Objects and Strings

A typical instructor teaches several courses, each with its own course name. Line 34
declares that courseName is a variable of type string. Because the variable is declared in
the class definition (lines 10–35) but outside the bodies of the class’s member-function
definitions (lines 14–17, 20–23 and 26–32), the variable is a data member. Every instance

18

19

20
21

22

23
24
25 // function that displays a welcome message

26 void displayMessage() const
27 {

28 // this statement calls getCourseName to get the

29 // name of the course this GradeBook represents
30 cout << "Welcome to the grade book for\n" << << "!"
31 << endl;

32 } // end function displayMessage
33
34
35 }; // end class GradeBook

36
37 // function main begins program execution

38 int main()
39 {
40 string nameOfCourse; // string of characters to store the course name

41 GradeBook myGradeBook; // create a GradeBook object named myGradeBook

42
43 // display initial value of courseName

44 cout << "Initial course name is: " <<

45 << endl;
46
47 // prompt for, input and set course name

48 cout << "\nPlease enter the course name:" << endl;
49 getline(cin, nameOfCourse); // read a course name with blanks

50

51
52 cout << endl; // outputs a blank line

53 myGradeBook.displayMessage(); // display message with new course name

54 } // end main

Initial course name is:

Please enter the course name:
CS101 Introduction to C++ Programming
Welcome to the grade book for
CS101 Introduction to C++ Programming!

Fig. 16.5 | Defining and testing class GradeBook with a data member and set and get member
functions. (Part 2 of 2.)

// function that gets the course name

string getCourseName() const
{
 return courseName; // return the object's courseName
} // end function getCourseName

getCourseName()

private:
 string courseName; // course name for this GradeBook

myGradeBook.getCourseName()

myGradeBook.setCourseName(nameOfCourse); // set the course name

16.4 Data Members, set Member Functions and get Member Functions 599

(i.e., object) of class GradeBook contains each of the class’s data members—if there are two
GradeBook objects, each has its own courseName (one per object), as you’ll see in the
example of Fig. 16.7. A benefit of making courseName a data member is that all the
member functions of the class can manipulate any data members that appear in the class
definition (in this case, courseName).

Access Specifiers public and private
Most data-member declarations appear after the private access specifier. Variables or
functions declared after access specifier private (and before the next access specifier if there
is one) are accessible only to member functions of the class for which they’re declared (or
to “friends” of the class, as you’ll see in Chapter 17). Thus, data member courseName can
be used only in member functions setCourseName, getCourseName and displayMessage
of class GradeBook (or to “friends” of the class, if there are any).

The default access for class members is private so all members after the class header
and before the first access specifier (if there are any) are private. The access specifiers
public and private may be repeated, but this is unnecessary and can be confusing.

Declaring data members with access specifier private is known as data hiding. When
a program creates a GradeBook object, data member courseName is encapsulated (hidden)
in the object and can be accessed only by member functions of the object’s class. In class
GradeBook, member functions setCourseName and getCourseName manipulate the data
member courseName directly.

Member Functions setCourseName and getCourseName
Member function setCourseName (lines 14–17) does not return any data when it com-
pletes its task, so its return type is void. The member function receives one parameter—
name—which represents the course name that will be passed to it as an argument (as we’ll
see in line 50 of main). Line 16 assigns name to data member courseName, thus modifying
the object—for this reason, we do not declare setCourseName const. In this example, set-
CourseName does not validate the course name—i.e., the function does not check that the
course name adheres to any particular format or follows any other rules regarding what a
“valid” course name looks like. Suppose, for instance, that a university can print student
transcripts containing course names of only 25 characters or fewer. In this case, we might
want class GradeBook to ensure that its data member courseName never contains more
than 25 characters. We discuss validation in Section 16.8.

Member function getCourseName (lines 20–23) returns a particular GradeBook
object’s courseName, without modifying the object—for this reason, we declare get-
CourseName const. The member function has an empty parameter list, so it does not require

Error-Prevention Tip 16.1
Making the data members of a class private and the member functions of the class pub-
lic facilitates debugging because problems with data manipulations are localized to ei-
ther the class’s member functions or the friends of the class.

Common Programming Error 16.2
An attempt by a function, which is not a member of a particular class (or a friend of that
class) to access a private member of that class is a compilation error.

600 Chapter 16 Introduction to Classes, Objects and Strings

additional data to perform its task. The function specifies that it returns a string. When
a function that specifies a return type other than void is called and completes its task, the
function uses a return statement (as in line 22) to return a result to its calling function.
For example, when you go to an automated teller machine (ATM) and request your
account balance, you expect the ATM to give you a value that represents your balance.
Similarly, when a statement calls member function getCourseName on a GradeBook object,
the statement expects to receive the GradeBook’s course name (in this case, a string, as
specified by the function’s return type).

If you have a function square that returns the square of its argument, the statement

returns 4 from function square and assigns to variable result the value 4. If you have a
function maximum that returns the largest of three integer arguments, the statement

returns 114 from function maximum and assigns this value to variable biggest.
The statements in lines 16 and 22 each use variable courseName (line 34) even though

it was not declared in any of the member functions. We can do this because courseName
is a data member of the class and data members are accessible from a class’s member func-
tions.

Member Function displayMessage
Member function displayMessage (lines 26–32) does not return any data when it com-
pletes its task, so its return type is void. The function does not receive parameters, so its
parameter list is empty. Lines 30–31 output a welcome message that includes the value of
data member courseName. Line 30 calls member function getCourseName to obtain the
value of courseName. Member function displayMessage could also access data member
courseName directly, just as member functions setCourseName and getCourseName do.
We explain shortly why it’s preferable from a software engineering perspective to call
member function getCourseName to obtain the value of courseName.

Testing Class GradeBook
The main function (lines 38–54) creates one object of class GradeBook and uses each of its
member functions. Line 41 creates a GradeBook object named myGradeBook. Lines 44–45
display the initial course name by calling the object’s getCourseName member function. The
first line of the output does not show a course name, because the object’s courseName data
member (i.e., a string) is initially empty—by default, the initial value of a string is the
so-called empty string, i.e., a string that does not contain any characters. Nothing appears
on the screen when an empty string is displayed.

Line 48 prompts the user to enter a course name. Local string variable nameOfCourse
(declared in line 40) is set to the course name entered by the user, which is obtained by the
call to the getline function (line 49). Line 50 calls object myGradeBook’s setCourseName
member function and supplies nameOfCourse as the function’s argument. When the func-
tion is called, the argument’s value is copied to parameter name (line 14) of member func-
tion setCourseName. Then the parameter’s value is assigned to data member courseName
(line 16). Line 52 skips a line; then line 53 calls object myGradeBook’s displayMessage
member function to display the welcome message containing the course name.

result = square(2);

biggest = maximum(27, 114, 51);

16.4 Data Members, set Member Functions and get Member Functions 601

Software Engineering with Set and Get Functions
A class’s private data members can be manipulated only by member functions of that class
(and by “friends” of the class as you’ll see in Chapter 17). So a client of an object—that
is, any statement that calls the object’s member functions from outside the object—calls
the class’s public member functions to request the class’s services for particular objects of
the class. This is why the statements in function main call member functions setCourse-
Name, getCourseName and displayMessage on a GradeBook object. Classes often provide
public member functions to allow clients of the class to set (i.e., assign values to) or get
(i.e., obtain the values of) private data members. These member function names need not
begin with set or get, but this naming convention is common. In this example, the mem-
ber function that sets the courseName data member is called setCourseName, and the mem-
ber function that gets the value of the courseName data member is called getCourseName.
Set functions are sometimes called mutators (because they mutate, or change, values), and
get functions are also called accessors (because they access values).

Recall that declaring data members with access specifier private enforces data hiding.
Providing public set and get functions allows clients of a class to access the hidden data,
but only indirectly. The client knows that it’s attempting to modify or obtain an object’s
data, but the client does not know how the object performs these operations. In some cases,
a class may internally represent a piece of data one way, but expose that data to clients in
a different way. For example, suppose a Clock class represents the time of day as a private
int data member time that stores the number of seconds since midnight. However, when
a client calls a Clock object’s getTime member function, the object could return the time
with hours, minutes and seconds in a string in the format "HH:MM:SS". Similarly, suppose
the Clock class provides a set function named setTime that takes a string parameter in
the "HH:MM:SS" format. The setTime function could convert this string to a number of
seconds, which the function stores in its private data member. The set function could also
check that the value it receives represents a valid time (e.g., "12:30:45" is valid but
"42:85:70" is not). The set and get functions allow a client to interact with an object, but
the object’s private data remains safely encapsulated (i.e., hidden) in the object itself.

The set and get functions of a class also should be used by other member functions
within the class to manipulate the class’s private data, even though these member func-
tions can access the private data directly. In Fig. 16.5, member functions setCourseName
and getCourseName are public member functions, so they’re accessible to clients of the
class, as well as to the class itself. Member function displayMessage calls member func-
tion getCourseName to obtain the value of data member courseName for display purposes,
even though displayMessage can access courseName directly—accessing a data member
via its get function creates a better, more robust class (i.e., a class that’s easier to maintain
and less likely to malfunction). If we decide to change the data member courseName in
some way, the displayMessage definition will not require modification—only the bodies
of the get and set functions that directly manipulate the data member will need to change.
For example, suppose we want to represent the course name as two separate data mem-
bers—courseNumber (e.g., "CS101") and courseTitle (e.g., "Introduction to C++ Pro-
gramming"). Member function displayMessage can still issue a single call to member
function getCourseName to obtain the full course name to display as part of the welcome
message. In this case, getCourseName would need to build and return a string containing
the courseNumber followed by the courseTitle. Member function displayMessage

602 Chapter 16 Introduction to Classes, Objects and Strings

could continue to display the complete course title “CS101 Introduction to C++ Program-
ming.” The benefits of calling a set function from another member function of the same
class will become clearer when we discuss validation in Section 16.8.

GradeBook’s UML Class Diagram with a Data Member and set and get Functions
Figure 16.6 contains an updated UML class diagram for the version of class GradeBook in
Fig. 16.5. This diagram models GradeBook’s data member courseName as an attribute in
the middle compartment. The UML represents data members as attributes by listing the
attribute name, followed by a colon and the attribute type. The UML type of attribute
courseName is String, which corresponds to string in C++. Data member courseName is
private in C++, so the class diagram lists a minus sign (–) in front of the corresponding
attribute’s name. Class GradeBook contains three public member functions, so the class
diagram lists three operations in the third compartment. Operation setCourseName has a
String parameter called name. The UML indicates the return type of an operation by plac-
ing a colon and the return type after the parentheses following the operation name. Mem-
ber function getCourseName of class GradeBook has a string return type in C++, so the
class diagram shows a String return type in the UML. Operations setCourseName and
displayMessage do not return values (i.e., they return void in C++), so the UML class
diagram does not specify a return type after the parentheses of these operations.

16.5 Initializing Objects with Constructors
As mentioned in Section 16.4, when an object of class GradeBook (Fig. 16.5) is created, its
data member courseName is initialized to the empty string by default. What if you want to
provide a course name when you create a GradeBook object? Each class you declare can pro-
vide one or more constructors that can be used to initialize an object of the class when the
object is created. A constructor is a special member function that must be defined with the

Good Programming Practice 16.1
Always try to localize the effects of changes to a class’s data members by accessing and ma-
nipulating the data members through their corresponding get and set functions.

Software Engineering Observation 16.1
Write programs that are clear and easy to maintain. Change is the rule rather than the
exception. You should anticipate that your code will be modified, and possibly often.

Fig. 16.6 | UML class diagram for class GradeBook with a private courseName attribute and
public operations setCourseName, getCourseName and displayMessage.

GradeBook

– courseName : String

+ setCourseName(name : String)
+ getCourseName() : String
+ displayMessage()

16.5 Initializing Objects with Constructors 603

same name as the class, so that the compiler can distinguish it from the class’s other member
functions. An important difference between constructors and other functions is that con-
structors cannot return values, so they cannot specify a return type (not even void). Normally,
constructors are declared public. You also can create classes with more that one constructor
using function overloading.

C++ automatically calls a constructor for each object that’s created, which helps
ensure that objects are initialized properly before they’re used in a program. The con-
structor call occurs when the object is created. If a class does not explicitly include construc-
tors, the compiler provides a default constructor with no parameters. For example, when
line 41 of Fig. 16.5 creates a GradeBook object, the default constructor is called. The
default constructor provided by the compiler creates a GradeBook object without giving
any initial values to the object’s fundamental type data members. For data members that
are objects of other classes, the default constructor implicitly calls each data member’s
default constructor to ensure that the data member is initialized properly. This is why the
string data member courseName (in Fig. 16.5) was initialized to the empty string—the
default constructor for class string sets the string’s value to the empty string.

In the example of Fig. 16.7, we specify a course name for a GradeBook object when
the object is created (e.g., line 47). In this case, the argument "CS101 Introduction to C++
Programming" is passed to the GradeBook object’s constructor (lines 14–18) and used to
initialize the courseName. Figure 16.7 defines a modified GradeBook class containing a
constructor with a string parameter that receives the initial course name.

1 // Fig. 16.7: fig16_07.cpp
2 // Instantiating multiple objects of the GradeBook class and using

3 // the GradeBook constructor to specify the course name

4 // when each GradeBook object is created.
5 #include <iostream>
6 #include <string> // program uses C++ standard string class
7 using namespace std;
8
9 // GradeBook class definition

10 class GradeBook
11 {

12 public:
13
14

15

16
17

18

19
20 // function to set the course name

21 void setCourseName(string name)
22 {
23 courseName = name; // store the course name in the object

24 } // end function setCourseName

Fig. 16.7 | Instantiating multiple objects of the GradeBook class and using the GradeBook
constructor to specify the course name when each GradeBook object is created. (Part 1 of 2.)

// constructor initializes courseName with string supplied as argument

explicit GradeBook(string name)
 : courseName(name) // member initializer to initialize courseName

{

 // empty body
} // end GradeBook constructor

604 Chapter 16 Introduction to Classes, Objects and Strings

Defining a Constructor
Lines 14–18 of Fig. 16.7 define a constructor for class GradeBook. The constructor has the
same name as its class, GradeBook. A constructor specifies in its parameter list the data it
requires to perform its task. When you create a new object, you place this data in the pa-
rentheses that follow the object name (as we did in lines 47–48). Line 14 indicates that
class GradeBook’s constructor has a string parameter called name. We declared this con-
structor explicit, because it takes a single parameter—this is important for subtle reasons
that you’ll learn in Section 18.13. For now, just declare all single-parameter constructors
explicit. Line 14 does not specify a return type, because constructors cannot return values
(or even void). Also, constructors cannot be declared const (because initializing an object
modifies it).

The constructor uses a member-initializer list (line 15) to initialize the courseName
data member with the value of the constructor’s parameter name. Member initializers
appear between a constructor’s parameter list and the left brace that begins the con-

25
26 // function to get the course name

27 string getCourseName() const
28 {

29 return courseName; // return object's courseName
30 } // end function getCourseName
31
32 // display a welcome message to the GradeBook user

33 void displayMessage() const
34 {

35 // call getCourseName to get the courseName

36 cout << "Welcome to the grade book for\n" <<
37 << "!" << endl;
38 } // end function displayMessage

39 private:
40 string courseName; // course name for this GradeBook

41 }; // end class GradeBook

42
43 // function main begins program execution
44 int main()
45 {

46 // create two GradeBook objects
47

48

49
50 // display initial value of courseName for each GradeBook

51 cout << "gradeBook1 created for course: " <<
52 << "\ngradeBook2 created for course: " <<
53 << endl;

54 } // end main

gradeBook1 created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Fig. 16.7 | Instantiating multiple objects of the GradeBook class and using the GradeBook
constructor to specify the course name when each GradeBook object is created. (Part 2 of 2.)

getCourseName()

GradeBook gradeBook1("CS101 Introduction to C++ Programming");
GradeBook gradeBook2("CS102 Data Structures in C++");

gradeBook1.getCourseName()

gradeBook2.getCourseName()

16.5 Initializing Objects with Constructors 605

structor’s body. The member initializer list is separated from the parameter list with a colon
(:). A member initializer consists of a data member’s variable name followed by paren-
theses containing the member’s initial value. In this example, courseName is initialized
with the value of the parameter name. If a class contains more than one data member, each
data member’s initializer is separated from the next by a comma. The member initializer
list executes before the body of the constructor executes. You can perform initialization in
the constructor’s body, but as you’ll learn later it’s more efficient to do it with member
initializers, and some types of data members must be initialized this way.

Notice that both the constructor (line 14) and the setCourseName function (line 21)
use a parameter called name. You can use the same parameter names in different functions
because the parameters are local to each function—they do not interfere with one another.

Testing Class GradeBook
Lines 44–54 of Fig. 16.7 define the main function that tests class GradeBook and demon-
strates initializing GradeBook objects using a constructor. Line 47 creates and initializes
GradeBook object gradeBook1. When this line executes, the GradeBook constructor (lines
14–18) is called with the argument "CS101 Introduction to C++ Programming" to initial-
ize gradeBook1’s course name. Line 48 repeats this process for GradeBook object
gradeBook2, this time passing the argument "CS102 Data Structures in C++" to initialize
gradeBook2’s course name. Lines 51–52 use each object’s getCourseName member func-
tion to obtain the course names and show that they were indeed initialized when the ob-
jects were created. The output confirms that each GradeBook object maintains its own data
member courseName.

Ways to Provide a Default Constructor for a Class
Any constructor that takes no arguments is called a default constructor. A class can get a
default constructor in one of several ways:

1. The compiler implicitly creates a default constructor in every class that does not
have any user-defined constructors. The default constructor does not initialize the
class’s data members, but does call the default constructor for each data member
that’s an object of another class. An uninitialized variable contains an undefined
(“garbage”) value.

2. You explicitly define a constructor that takes no arguments. Such a default con-
structor will call the default constructor for each data member that’s an object of
another class and will perform additional initialization specified by you.

3. If you define any constructors with arguments, C++ will not implicitly create a default
constructor for that class. We’ll show later that C++11 allows you to force the com-
piler to create the default constructor even if you’ve defined non-default con-
structors.

For each version of class GradeBook in Fig. 16.1, Fig. 16.3 and Fig. 16.5 the compiler im-
plicitly defined a default constructor.

Error-Prevention Tip 16.2
Unless no initialization of your class’s data members is necessary (almost never), provide
constructors to ensure that your class’s data members are initialized with meaningful val-
ues when each new object of your class is created.

606 Chapter 16 Introduction to Classes, Objects and Strings

Adding the Constructor to Class GradeBook’s UML Class Diagram
The UML class diagram of Fig. 16.8 models the GradeBook class of Fig. 16.7, which has a
constructor with a name parameter of type string (represented by type String in the
UML). Like operations, the UML models constructors in the third compartment of a class
in a class diagram. To distinguish a constructor from a class’s operations, the UML places
the word “constructor” between guillemets (« and ») before the constructor’s name. By con-
vention, you list the class’s constructor before other operations in the third compartment.

16.6 Placing a Class in a Separate File for Reusability
One of the benefits of creating class definitions is that, when packaged properly, your
classes can be reused by other programmers. For example, you can reuse C++ Standard Li-
brary type string in any C++ program by including the header <string> (and, as you’ll
see, by being able to link to the library’s object code).

Programmers who wish to use our GradeBook class cannot simply include the file from
Fig. 16.7 in another program. As you know, function main begins the execution of every
program, and every program must have exactly one main function. If other programmers
include the code from Fig. 16.7, they get extra “baggage”—our main function—and their
programs will then have two main functions. Attempting to compile a program with two
main functions produces an error. So, placing main in the same file with a class definition
prevents that class from being reused by other programs. In this section, we demonstrate how
to make class GradeBook reusable by separating it into another file from the main function.

Headers
Each of the previous examples in the chapter consists of a single .cpp file, also known as a
source-code file, that contains a GradeBook class definition and a main function. When
building an object-oriented C++ program, it’s customary to define reusable source code
(such as a class) in a file that by convention has a .h filename extension—known as a head-
er. Programs use #include preprocessing directives to include headers and take advantage

Software Engineering Observation 16.2
Data members can be initialized in a constructor, or their values may be set later after
the object is created. However, it’s a good software engineering practice to ensure that an
object is fully initialized before the client code invokes the object’s member functions. You
should not rely on the client code to ensure that an object gets initialized properly.

Fig. 16.8 | UML class diagram indicating that class GradeBook has a constructor with a
name parameter of UML type String.

GradeBook

– courseName : String

«constructor» + GradeBook(name : String)
+ setCourseName(name : String)
+ getCourseName() : String
+ displayMessage()

16.6 Placing a Class in a Separate File for Reusability 607

of reusable software components, such as type string provided in the C++ Standard Li-
brary and user-defined types like class GradeBook.

Our next example separates the code from Fig. 16.7 into two files—GradeBook.h

(Fig. 16.9) and fig16_10.cpp (Fig. 16.10). As you look at the header in Fig. 16.9, notice
that it contains only the GradeBook class definition (lines 7–38) and the headers on which
the class depends. The main function that uses class GradeBook is defined in the source-
code file fig16_10.cpp (Fig. 16.10) in lines 8–18. To help you prepare for the larger pro-
grams you’ll encounter later in this book and in industry, we often use a separate source-
code file containing function main to test our classes (this is called a driver program).
You’ll soon learn how a source-code file with main can use the class definition found in a
header to create objects of a class.

1 // Fig. 16.9:

2 // GradeBook class definition in a separate file from main.

3 #include <iostream>
4 #include <string> // class GradeBook uses C++ standard string class
5
6 // GradeBook class definition

7 class GradeBook
8 {

9 public:
10 // constructor initializes courseName with string supplied as argument
11 explicit GradeBook(name)

12 : courseName(name) // member initializer to initialize courseName

13 {
14 // empty body

15 } // end GradeBook constructor

16
17 // function to set the course name

18 void setCourseName(name)

19 {
20 courseName = name; // store the course name in the object

21 } // end function setCourseName

22
23 // function to get the course name

24 getCourseName() const
25 {
26 return courseName; // return object's courseName
27 } // end function getCourseName

28
29 // display a welcome message to the GradeBook user

30 void displayMessage() const
31 {
32 // call getCourseName to get the courseName

33 << "Welcome to the grade book for\n" << getCourseName()
34 << "!" << ;
35 } // end function displayMessage

36 private:
37 courseName; // course name for this GradeBook
38 }; // end class GradeBook

Fig. 16.9 | GradeBook class definition in a separate file from main.

GradeBook.h

std::string

std::string

std::string

std::cout

std::endl

std::string

608 Chapter 16 Introduction to Classes, Objects and Strings

Use std:: with Standard Library Components in Headers
Throughout the header (Fig. 16.9), we use std:: when referring to string (lines 11, 18, 24
and 37), cout (line 33) and endl (line 34). For subtle reasons that we’ll explain in a later
chapter, headers should never contain using directives or using declarations.

Including a Header That Contains a User-Defined Class
A header such as GradeBook.h (Fig. 16.9) cannot be used as a complete program, because
it does not contain a main function. To test class GradeBook (defined in Fig. 16.9), you
must write a separate source-code file containing a main function (such as Fig. 16.10) that
instantiates and uses objects of the class.

The compiler doesn’t know what a GradeBook is because it’s a user-defined type. In
fact, the compiler doesn’t even know the classes in the C++ Standard Library. To help it
understand how to use a class, we must explicitly provide the compiler with the class’s def-
inition—that’s why, for example, to use type string, a program must include the
<string> header. This enables the compiler to determine the amount of memory that it
must reserve for each string object and ensure that a program calls a string’s member
functions correctly.

To create GradeBook objects gradeBook1 and gradeBook2 in lines 11–12 of
Fig. 16.10, the compiler must know the size of a GradeBook object. While objects concep-
tually contain data members and member functions, C++ objects actually contain only
data. The compiler creates only one copy of the class’s member functions and shares that
copy among all the class’s objects. Each object, of course, needs its own data members,
because their contents can vary among objects (such as two different BankAccount objects
having two different balances). The member-function code, however, is not modifiable, so
it can be shared among all objects of the class. Therefore, the size of an object depends on

1 // Fig. 16.10: fig16_10.cpp

2 // Including class GradeBook from file GradeBook.h for use in main.

3 #include <iostream>
4
5 using namespace std;
6
7 // function main begins program execution

8 int main()
9 {

10 // create two GradeBook objects

11 GradeBook gradeBook1("CS101 Introduction to C++ Programming");
12 GradeBook gradeBook2("CS102 Data Structures in C++");
13
14 // display initial value of courseName for each GradeBook

15 cout << "gradeBook1 created for course: " << gradeBook1.getCourseName()
16 << "\ngradeBook2 created for course: " << gradeBook2.getCourseName()
17 << endl;

18 } // end main

gradeBook1 created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Fig. 16.10 | Including class GradeBook from file GradeBook.h for use in main.

#include "GradeBook.h" // include definition of class GradeBook

16.6 Placing a Class in a Separate File for Reusability 609

the amount of memory required to store the class’s data members. By including Grade-
Book.h in line 4, we give the compiler access to the information it needs (Fig. 16.9, line
37) to determine the size of a GradeBook object and to determine whether objects of the
class are used correctly (in lines 11–12 and 15–16 of Fig. 16.10).

Line 4 instructs the C++ preprocessor to replace the directive with a copy of the con-
tents of GradeBook.h (i.e., the GradeBook class definition) before the program is compiled.
When the source-code file fig16_10.cpp is compiled, it now contains the GradeBook class
definition (because of the #include), and the compiler is able to determine how to create
GradeBook objects and see that their member functions are called correctly. Now that the
class definition is in a header (without a main function), we can include that header in any
program that needs to reuse our GradeBook class.

How Headers Are Located
Notice that the name of the GradeBook.h header in line 4 of Fig. 16.10 is enclosed in
quotes (" ") rather than angle brackets (< >). Normally, a program’s source-code files and
user-defined headers are placed in the same directory. When the preprocessor encounters
a header name in quotes, it attempts to locate the header in the same directory as the file
in which the #include directive appears. If the preprocessor cannot find the header in that
directory, it searches for it in the same location(s) as the C++ Standard Library headers.
When the preprocessor encounters a header name in angle brackets (e.g., <iostream>), it
assumes that the header is part of the C++ Standard Library and does not look in the di-
rectory of the program that’s being preprocessed.

Additional Software Engineering Issues
Now that class GradeBook is defined in a header, the class is reusable. Unfortunately, plac-
ing a class definition in a header as in Fig. 16.9 still reveals the entire implementation of the
class to the class’s clients—GradeBook.h is simply a text file that anyone can open and read.
Conventional software engineering wisdom says that to use an object of a class, the client
code needs to know only what member functions to call, what arguments to provide to
each member function and what return type to expect from each member function. The
client code does not need to know how those functions are implemented.

If client code does know how a class is implemented, the programmer might write
client code based on the class’s implementation details. Ideally, if that implementation
changes, the class’s clients should not have to change. Hiding the class’s implementation
details makes it easier to change the class’s implementation while minimizing, and hopefully
eliminating, changes to client code.

In Section 16.7, we show how to break up the GradeBook class into two files so that

1. the class is reusable,

2. the clients of the class know what member functions the class provides, how to
call them and what return types to expect, and

3. the clients do not know how the class’s member functions are implemented.

Error-Prevention Tip 16.3
To ensure that the preprocessor can locate headers correctly, #include preprocessing direc-
tives should place user-defined headers names in quotes (e.g., "GradeBook.h") and place
C++ Standard Library headers names in angle brackets (e.g., <iostream>).

610 Chapter 16 Introduction to Classes, Objects and Strings

16.7 Separating Interface from Implementation
In the preceding section, we showed how to promote software reusability by separating a
class definition from the client code (e.g., function main) that uses the class. We now in-
troduce another fundamental principle of good software engineering—separating inter-
face from implementation.

Interface of a Class
Interfaces define and standardize the ways in which things such as people and systems in-
teract with one another. For example, a radio’s controls serve as an interface between the
radio’s users and its internal components. The controls allow users to perform a limited
set of operations (such as changing the station, adjusting the volume, and choosing be-
tween AM and FM stations). Various radios may implement these operations different-
ly—some provide push buttons, some provide dials and some support voice commands.
The interface specifies what operations a radio permits users to perform but does not spec-
ify how the operations are implemented inside the radio.

Similarly, the interface of a class describes what services a class’s clients can use and
how to request those services, but not how the class carries out the services. A class’s public
interface consists of the class’s public member functions (also known as the class’s public
services). For example, class GradeBook’s interface (Fig. 16.9) contains a constructor and
member functions setCourseName, getCourseName and displayMessage. GradeBook’s
clients (e.g., main in Fig. 16.10) use these functions to request the class’s services. As you’ll
soon see, you can specify a class’s interface by writing a class definition that lists only the
member-function names, return types and parameter types.

Separating the Interface from the Implementation
In our prior examples, each class definition contained the complete definitions of the
class’s public member functions and the declarations of its private data members. How-
ever, it’s better software engineering to define member functions outside the class defini-
tion, so that their implementation details can be hidden from the client code. This practice
ensures that you do not write client code that depends on the class’s implementation de-
tails.

The program of Figs. 16.11–16.13 separates class GradeBook’s interface from its
implementation by splitting the class definition of Fig. 16.9 into two files—the header
GradeBook.h (Fig. 16.11) in which class GradeBook is defined, and the source-code file
GradeBook.cpp (Fig. 16.12) in which GradeBook’s member functions are defined. By con-
vention, member-function definitions are placed in a source-code file of the same base
name (e.g., GradeBook) as the class’s header but with a .cpp filename extension. The
source-code file fig16_13.cpp (Fig. 16.13) defines function main (the client code). The
code and output of Fig. 16.13 are identical to that of Fig. 16.10. Figure 16.14 shows how
this three-file program is compiled from the perspectives of the GradeBook class pro-
grammer and the client-code programmer—we’ll explain this figure in detail.

GradeBook.h: Defining a Class’s Interface with Function Prototypes
Header GradeBook.h (Fig. 16.11) contains another version of GradeBook’s class definition
(lines 8–17). This version is similar to the one in Fig. 16.9, but the function definitions in
Fig. 16.9 are replaced here with function prototypes (lines 11–14) that describe the class’s

16.7 Separating Interface from Implementation 611

public interface without revealing the class’s member-function implementations. A function
prototype is a declaration of a function that tells the compiler the function’s name, its re-
turn type and the types of its parameters. Also, the header still specifies the class’s private
data member (line 16) as well. Again, the compiler must know the data members of the
class to determine how much memory to reserve for each object of the class. Including the
header GradeBook.h in the client code (line 5 of Fig. 16.13) provides the compiler with
the information it needs to ensure that the client code calls the member functions of class
GradeBook correctly.

The function prototype in line 11 (Fig. 16.11) indicates that the constructor requires
one string parameter. Recall that constructors don’t have return types, so no return type
appears in the function prototype. Member function setCourseName’s function prototype
indicates that setCourseName requires a string parameter and does not return a value
(i.e., its return type is void). Member function getCourseName’s function prototype indi-
cates that the function does not require parameters and returns a string. Finally, member
function displayMessage’s function prototype (line 14) specifies that displayMessage
does not require parameters and does not return a value. These function prototypes are the
same as the first lines of the corresponding function definitions in Fig. 16.9, except that
the parameter names (which are optional in prototypes) are not included and each function
prototype must end with a semicolon.

GradeBook.cpp: Defining Member Functions in a Separate Source-Code File
Source-code file GradeBook.cpp (Fig. 16.12) defines class GradeBook’s member functions,
which were declared in lines 11–14 of Fig. 16.11. The definitions appear in lines 9–33 and

1 // Fig. 16.11: GradeBook.h

2 // GradeBook class definition. This file presents GradeBook's public

3 // interface without revealing the implementations of GradeBook's member
4 // functions, which are defined in GradeBook.cpp.

5 #include <string> // class GradeBook uses C++ standard string class
6
7 // GradeBook class definition

8 class GradeBook
9 {

10 public:
11

12

13
14

15 private:
16 std::string courseName; // course name for this GradeBook
17 }; // end class GradeBook

Fig. 16.11 | GradeBook class definition containing function prototypes that specify the
interface of the class.

Good Programming Practice 16.2
Although parameter names in function prototypes are optional (they’re ignored by the
compiler), many programmers use these names for documentation purposes.

explicit GradeBook(std::string); // constructor initialize courseName
void setCourseName(std::string); // sets the course name
std::string getCourseName() const; // gets the course name
void displayMessage() const; // displays a welcome message

612 Chapter 16 Introduction to Classes, Objects and Strings

are nearly identical to the member-function definitions in lines 11–35 of Fig. 16.9. Note
that the const keyword must appear in both the function prototypes (Fig. 16.11, lines13–
14) and the function definitions for functions getCourseName and displayMessage (lines
22 and 28).

Each member-function name (lines 9, 16, 22 and 28) is preceded by the class name and
::, which is known as the scope resolution operator. This “ties” each member function to
the (now separate) GradeBook class definition (Fig. 16.11), which declares the class’s
member functions and data members. Without “GradeBook::” preceding each function
name, these functions would not be recognized by the compiler as member functions of class
GradeBook—the compiler would consider them “free” or “loose” functions, like main. These
are also called global functions. Such functions cannot access GradeBook’s private data or
call the class’s member functions, without specifying an object. So, the compiler would not
be able to compile these functions. For example, lines 18 and 24 in Fig. 16.12 that access
variable courseName would cause compilation errors because courseName is not declared as

1 // Fig. 16.12: GradeBook.cpp

2 // GradeBook member-function definitions. This file contains
3 // implementations of the member functions prototyped in GradeBook.h.

4 #include <iostream>
5
6 using namespace std;
7
8 // constructor initializes courseName with string supplied as argument
9

10 : courseName(name) // member initializer to initialize courseName

11 {
12 // empty body

13 } // end GradeBook constructor

14
15 // function to set the course name
16
17 {

18 courseName = name; // store the course name in the object
19 } // end function setCourseName

20
21 // function to get the course name
22
23 {

24 return courseName; // return object's courseName
25 } // end function getCourseName

26
27 // display a welcome message to the GradeBook user
28

29 {

30 // call getCourseName to get the courseName
31 cout << "Welcome to the grade book for\n" << getCourseName()
32 << "!" << endl;
33 } // end function displayMessage

Fig. 16.12 | GradeBook member-function definitions represent the implementation of class
GradeBook.

#include "GradeBook.h" // include definition of class GradeBook

GradeBook::GradeBook(string name)

void GradeBook::setCourseName(string name)

string GradeBook::getCourseName() const

void GradeBook::displayMessage() const

16.7 Separating Interface from Implementation 613

a local variable in each function—the compiler would not know that courseName is already
declared as a data member of class GradeBook.

To indicate that the member functions in GradeBook.cpp are part of class GradeBook,
we must first include the GradeBook.h header (line 5 of Fig. 16.12). This allows us to
access the class name GradeBook in the GradeBook.cpp file. When compiling Grade-
Book.cpp, the compiler uses the information in GradeBook.h to ensure that

1. the first line of each member function (lines 9, 16, 22 and 28) matches its proto-
type in the GradeBook.h file—for example, the compiler ensures that getCourse-
Name accepts no parameters and returns a string, and that

2. each member function knows about the class’s data members and other member
functions—for example, lines 18 and 24 can access variable courseName because
it’s declared in GradeBook.h as a data member of class GradeBook, and line 31 can
call function getCourseName, because it’s declared as a member function of the
class in GradeBook.h (and because the call conforms with the corresponding pro-
totype).

Testing Class GradeBook
Figure 16.13 performs the same GradeBook object manipulations as Fig. 16.10. Separat-
ing GradeBook’s interface from the implementation of its member functions does not affect
the way that this client code uses the class. It affects only how the program is compiled and
linked, which we discuss in detail shortly.

Common Programming Error 16.3
When defining a class’s member functions outside that class, omitting the class name and
scope resolution operator (::) preceding the function names causes errors.

1 // Fig. 16.13: fig16_13.cpp
2 // GradeBook class demonstration after separating

3 // its interface from its implementation.

4 #include <iostream>
5
6 using namespace std;
7
8 // function main begins program execution

9 int main()
10 {
11 // create two GradeBook objects

12 GradeBook gradeBook1("CS101 Introduction to C++ Programming");
13 GradeBook gradeBook2("CS102 Data Structures in C++");
14
15 // display initial value of courseName for each GradeBook

16 cout << "gradeBook1 created for course: " << gradeBook1.getCourseName()
17 << "\ngradeBook2 created for course: " << gradeBook2.getCourseName()
18 << endl;

19 } // end main

Fig. 16.13 | GradeBook class demonstration after separating its interface from its
implementation. (Part 1 of 2.)

#include "GradeBook.h" // include definition of class GradeBook

614 Chapter 16 Introduction to Classes, Objects and Strings

As in Fig. 16.10, line 5 of Fig. 16.13 includes the GradeBook.h header so that the
compiler can ensure that GradeBook objects are created and manipulated correctly in the
client code. Before executing this program, the source-code files in Fig. 16.12 and
Fig. 16.13 must both be compiled, then linked together—that is, the member-function
calls in the client code need to be tied to the implementations of the class’s member func-
tions—a job performed by the linker.

The Compilation and Linking Process
The diagram in Fig. 16.14 shows the compilation and linking process that results in an
executable GradeBook application that can be used by instructors. Often a class’s interface
and implementation will be created and compiled by one programmer and used by a sep-
arate programmer who implements the client code that uses the class. So, the diagram
shows what’s required by both the class-implementation programmer and the client-code
programmer. The dashed lines in the diagram show the pieces required by the class-imple-
mentation programmer, the client-code programmer and the GradeBook application user,
respectively. [Note: Figure 16.14 is not a UML diagram.]

A class-implementation programmer responsible for creating a reusable GradeBook
class creates the header GradeBook.h and the source-code file GradeBook.cpp that
#includes the header, then compiles the source-code file to create GradeBook’s object
code. To hide the class’s member-function implementation details, the class-implementa-
tion programmer would provide the client-code programmer with the header Grade-
Book.h (which specifies the class’s interface and data members) and the GradeBook object
code (i.e., the machine code instructions that represent GradeBook’s member functions).
The client-code programmer is not given GradeBook.cpp, so the client remains unaware
of how GradeBook’s member functions are implemented.

The client code programmer needs to know only GradeBook’s interface to use the class
and must be able to link its object code. Since the interface of the class is part of the class
definition in the GradeBook.h header, the client-code programmer must have access to
this file and must #include it in the client’s source-code file. When the client code is com-
piled, the compiler uses the class definition in GradeBook.h to ensure that the main func-
tion creates and manipulates objects of class GradeBook correctly.

To create the executable GradeBook application, the last step is to link

1. the object code for the main function (i.e., the client code),

2. the object code for class GradeBook’s member-function implementations and

3. the C++ Standard Library object code for the C++ classes (e.g., string) used by
the class-implementation programmer and the client-code programmer.

The linker’s output is the executable GradeBook application that instructors can use to
manage their students’ grades. Compilers and IDEs typically invoke the linker for you af-
ter compiling your code.

gradeBook1 created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Fig. 16.13 | GradeBook class demonstration after separating its interface from its
implementation. (Part 2 of 2.)

16.8 Validating Data with set Functions 615

For further information on compiling multiple-source-file programs, see your com-
piler’s documentation. We provide links to various C++ compilers in our C++ Resource
Center at www.deitel.com/cplusplus/.

16.8 Validating Data with set Functions
In Section 16.4, we introduced set functions for allowing clients of a class to modify the
value of a private data member. In Fig. 16.5, class GradeBook defines member function

Fig. 16.14 | Compilation and linking process that produces an executable application.

GradeBook
Application User

Class Implementation
Programmer

Client Code
Programmer

GradeBook
executable application

GradeBook.h
class definition/interface

main function
(client source code)

GradeBook class's
object code

main function's
object code

compilercompiler

linker

GradeBook.cpp
implementation file

C++ Standard Library
object code

616 Chapter 16 Introduction to Classes, Objects and Strings

setCourseName to simply assign a value received in its parameter name to data member
courseName. This member function does not ensure that the course name adheres to any
particular format or follows any other rules regarding what a “valid” course name looks
like. Suppose that a university can print student transcripts containing course names of
only 25 characters or less. If the university uses a system containing GradeBook objects to
generate the transcripts, we might want class GradeBook to ensure that its data member
courseName never contains more than 25 characters. The program of Figs. 16.15–16.17
enhances class GradeBook’s member function setCourseName to perform this validation
(also known as validity checking).

GradeBook Class Definition
GradeBook’s class definition (Fig. 16.15)—and hence, its interface—is identical to that of
Fig. 16.11. Since the interface remains unchanged, clients of this class need not be
changed when the definition of member function setCourseName is modified. This en-
ables clients to take advantage of the improved GradeBook class simply by linking the client
code to the updated GradeBook’s object code.

Validating the Course Name with GradeBook Member Function setCourseName
The changes to class GradeBook are in the definitions of the constructor (Fig. 16.16, lines
9–12) and setCourseName (lines 16–29). Rather than using a member initializer, the con-
structor now calls setCourseName. In general, all data members should be initialized with
member initializers. However, sometimes a constructor must also validate its argu-
ment(s)—often, this is handled in the constructor’s body (line 11). The call to setCourse-
Name validates the constructor’s argument and sets the data member courseName. Initially,
courseName’s value will be set to the empty string before the constructor’s body executes,
then setCourseName will modify courseName’s value.

In setCourseName, the if statement in lines 18–19 determines whether parameter
name contains a valid course name (i.e., a string of 25 or fewer characters). If the course

1 // Fig. 16.15: GradeBook.h
2 // GradeBook class definition presents the public interface of

3 // the class. Member-function definitions appear in GradeBook.cpp.

4 #include <string> // program uses C++ standard string class
5
6 // GradeBook class definition

7 class GradeBook
8 {

9 public:
10 explicit GradeBook(std::string); // constructor initialize courseName
11 void setCourseName(std::string); // sets the course name
12 std::string getCourseName() const; // gets the course name
13 void displayMessage() const; // displays a welcome message
14 private:
15 std::string courseName; // course name for this GradeBook
16 }; // end class GradeBook

Fig. 16.15 | GradeBook class definition presents the public interface of the class.

16.8 Validating Data with set Functions 617

name is valid, line 19 stores it in data member courseName. Note the expression
name.size() in line 18. This is a member-function call just like myGradeBook.display-
Message(). The C++ Standard Library’s string class defines a member function size that
returns the number of characters in a string object. Parameter name is a string object, so
the call name.size() returns the number of characters in name. If this value is less than or
equal to 25, name is valid and line 19 executes.

1 // Fig. 16.16: GradeBook.cpp
2 // Implementations of the GradeBook member-function definitions.

3 // The setCourseName function performs validation.

4 #include <iostream>
5 #include "GradeBook.h" // include definition of class GradeBook
6 using namespace std;
7
8 // constructor initializes courseName with string supplied as argument

9 GradeBook::GradeBook(string name)

10 {

11
12 } // end GradeBook constructor

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 // function to get the course name

32 string GradeBook::getCourseName() const
33 {

34 return courseName; // return object's courseName
35 } // end function getCourseName
36
37 // display a welcome message to the GradeBook user

38 void GradeBook::displayMessage() const
39 {

40 // call getCourseName to get the courseName

41 cout << "Welcome to the grade book for\n" << getCourseName()
42 << "!" << endl;
43 } // end function displayMessage

Fig. 16.16 | Member-function definitions for class GradeBook with a set function that validates
the length of data member courseName.

setCourseName(name); // validate and store courseName

// function that sets the course name;

// ensures that the course name has at most 25 characters
void GradeBook::setCourseName(string name)
{

 if (name.size() <= 25) // if name has 25 or fewer characters
 courseName = name; // store the course name in the object

 if (name.size() > 25) // if name has more than 25 characters
 {

 // set courseName to first 25 characters of parameter name

 courseName = name.substr(0, 25); // start at 0, length of 25

 cerr << "Name \"" << name << "\" exceeds maximum length (25).\n"
 << "Limiting courseName to first 25 characters.\n" << endl;
 } // end if

} // end function setCourseName

618 Chapter 16 Introduction to Classes, Objects and Strings

The if statement in lines 21–28 handles the case in which setCourseName receives an
invalid course name (i.e., a name that is more than 25 characters long). Even if parameter
name is too long, we still want to leave the GradeBook object in a consistent state—that is,
a state in which the object’s data member courseName contains a valid value (i.e., a string
of 25 characters or less). Thus, we truncate the specified course name and assign the first
25 characters of name to the courseName data member (unfortunately, this could truncate
the course name awkwardly). Standard class string provides member function substr
(short for “substring”) that returns a new string object created by copying part of an
existing string object. The call in line 24 (i.e., name.substr(0, 25)) passes two integers
(0 and 25) to name’s member function substr. These arguments indicate the portion of
the string name that substr should return. The first argument specifies the starting position
in the original string from which characters are copied—the first character in every string
is considered to be at position 0. The second argument specifies the number of characters
to copy. Therefore, the call in line 24 returns a 25-character substring of name starting at
position 0 (that is, the first 25 characters in name). For example, if name holds the value
"CS101 Introduction to Programming in C++", substr returns "CS101 Introduction to
Pro". After the call to substr, line 24 assigns the substring returned by substr to data
member courseName. In this way, setCourseName ensures that courseName is always
assigned a string containing 25 or fewer characters. If the member function has to truncate
the course name to make it valid, lines 26–27 display a warning message using cerr.

The if statement in lines 21–28 contains two body statements—one to set the
courseName to the first 25 characters of parameter name and one to print an accompanying
message to the user.

The statement in lines 26–27 could also appear without a stream insertion operator
at the start of the second line of the statement, as in:

The C++ compiler combines adjacent string literals, even if they appear on separate lines of a
program. Thus, in the statement above, the C++ compiler would combine the string literals
"\" exceeds maximum length (25).\n" and "Limiting courseName to first 25 charac-
ters.\n" into a single string literal that produces output identical to that of lines 26–27
in Fig. 16.16. This behavior allows you to print lengthy strings by breaking them across
lines in your program without including additional stream insertion operations.

Testing Class GradeBook
Figure 16.17 demonstrates the modified version of class GradeBook (Figs. 16.15–16.16)
featuring validation. Line 12 creates a GradeBook object named gradeBook1. Recall that
the GradeBook constructor calls setCourseName to initialize data member courseName. In
previous versions of the class, the benefit of calling setCourseName in the constructor was
not evident. Now, however, the constructor takes advantage of the validation provided by
setCourseName. The constructor simply calls setCourseName, rather than duplicating its
validation code. When line 12 of Fig. 16.17 passes an initial course name of "CS101 In-
troduction to Programming in C++" to the GradeBook constructor, the constructor passes
this value to setCourseName, where the actual initialization occurs. Because this course
name contains more than 25 characters, the body of the second if statement executes,
causing courseName to be initialized to the truncated 25-character course name "CS101

cerr << "Name \"" << name << "\" exceeds maximum length (25).\n"
 "Limiting courseName to first 25 characters.\n" << endl;

16.8 Validating Data with set Functions 619

Introduction to Pro" (the truncated part is highlighted in line 12). The output in
Fig. 16.17 contains the warning message output by lines 26–27 of Fig. 16.16 in member
function setCourseName. Line 13 creates another GradeBook object called gradeBook2—
the valid course name passed to the constructor is exactly 25 characters.

Lines 16–19 of Fig. 16.17 display the truncated course name for gradeBook1 (we
highlight this in blue in the program output) and the course name for gradeBook2. Line
22 calls gradeBook1’s setCourseName member function directly, to change the course

1 // Fig. 16.17: fig16_17.cpp

2 // Create and manipulate a GradeBook object; illustrate validation.

3 #include <iostream>
4 #include "GradeBook.h" // include definition of class GradeBook
5 using namespace std;
6
7 // function main begins program execution

8 int main()
9 {

10 // create two GradeBook objects;

11 // initial course name of gradeBook1 is too long

12 GradeBook gradeBook1("CS101 Introduction to Pro ");
13 GradeBook gradeBook2("CS102 C++ Data Structures");
14
15 // display each GradeBook's courseName

16 cout << "gradeBook1's initial course name is: "
17 << gradeBook1.getCourseName()

18 << "\ngradeBook2's initial course name is: "
19 << gradeBook2.getCourseName() << endl;
20
21 // modify gradeBook1's courseName (with a valid-length string)

22
23
24 // display each GradeBook's courseName

25 cout << "\ngradeBook1's course name is: "
26 << gradeBook1.getCourseName()

27 << "\ngradeBook2's course name is: "
28 << gradeBook2.getCourseName() << endl;
29 } // end main

Name "CS101 Introduction to Programming in C++" exceeds maximum length (25).
Limiting courseName to first 25 characters.

gradeBook1's initial course name is:
gradeBook2's initial course name is: CS102 C++ Data Structures

gradeBook1's course name is: CS101 C++ Programming
gradeBook2's course name is: CS102 C++ Data Structures

Fig. 16.17 | Creating and manipulating a GradeBook object in which the course name is limited
to 25 characters in length.

gramming in C++

gradeBook1.setCourseName("CS101 C++ Programming");

CS101 Introduction to Pro

620 Chapter 16 Introduction to Classes, Objects and Strings

name in the GradeBook object to a shorter name that does not need to be truncated. Then,
lines 25–28 output the course names for the GradeBook objects again.

Additional Notes on Set Functions
A public set function such as setCourseName should carefully scrutinize any attempt to
modify the value of a data member (e.g., courseName) to ensure that the new value is ap-
propriate for that data item. For example, an attempt to set the day of the month to 37
should be rejected, an attempt to set a person’s weight to zero or a negative value should
be rejected, an attempt to set a grade on an exam to 185 (when the proper range is zero to
100) should be rejected, and so on.

A set function could return a value indicating that an attempt was made to assign
invalid data to an object of the class. A client could then test the return value of the set
function to determine whether the attempt to modify the object was successful and to take
appropriate action if not. We will do that in later chapters after we introduce a bit more
programming technology. In C++, clients of objects also can be notified of problems via
the exception-handling mechanism, which we present in-depth in Chapter 17.

16.9 Wrap-Up
In this chapter, you created user-defined classes, and created and used objects of those
classes. We declared data members of a class to maintain data for each object of the class.
We also defined member functions that operate on that data. You learned that member
functions that do not modify a class’s data should be declared const. We showed how to
call an object’s member functions to request the services the object provides and how to
pass data to those member functions as arguments. We discussed the difference between a
local variable of a member function and a data member of a class. We also showed how to
use a constructor and a member-initializer list to ensure that every object is initialized
properly. You learned that a single-parameter constructor should be declared explicit,
and that a constructor cannot be declared const because it modifies the object being ini-
tialized.

We demonstrated how to separate the interface of a class from its implementation to
promote good software engineering. You learned that using directives and using declara-
tions should never be placed in headers. We presented a diagram that shows the files that
class-implementation programmers and client-code programmers need to compile the
code they write. We demonstrated how set functions can be used to validate an object’s
data and ensure that objects are maintained in a consistent state. UML class diagrams were
used to model classes and their constructors, member functions and data members. In the
next chapter, we begin our deeper treatment of classes.

Software Engineering Observation 16.3
Making data members private and controlling access, especially write access, to those
data members through public member functions helps ensure data integrity.

Error-Prevention Tip 16.4
The benefits of data integrity are not automatic simply because data members are made
private—you must provide appropriate validity checking and report the errors.

 Summary 621

Summary
Section 16.2 Defining a Class with a Member Function
• A class definition (p. 591) contains the data members and member functions that define the

class’s attributes and behaviors, respectively.

• A class definition begins with the keyword class followed immediately by the class name.

• By convention, the name of a user-defined class (p. 592) begins with a capital letter and, for read-
ability, each subsequent word in the class name begins with a capital letter.

• Every class’s body (p. 591) is enclosed in a pair of braces ({ and }) and ends with a semicolon.

• Member functions that appear after access specifier public (p. 592) can be called by other func-
tions in a program and by member functions of other classes.

• Access specifiers are always followed by a colon (:).

• Keyword void (p. 592) is a special return type which indicates that a function will perform a task
but will not return any data to its calling function when it completes its task.

• By convention, function names (p. 592) begin with a lowercase first letter and all subsequent
words in the name begin with a capital letter.

• An empty set of parentheses after a function name indicates that the function does not require
additional data to perform its task.

• A function that does not, and should not, modify the object on which it’s called should be de-
clared const.

• Typically, you cannot call a member function until you create an object of its class.

• Each new class you create becomes a new type in C++.

• In the UML, each class is modeled in a class diagram (p. 593) as a rectangle with three compart-
ments, which (top to bottom) contain the class’s name, attributes and operations, respectively.

• The UML models operations as the operation name followed by parentheses. A plus sign (+) pre-
ceding the name indicates a public operation (i.e., a public member function in C++).

Section 16.3 Defining a Member Function with a Parameter
• A member function can require one or more parameters (p. 593) that represent additional data it

needs to perform its task. A function call supplies an argument (p. 594) for each function parame-
ter.

• A member function is called by following the object name with a dot (.) operator (p. 593), the
function name and a set of parentheses containing the function’s arguments.

• A variable of C++ Standard Library class string (p. 595) represents a string of characters. This
class is defined in header <string>, and the name string belongs to namespace std.

• Function getline (from header <string>, p. 595) reads characters from its first argument until
a newline character is encountered, then places the characters (not including the newline) in the
string variable specified as its second argument. The newline character is discarded.

• A parameter list (p. 596) may contain any number of parameters, including none at all (repre-
sented by empty parentheses) to indicate that a function does not require any parameters.

• The number of arguments in a function call must match the number of parameters in the pa-
rameter list of the called member function’s header. Also, the argument types in the function call
must be consistent with the types of the corresponding parameters in the function header.

• The UML models a parameter of an operation by listing the parameter name, followed by a colon
and the parameter type between the parentheses following the operation name.

622 Chapter 16 Introduction to Classes, Objects and Strings

• The UML has its own data types. Not all the UML data types have the same names as the cor-
responding C++ types. The UML type String corresponds to the C++ type string.

Section 16.4 Data Members, set Member Functions and get Member Functions
• Variables declared in a function’s body are local variables (p. 597) and can be used only from the

point of their declaration to the closing right brace (}) of the block in which they are declared.

• A local variable must be declared before it can be used in a function. A local variable cannot be
accessed outside the function in which it’s declared.

• Data members (p. 597) normally are private (p. 599). Variables or functions declared private
are accessible only to member functions of the class in which they’re declared, or to friends of the
class.

• When a program creates (instantiates) an object, its private data members are encapsulated (hid-
den, p. 599) in the object and can be accessed only by member functions of the object’s class (or
by “friends” of the class, as you’ll see in Chapter 17).

• When a function that specifies a return type other than void is called and completes its task, the
function returns a result to its calling function.

• By default, the initial value of a string is the empty string (p. 600)—i.e., a string that does not
contain any characters. Nothing appears on the screen when an empty string is displayed.

• A class often provides public member functions to allow the class’s clients to set or get (p. 601)
private data members. The names of these member functions normally begin with set or get.

• Set and get functions allow clients of a class to indirectly access the hidden data. The client does
not know how the object performs these operations.

• A class’s set and get functions should be used by other member functions of the class to manipu-
late the class’s private data. If the class’s data representation is changed, member functions that
access the data only via the set and get functions will not require modification.

• A public set function should carefully scrutinize any attempt to modify the value of a data mem-
ber to ensure that the new value is appropriate for that data item.

• The UML represents data members as attributes by listing the attribute name, followed by a co-
lon and the attribute type. Private attributes are preceded by a minus sign (–) in the UML.

• The UML indicates the return type of an operation by placing a colon and the return type after
the parentheses following the operation name.

• UML class diagrams do not specify return types for operations that do not return values.

Section 16.5 Initializing Objects with Constructors
• Each class should provide one or more constructors (p. 602) to initialize an object of the class

when the object is created. A constructor must be defined with the same name as the class.

• A difference between constructors and functions is that constructors cannot return values, so they
cannot specify a return type (not even void). Normally, constructors are declared public.

• C++ automatically calls a constructor for each object that’s created, which helps ensure that ob-
jects are initialized properly before they’re used in a program.

• A constructor with no parameters is a default constructor (p. 603). If you do not provide a con-
structor, the compiler provides a default constructor. You can also define a default constructor
explicitly. If you define any constructors for a class, C++ will not create a default constructor.

• A single-parameter constructor should be declared explicit.

• A constructor uses a member initializer list to initialize a class’s data members. Member initial-
izers appear between a constructor’s parameter list and the left brace that begins the constructor’s

 Self-Review Exercises 623

body. The member initializer list is separated from the parameter list with a colon (:). A member
initializer consists of a data member’s variable name followed by parentheses containing the
member’s initial value. You can perform initialization in the constructor’s body, but you’ll learn
later in the book that it’s more efficient to do it with member initializers, and some types of data
members must be initialized this way.

• The UML models constructors as operations in a class diagram’s third compartment with the
word “constructor” between guillemets (« and ») before the constructor’s name.

Section 16.6 Placing a Class in a Separate File for Reusability
• Class definitions, when packaged properly, can be reused by programmers worldwide.

• It’s customary to define a class in a header (p. 606) that has a .h filename extension.

Section 16.7 Separating Interface from Implementation
• If the class’s implementation changes, the class’s clients should not be required to change.

• Interfaces define and standardize the ways in which things such as people and systems interact.

• A class’s public interface (p. 610) describes the public member functions that are made available
to the class’s clients. The interface describes what services (p. 610) clients can use and how to re-
quest those services, but does not specify how the class carries out the services.

• Separating interface from implementation (p. 610) makes programs easier to modify. Changes
in the class’s implementation do not affect the client as long as the class’s interface remains un-
changed.

• You should never place using directives and using declarations in headers.

• A function prototype (p. 610) contains a function’s name, its return type and the number, types
and order of the parameters the function expects to receive.

• Once a class is defined and its member functions are declared (via function prototypes), the
member functions should be defined in a separate source-code file.

• For each member function defined outside of its corresponding class definition, the function
name must be preceded by the class name and the scope resolution operator (::, p. 612).

Section 16.8 Validating Data with set Functions
• Class string’s size member function (p. 617) returns the number of characters in a string.

• Class string’s member function substr (p. 618) returns a new string containing a copy of part
of an existing string. The first argument specifies the starting position in the original string.
The second specifies the number of characters to copy.

Self-Review Exercises
16.1 Fill in the blanks in each of the following:

a) Every class definition contains the keyword followed immediately by the
class’s name.

b) A class definition is typically stored in a file with the filename extension.
c) Each parameter in a function header specifies both a(n) and a(n) .
d) When each object of a class maintains its own version of an attribute, the variable that

represents the attribute is also known as a(n) .
e) Keyword public is a(n) .
f) Return type indicates that a function will perform a task but will not return

any information when it completes its task.
g) Function from the <string> library reads characters until a newline character

is encountered, then copies those characters into the specified string.

624 Chapter 16 Introduction to Classes, Objects and Strings

h) When a member function is defined outside the class definition, the function header
must include the class name and the , followed by the function name to “tie”
the member function to the class definition.

i) The source-code file and any other files that use a class can include the class’s header via
a(n) preprocessing directive.

16.2 State whether each of the following is true or false. If false, explain why.
a) By convention, function names begin with a capital letter and all subsequent words in

the name begin with a capital letter.
b) Empty parentheses following a function name in a function prototype indicate that the

function does not require any parameters to perform its task.
c) Data members or member functions declared with access specifier private are accessi-

ble to member functions of the class in which they’re declared.
d) Variables declared in the body of a particular member function are known as data mem-

bers and can be used in all member functions of the class.
e) Every function’s body is delimited by left and right braces ({ and }).
f) Any source-code file that contains int main() can be used to execute a program.
g) The types of arguments in a function call must be consistent with the types of the cor-

responding parameters in the function prototype’s parameter list.

16.3 What is the difference between a local variable and a data member?

16.4 Explain the purpose of a function parameter. What’s the difference between a parameter
and an argument?

Answers to Self-Review Exercises
16.1 a) class. b) .h. c) type, name. d) data member. e) access specifier. f) void. g) getline.
h) scope resolution operator (::). i) #include.

16.2 a) False. Function names begin with a lowercase letter and all subsequent words in the
name begin with a capital letter. b) True. c) True. d) False. Such variables are local variables and can
be used only in the member function in which they’re declared. e) True. f) True. g) True.

16.3 A local variable is declared in the body of a function and can be used only from its declara-
tion to the closing brace of the block in which it’s declared. A data member is declared in a class,
but not in the body of any of the class’s member functions. Every object of a class has each of the
class’s data members. Data members are accessible to all member functions of the class.

16.4 A parameter represents additional information that a function requires to perform its task.
Each parameter required by a function is specified in the function header. An argument is the value
supplied in the function call. When the function is called, the argument value is passed into the
function parameter so that the function can perform its task.

Exercises
16.5 (Function Prototypes and Definitions) Explain the difference between a function prototype
and a function definition.

16.6 (Default Constructor) What’s a default constructor? How are an object’s data members ini-
tialized if a class has only an implicitly defined default constructor?

16.7 (Data Members) Explain the purpose of a data member.

16.8 (Header and Source-Code Files) What’s a header? What’s a source-code file? Discuss the
purpose of each.

 Exercises 625

16.9 (Using a Class Without a using Directive) Explain how a program could use class string
without inserting a using directive.

16.10 (Set and Get Functions) Explain why a class might provide a set function and a get function
for a data member.

16.11 (Modifying Class GradeBook) Modify class GradeBook (Figs. 16.11–16.12) as follows:
a) Include a second string data member that represents the course instructor’s name.
b) Provide a set function to change the instructor’s name and a get function to retrieve it.
c) Modify the constructor to specify course name and instructor name parameters.
d) Modify function displayMessage to output the welcome message and course name,

then the string "This course is presented by: " followed by the instructor’s name.

Use your modified class in a test program that demonstrates the class’s new capabilities.

16.12 (Account Class) Create an Account class that a bank might use to represent customers’ bank
accounts. Include a data member of type int to represent the account balance. Provide a constructor
that receives an initial balance and uses it to initialize the data member. The constructor should val-
idate the initial balance to ensure that it’s greater than or equal to 0. If not, set the balance to 0 and
display an error message indicating that the initial balance was invalid. Provide three member func-
tions. Member function credit should add an amount to the current balance. Member function
debit should withdraw money from the Account and ensure that the debit amount does not exceed
the Account’s balance. If it does, the balance should be left unchanged and the function should print
a message indicating "Debit amount exceeded account balance." Member function getBalance
should return the current balance. Create a program that creates two Account objects and tests the
member functions of class Account.

16.13 (Invoice Class) Create a class called Invoice that a hardware store might use to represent
an invoice for an item sold at the store. An Invoice should include four data members—a part num-
ber (type string), a part description (type string), a quantity of the item being purchased (type
int) and a price per item (type int). Your class should have a constructor that initializes the four
data members. A constructor that receives multiple arguments is defined with the form:

ClassName(TypeName1 parameterName1, TypeName2 parameterName2, ...)

Provide a set and a get function for each data member. In addition, provide a member function
named getInvoiceAmount that calculates the invoice amount (i.e., multiplies the quantity by the
price per item), then returns the amount as an int value. If the quantity is not positive, it should be
set to 0. If the price per item is not positive, it should be set to 0. Write a test program that demon-
strates class Invoice’s capabilities.

16.14 (Employee Class) Create a class called Employee that includes three pieces of information as
data members—a first name (type string), a last name (type string) and a monthly salary (type
int). Your class should have a constructor that initializes the three data members. Provide a set and
a get function for each data member. If the monthly salary is not positive, set it to 0. Write a test
program that demonstrates class Employee’s capabilities. Create two Employee objects and display
each object’s yearly salary. Then give each Employee a 10 percent raise and display each Employee’s
yearly salary again.

16.15 (Date Class) Create a class called Date that includes three pieces of information as data
members—a month (type int), a day (type int) and a year (type int). Your class should have a con-
structor with three parameters that uses the parameters to initialize the three data members. For the
purpose of this exercise, assume that the values provided for the year and day are correct, but ensure
that the month value is in the range 1–12; if it isn’t, set the month to 1. Provide a set and a get func-
tion for each data member. Provide a member function displayDate that displays the month, day
and year separated by forward slashes (/). Write a test program that demonstrates class Date’s capa-
bilities.

626 Chapter 16 Introduction to Classes, Objects and Strings

Making a Difference
16.16 (Target-Heart-Rate Calculator) While exercising, you can use a heart-rate monitor to see that
your heart rate stays within a safe range suggested by your trainers and doctors. According to the Amer-
ican Heart Association (AHA) (www.americanheart.org/presenter.jhtml?identifier=4736), the
formula for calculating your maximum heart rate in beats per minute is 220 minus your age in years.
Your target heart rate is a range that is 50–85% of your maximum heart rate. [Note: These formulas are
estimates provided by the AHA. Maximum and target heart rates may vary based on the health, fitness and
gender of the individual. Always consult a physician or qualified health care professional before beginning or
modifying an exercise program.] Create a class called HeartRates. The class attributes should include the
person’s first name, last name and date of birth (consisting of separate attributes for the month, day
and year of birth). Your class should have a constructor that receives this data as parameters. For each
attribute provide set and get functions. The class also should include a function getAge that calculates
and returns the person’s age (in years), a function getMaxiumumHeartRate that calculates and returns
the person’s maximum heart rate and a function getTargetHeartRate that calculates and returns the
person’s target heart rate. Since you do not yet know how to obtain the current date from the comput-
er, function getAge should prompt the user to enter the current month, day and year before calculating
the person’s age. Write an application that prompts for the person’s information, instantiates an object
of class HeartRates and prints the information from that object—including the person’s first name,
last name and date of birth—then calculates and prints the person’s age in (years), maximum heart rate
and target-heart-rate range.

16.17 (Computerization of Health Records) A health care issue that has been in the news lately is
the computerization of health records. This possibility is being approached cautiously because of
sensitive privacy and security concerns, among others. Computerizing health records could make it
easier for patients to share their health profiles and histories among their various health care profes-
sionals. This could improve the quality of health care, help avoid drug conflicts and erroneous drug
prescriptions, reduce costs and in emergencies, could save lives. In this exercise, you’ll design a
“starter” HealthProfile class for a person. The class attributes should include the person’s first
name, last name, gender, date of birth (consisting of separate attributes for the month, day and year
of birth), height (in inches) and weight (in pounds). Your class should have a constructor that re-
ceives this data. For each attribute, provide set and get functions. The class also should include func-
tions that calculate and return the user’s age in years, maximum heart rate and target-heart-rate
range (see Exercise 16.16), and body mass index (BMI; see Exercise 2.32). Write an application that
prompts for the person’s information, instantiates an object of class HealthProfile for that person
and prints the information from that object—including the person’s first name, last name, gender,
date of birth, height and weight—then calculates and prints the person’s age in years, BMI, maxi-
mum heart rate and target-heart-rate range. It should also display the “BMI values” chart from
Exercise 2.32. Use the same technique as Exercise 16.16 to calculate the person’s age.

17Classes: A Deeper Look;
Throwing Exceptions

O b j e c t i v e s
In this chapter you’ll:

■ Use an include guard.

■ Access class members via an
object’s name, a reference or
a pointer.

■ Use destructors to perform
“termination housekeeping.”

■ Learn the order of constructor
and destructor calls.

■ Learn about the dangers of
returning a reference to
private data.

■ Assign the data members of
one object to those of
another object.

■ Create objects composed of
other objects.

■ Use friend functions and
friend classes.

■ Use the this pointer in a
member function to access a
non-static class member.

■ Use static data members
and member functions.

628 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

17.1 Introduction
This chapter takes a deeper look at classes. We use an integrated Time class case study and
other examples to demonstrate several class construction capabilities. We begin with a
Time class that reviews several of the features presented in preceding chapters. The example
also demonstrates using an include guard in headers to prevent header code from being in-
cluded in the same source code file more than once.

We demonstrate how client code can access a class’s public members via the name of
an object, a reference to an object or a pointer to an object. As you’ll see, object names and
references can be used with the dot (.) member selection operator to access a public
member, and pointers can be used with the arrow (->) member selection operator.

We discuss access functions that can read or write an object’s data members. A
common use of access functions is to test the truth or falsity of conditions—such functions
are known as predicate functions. We also demonstrate the notion of a utility function (also
called a helper function)—a private member function that supports the operation of the
class’s public member functions, but is not intended for use by clients of the class.

We show how to pass arguments to constructors and show how default arguments can
be used in constructors to enable client code to initialize objects using a variety of argu-
ments. Next, we discuss a special member function called a destructor that’s part of every
class and is used to perform “termination housekeeping” on an object before it’s destroyed.
We demonstrate the order in which constructors and destructors are called.

We show that returning a reference or pointer to private data breaks the encapsulation
of a class, allowing client code to directly access an object’s data. We use default member-
wise assignment to assign an object of a class to another object of the same class.

We use const objects and const member functions to prevent modifications of
objects and enforce the principle of least privilege. We discuss composition—a form of
reuse in which a class can have objects of other classes as members. Next, we use friendship
to specify that a nonmember function can also access a class’s non-public members—a
technique that’s often used in operator overloading (Chapter 18) for performance reasons.
We discuss the this pointer, which is an implicit argument in all calls to a class’s non-

17.1 Introduction
17.2 Time Class Case Study
17.3 Class Scope and Accessing Class Members
17.4 Access Functions and Utility Functions
17.5 Time Class Case Study: Constructors with

Default Arguments
17.6 Destructors
17.7 When Constructors and Destructors Are

Called
17.8 Time Class Case Study: A Subtle Trap—

Returning a Reference or a Pointer to a
private Data Member

17.9 Default Memberwise
Assignment

17.10 const Objects and const
Member Functions

17.11 Composition: Objects as
Members of Classes

17.12 friend Functions and friend
Classes

17.13 Using the this Pointer
17.14 static Class Members
17.15 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

17.2 Time Class Case Study 629

static member functions, allowing them to access the correct object’s data members and
non-static member functions. We motivate the need for static class members and show
how to use them in your own classes.

17.2 Time Class Case Study
Our first example creates class Time and tests the class. We demonstrate an important C++
software engineering concept—using an include guard in headers to prevent the code in the
header from being included into the same source code file more than once. Since a class can
be defined only once, using such preprocessing directives prevents multiple-definition errors.

Time Class Definition
The class definition (Fig. 17.1) contains prototypes (lines 13–16) for member functions
Time, setTime, printUniversal and printStandard, and includes private unsigned int
members hour, minute and second (lines 18–20). Class Time’s private data members can
be accessed only by its member functions. Chapter 19 introduces a third access specifier,
protected, as we study inheritance and the part it plays in object-oriented programming.

Good Programming Practice 17.1
For clarity and readability, use each access specifier only once in a class definition. Place
public members first, where they’re easy to locate.

Software Engineering Observation 17.1
Each member of a class should have private visibility unless it can be proven that the
element needs public visibility. This is another example of the principle of least privilege.

1 // Fig. 17.1:

2
3
4
5 // prevent multiple inclusions of header

6
7
8
9 // Time class definition

10 class Time
11 {

12 public:
13 Time(); // constructor

14 void setTime(int, int, int); // set hour, minute and second
15 void printUniversal() const; // print time in universal-time format
16 void printStandard() const; // print time in standard-time format
17 private:
18 unsigned int hour; // 0 - 23 (24-hour clock format)
19 unsigned int minute; // 0 - 59
20 unsigned int second; // 0 - 59
21 }; // end class Time
22
23

Fig. 17.1 | Time class definition.

Time.h
// Time class definition.

// Member functions are defined in Time.cpp

#ifndef TIME_H
#define TIME_H

#endif

630 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

In Fig. 17.1, the class definition is enclosed in the following include guard (lines 6, 7
and 23):

When we build larger programs, other definitions and declarations will also be placed in
headers. The preceding include guard prevents the code between #ifndef (which means
“if not defined”) and #endif from being included if the name TIME_H has been defined. If
the header has not been included previously in a file, the name TIME_H is defined by the
#define directive and the header statements are included. If the header has been included
previously, TIME_H is defined already and the header is not included again. Attempts to in-
clude a header multiple times (inadvertently) typically occur in large programs with many
headers that may themselves include other headers.

Time Class Member Functions
In Fig. 17.2, the Time constructor (lines 11–14) initializes the data members to 0—the
universal-time equivalent of 12 AM. Invalid values cannot be stored in the data members
of a Time object, because the constructor is called when the Time object is created, and all
subsequent attempts by a client to modify the data members are scrutinized by function
setTime (discussed shortly). Finally, it’s important to note that you can define overloaded
constructors for a class—we studied overloaded functions in Chapter 15.

// prevent multiple inclusions of header

#ifndef TIME_H
#define TIME_H
 ...

#endif

Error-Prevention Tip 17.1
Use #ifndef, #define and #endif preprocessing directives to form an include guard that
prevents headers from being included more than once in a source-code file.

Good Programming Practice 17.2
By convention, use the name of the header in uppercase with the period replaced by an
underscore in the #ifndef and #define preprocessing directives of a header.

1 // Fig. 17.2:
2
3 #include <iostream>
4 #include <iomanip>
5
6
7
8 using namespace std;
9

10 // Time constructor initializes each data member to zero.
11 Time::Time()

12 : hour(0), minute(0), second(0)
13 {
14 } // end Time constructor

Fig. 17.2 | Time class member-function definitions. (Part 1 of 2.)

Time.cpp

// Time class member-function definitions.

#include <stdexcept> // for invalid_argument exception class
#include "Time.h" // include definition of class Time from Time.h

17.2 Time Class Case Study 631

Before C++11, only static const int data members could be initialized where they
were declared in the class body. For this reason, data members typically should be initial-
ized by the class’s constructor as there is no default initialization for fundamental-type data
members. As of C++11, you can now use an in-class initializer to initialize any data member
where it’s declared in the class definition.

Time Class Member Function setTime and Throwing Exceptions
Function setTime (lines 17–30) is a public function that declares three int parameters
and uses them to set the time. Lines 20–21 test each argument to determine whether the
value is in range, and, if so, lines 23–25 assign the values to the hour, minute and second
data members. The hour value must be greater than or equal to 0 and less than 24, because
universal-time format represents hours as integers from 0 to 23 (e.g., 1 PM is hour 13 and
11 PM is hour 23; midnight is hour 0 and noon is hour 12). Similarly, both minute and
second must be greater than or equal to 0 and less than 60. For values outside these ranges,
setTime throws an exception (lines 28–29) of type invalid_argument (from header
<stdexcept>), which notifies the client code that an invalid argument was received. You
can use try…catch to catch exceptions and attempt to recover from them, which we’ll do

15
16 // set new Time value using universal time

17 void Time::setTime(int h, int m, int s)
18 {

19 // validate hour, minute and second

20 if ((h >= 0 && h < 24) && (m >= 0 && m < 60) &&
21 (s >= 0 && s < 60))
22 {

23 hour = h;
24 minute = m;

25 second = s;

26 } // end if
27 else
28

29
30 } // end function setTime

31
32 // print Time in universal-time format (HH:MM:SS)

33 void Time::printUniversal() const
34 {

35 cout << << setw(2) << << ":"
36 << setw(2) << << ":" << setw(2) << ;
37 } // end function printUniversal

38
39 // print Time in standard-time format (HH:MM:SS AM or PM)
40 void Time::printStandard() const
41 {

42 cout << ((== 0 || == 12) ? 12 : % 12) << ":"
43 << << setw(2) << << ":" << setw(2)
44 << << (< 12 ? " AM" : " PM");
45 } // end function printStandard

Fig. 17.2 | Time class member-function definitions. (Part 2 of 2.)

throw invalid_argument(
 "hour, minute and/or second was out of range");

setfill('0') hour

minute second

hour hour hour

setfill('0') minute
second hour

632 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

in Fig. 17.3. The throw statement (lines 28–29) creates a new object of type
invalid_argument. The parentheses following the class name indicate a call to the
invalid_argument constructor that allows us to specify a custom error message string. Af-
ter the exception object is created, the throw statement immediately terminates function
setTime and the exception is returned to the code that attempted to set the time.

Time Class Member Function printUniversal
Function printUniversal (lines 33–37 of Fig. 17.2) takes no arguments and outputs the
time in universal-time format, consisting of three colon-separated pairs of digits. If the
time were 1:30:07 PM, function printUniversal would return 13:30:07. Line 35 uses
parameterized stream manipulator setfill to specify the fill character that’s displayed
when an integer is output in a field wider than the number of digits in the value. The fill
characters appear to the left of the digits in the number, because the number is right aligned
by default—for left aligned values, the fill characters would appear to the right. In this ex-
ample, if the minute value is 2, it will be displayed as 02, because the fill character is set to
zero ('0'). If the number being output fills the specified field, the fill character will not be
displayed. Once the fill character is specified with setfill, it applies for all subsequent
values that are displayed in fields wider than the value being displayed—setfill is a
“sticky” setting. This is in contrast to setw, which applies only to the next value dis-
played—setw is a “nonsticky” setting.

Time Class Member Function printStandard
Function printStandard (lines 40–45) takes no arguments and outputs the date in stan-
dard-time format, consisting of the hour, minute and second values separated by colons
and followed by an AM or PM indicator (e.g., 1:27:06 PM). Like function printUniver-
sal, function printStandard uses setfill('0') to format the minute and second as two
digit values with leading zeros if necessary. Line 42 uses the conditional operator (?:) to
determine the value of hour to be displayed—if the hour is 0 or 12 (AM or PM), it appears
as 12; otherwise, the hour appears as a value from 1 to 11. The conditional operator in line
44 determines whether AM or PM will be displayed.

Defining Member Functions Outside the Class Definition; Class Scope
Even though a member function declared in a class definition may be defined outside that
class definition (and “tied” to the class via the scope resolution operator), that member func-
tion is still within that class’s scope—that is, its name is known to other class members
referred to via an object of the class, a reference to an object of the class, a pointer to an
object of the class or the scope resolution operator. We’ll say more about class scope
shortly.

If a member function is defined in a class’s body, the member function is implicitly
declared inline. Remember that the compiler reserves the right not to inline any function.

Error-Prevention Tip 17.2
Each sticky setting (such as a fill character or floating-point precision) should be restored
to its previous setting when it’s no longer needed. Failure to do so may result in incorrectly
formatted output later in a program. Chapter 21, Stream Input/Output: A Deeper Look,
discusses how to reset the fill character and precision.

17.2 Time Class Case Study 633

Member Functions vs. Global Functions (Also Called Free Functions)
The printUniversal and printStandard member functions take no arguments, because
these member functions implicitly know that they’re to print the data members of the par-
ticular Time object on which they’re invoked. This can make member function calls more
concise than conventional function calls in procedural programming.

Using Class Time
Once defined, Time can be used as a type in declarations as follows:

Figure 17.3 uses class Time. Line 11 instantiates a single object of class Time called t.
When the object is instantiated, the Time constructor is called to initialize each private
data member to 0. Then, lines 15 and 17 print the time in universal and standard formats,
respectively, to confirm that the members were initialized properly. Line 19 sets a new
time by calling member function setTime, and lines 23 and 25 print the time again in
both formats.

Performance Tip 17.1
Defining a member function inside the class definition inlines the member function (if
the compiler chooses to do so). This can improve performance.

Software Engineering Observation 17.2
Only the simplest and most stable member functions (i.e., whose implementations are
unlikely to change) should be defined in the class header.

Software Engineering Observation 17.3
Using an object-oriented programming approach often simplifies function calls by
reducing the number of parameters. This benefit derives from the fact that encapsulating
data members and member functions within a class gives the member functions the right
to access the data members.

Software Engineering Observation 17.4
Member functions are usually shorter than functions in non-object-oriented programs,
because the data stored in data members have ideally been validated by a constructor or
by member functions that store new data. Because the data is already in the object, the
member-function calls often have no arguments or fewer arguments than function calls in
non-object-oriented languages. Thus, the calls, the function definitions and the function
prototypes are shorter. This improves many aspects of program development.

Error-Prevention Tip 17.3
The fact that member function calls generally take either no arguments or substantially
fewer arguments than conventional function calls in non-object-oriented languages re-
duces the likelihood of passing the wrong arguments, the wrong types of arguments or the
wrong number of arguments.

Time sunset; // object of type Time

array< Time, 5 > arrayOfTimes; // array of 5 Time objects
Time &dinnerTime = sunset; // reference to a Time object

Time *timePtr = &dinnerTime; // pointer to a Time object

634 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

1 // Fig. 17.3: fig17_03.cpp

2
3
4 #include <iostream>
5 #include <stdexcept> // for invalid_argument exception class
6
7 using namespace std;
8
9 int main()

10 {

11 Time t; // instantiate object t of class Time

12
13 // output Time object t's initial values

14 cout << "The initial universal time is ";
15 t.printUniversal(); // 00:00:00
16 cout << "\nThe initial standard time is ";
17 t.printStandard(); // 12:00:00 AM

18
19 t.setTime(13, 27, 6); // change time
20
21 // output Time object t's new values

22 cout << "\n\nUniversal time after setTime is ";
23 t.printUniversal(); // 13:27:06

24 cout << "\nStandard time after setTime is ";
25 t.printStandard(); // 1:27:06 PM
26
27 // attempt to set the time with invalid values

28 try
29 {

30 t.setTime(99, 99, 99); // all values out of range
31 } // end try
32 catch (invalid_argument &e)
33 {

34 cout << "Exception: " << e.what() << endl;
35 } // end catch

36
37 // output t's values after specifying invalid values
38 cout << "\n\nAfter attempting invalid settings:"
39 << "\nUniversal time: ";
40 t.printUniversal(); // 13:27:06
41 cout << "\nStandard time: ";
42 t.printStandard(); // 1:27:06 PM

43 cout << endl;
44 } // end main

The initial universal time is 00:00:00
The initial standard time is 12:00:00 AM

Universal time after setTime is 13:27:06
Standard time after setTime is 1:27:06 PM

Exception: hour, minute and/or second was out of range

Fig. 17.3 | Program to test class Time. (Part 1 of 2.)

// Program to test class Time.

// NOTE: This file must be compiled with Time.cpp.

#include "Time.h" // include definition of class Time from Time.h

17.3 Class Scope and Accessing Class Members 635

Calling setTime with Invalid Values
To illustrate that method setTime validates its arguments, line 30 calls setTime with in-
valid arguments of 99 for the hour, minute and second. This statement is placed in a try
block (lines 28–31) in case setTime throws an invalid_argument exception, which it will
do since the arguments are all invalid. When this occurs, the exception is caught at lines
32–35 and line 34 displays the exception’s error message by calling its what member func-
tion. Lines 38–42 output the time again in both formats to confirm that setTime did not
change the time when invalid arguments were supplied.

Looking Ahead to Composition and Inheritance
Often, classes do not have to be created “from scratch.” Rather, they can include objects of
other classes as members or they may be derived from other classes that provide attributes
and behaviors the new classes can use. Such software reuse can greatly enhance productiv-
ity and simplify code maintenance. Including class objects as members of other classes is
called composition (or aggregation) and is discussed in Section 17.11. Deriving new class-
es from existing classes is called inheritance and is discussed in Chapter 19.

Object Size
People new to object-oriented programming often suppose that objects must be quite large
because they contain data members and member functions. Logically, this is true—you
may think of objects as containing data and functions (and our discussion has certainly
encouraged this view); physically, however, this is not true.

17.3 Class Scope and Accessing Class Members
A class’s data members and member functions belong to that class’s scope. Nonmember
functions are defined at global namespace scope, by default.

Within a class’s scope, class members are immediately accessible by all of that class’s
member functions and can be referenced by name. Outside a class’s scope, public class
members are referenced through one of the handles on an object—an object name, a refer-
ence to an object or a pointer to an object. The type of the object, reference or pointer spec-
ifies the interface (e.g., the member functions) accessible to the client. [We’ll see in
Section 17.13 that an implicit handle is inserted by the compiler on every reference to a
data member or member function from within an object.]

After attempting invalid settings:
Universal time: 13:27:06
Standard time: 1:27:06 PM

Performance Tip 17.2
Objects contain only data, so objects are much smaller than if they also contained member
functions. The compiler creates one copy (only) of the member functions separate from all
objects of the class. All objects of the class share this one copy. Each object, of course, needs
its own copy of the class’s data, because the data can vary among the objects. The function
code is nonmodifiable and, hence, can be shared among all objects of one class.

Fig. 17.3 | Program to test class Time. (Part 2 of 2.)

636 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

Class Scope and Block Scope
Variables declared in a member function have block scope and are known only to that func-
tion. If a member function defines a variable with the same name as a variable with class
scope, the class-scope variable is hidden in the function by the block-scope variable. Such
a hidden variable can be accessed by preceding the variable name with the class name fol-
lowed by the scope resolution operator (::). Hidden global variables can be accessed with
the scope resolution operator, as in ::globalVariableName.

Dot (.) and Arrow (->) Member Selection Operators
The dot member selection operator (.) is preceded by an object’s name or with a reference
to an object to access the object’s members. The arrow member selection operator (->) is
preceded by a pointer to an object to access the object’s members.

Accessing public Class Members Through Objects, References and Pointers
Consider an Account class that has a public setBalance member function. Given the fol-
lowing declarations:

You can invoke member function setBalance using the dot (.) and arrow (->) member
selection operators as follows:

17.4 Access Functions and Utility Functions
Access Functions
Access functions can read or display data. Another common use for access functions is to
test the truth or falsity of conditions—such functions are often called predicate functions.
An example of a predicate function would be an isEmpty function for any container
class—a class capable of holding many objects, like a vector. A program might test isEmp-
ty before attempting to read another item from the container object. An isFull predicate
function might test a container-class object to determine whether it has no additional
room. Useful predicate functions for our Time class might be isAM and isPM.

Utility Functions
A utility function (also called a helper function) is a private member function that sup-
ports the operation of a class’s other member functions. Utility functions are declared pri-
vate because they’re not intended for use by the class’s clients. A common use of a utility
function would be to place in a function some common code that would otherwise be du-
plicated in several other member functions.

Account account; // an Account object

// accountRef refers to an Account object

Account &accountRef = account;

// accountPtr points to an Account object

Account *accountPtr = &account;

// call setBalance via the Account object

account.setBalance(123.45);
// call setBalance via a reference to the Account object

accountRef.setBalance(123.45);
// call setBalance via a pointer to the Account object

accountPtr->setBalance(123.45);

17.5 Time Class Case Study: Constructors with Default Arguments 637

17.5 Time Class Case Study: Constructors with Default
Arguments
The program of Figs. 17.4–17.6 enhances class Time to demonstrate how arguments are
implicitly passed to a constructor. The constructor defined in Fig. 17.2 initialized hour,
minute and second to 0 (i.e., midnight in universal time). Like other functions, construc-
tors can specify default arguments. Line 13 of Fig. 17.4 declares the Time constructor to
include default arguments, specifying a default value of zero for each argument passed to
the constructor. The constructor is declared explicit because it can be called with one
argument. We discuss explicit constructors in detail in Section 18.13.

In Fig. 17.5, lines 10–13 define the new version of the Time constructor that receives
values for parameters hour, minute and second that will be used to initialize private data
members hour, minute and second, respectively. The default arguments to the constructor
ensure that, even if no values are provided in a constructor call, the constructor still ini-

1 // Fig. 17.4: Time.h

2 // Time class containing a constructor with default arguments.
3 // Member functions defined in Time.cpp.

4
5 // prevent multiple inclusions of header

6 #ifndef TIME_H
7 #define TIME_H
8
9 // Time class definition

10 class Time
11 {

12 public:
13

14
15 // set functions
16 void setTime(int, int, int); // set hour, minute, second
17 void setHour(int); // set hour (after validation)
18 void setMinute(int); // set minute (after validation)
19 void setSecond(int); // set second (after validation)
20
21 // get functions
22 unsigned int getHour() const; // return hour
23 unsigned int getMinute() const; // return minute
24 unsigned int getSecond() const; // return second
25
26 void printUniversal() const; // output time in universal-time format
27 void printStandard() const; // output time in standard-time format
28 private:
29 unsigned int hour; // 0 - 23 (24-hour clock format)
30 unsigned int minute; // 0 - 59
31 unsigned int second; // 0 - 59
32 }; // end class Time

33
34 #endif

Fig. 17.4 | Time class containing a constructor with default arguments.

explicit Time(int = 0, int = 0, int = 0); // default constructor

638 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

tializes the data members. A constructor that defaults all its arguments is also a default con-
structor—that is, a constructor that can be invoked with no arguments. There can be at most
one default constructor per class. The version of class Time in this example provides set and
get functions for each data member. The Time constructor now calls setTime, which calls
the setHour, setMinute and setSecond functions to validate and assign values to the data
members.

Software Engineering Observation 17.5
Any change to the default argument values of a function requires the client code to be
recompiled (to ensure that the program still functions correctly).

1 // Fig. 17.5: Time.cpp

2 // Member-function definitions for class Time.

3 #include <iostream>
4 #include <iomanip>
5 #include <stdexcept>
6 #include "Time.h" // include definition of class Time from Time.h
7 using namespace std;
8
9

10
11
12
13
14
15 // set new Time value using universal time

16 void Time::setTime(int h, int m, int s)
17 {

18 setHour(h); // set private field hour

19 setMinute(m); // set private field minute
20 setSecond(s); // set private field second

21 } // end function setTime

22
23 // set hour value

24 void Time::setHour(int h)
25 {
26 if (h >= 0 && h < 24)
27 hour = h;

28 else
29 throw invalid_argument("hour must be 0-23");
30 } // end function setHour

31
32 // set minute value

33 void Time::setMinute(int m)
34 {
35 if (m >= 0 && m < 60)
36 minute = m;

37 else
38 throw invalid_argument("minute must be 0-59");
39 } // end function setMinute

Fig. 17.5 | Member-function definitions for class Time. (Part 1 of 2.)

// Time constructor initializes each data member

Time::Time(int hour, int minute, int second)
{
 setTime(hour, minute, second); // validate and set time

} // end Time constructor

17.5 Time Class Case Study: Constructors with Default Arguments 639

In Fig. 17.5, line 12 of the constructor calls member function setTime with the values
passed to the constructor (or the default values). Function setTime calls setHour to ensure
that the value supplied for hour is in the range 0–23, then calls setMinute and setSecond
to ensure that the values for minute and second are each in the range 0–59. Functions
setHour (lines 24–30), setMinute (lines 33–39) and setSecond (lines 42–48) each throw
an exception if an out-of-range argument is received.

40
41 // set second value

42 void Time::setSecond(int s)
43 {

44 if (s >= 0 && s < 60)
45 second = s;
46 else
47 throw invalid_argument("second must be 0-59");
48 } // end function setSecond
49
50 // return hour value

51 unsigned int Time::getHour() const
52 {

53 return hour;
54 } // end function getHour
55
56 // return minute value

57 unsigned Time::getMinute() const
58 {
59 return minute;
60 } // end function getMinute

61
62 // return second value

63 unsigned Time::getSecond() const
64 {
65 return second;
66 } // end function getSecond

67
68 // print Time in universal-time format (HH:MM:SS)

69 void Time::printUniversal() const
70 {
71 cout << setfill('0') << setw(2) << getHour() << ":"
72 << setw(2) << getMinute() << ":" << setw(2) << getSecond();
73 } // end function printUniversal
74
75 // print Time in standard-time format (HH:MM:SS AM or PM)

76 void Time::printStandard() const
77 {

78 cout << ((getHour() == 0 || getHour() == 12) ? 12 : getHour() % 12)
79 << ":" << setfill('0') << setw(2) << getMinute()
80 << ":" << setw(2) << getSecond() << (hour < 12 ? " AM" : " PM");
81 } // end function printStandard

Fig. 17.5 | Member-function definitions for class Time. (Part 2 of 2.)

640 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

Function main in Fig. 17.6 initializes five Time objects—one with all three arguments
defaulted in the implicit constructor call (line 10), one with one argument specified (line
11), one with two arguments specified (line 12), one with three arguments specified (line
13) and one with three invalid arguments specified (line 38). The program displays each
object in universal-time and standard-time formats. For Time object t5 (line 38), the pro-
gram displays an error message because the constructor arguments are out of range.

1 // Fig. 17.6: fig17_06.cpp

2 // Constructor with default arguments.

3 #include <iostream>
4 #include <stdexcept>
5 #include "Time.h" // include definition of class Time from Time.h
6 using namespace std;
7
8 int main()
9 {

10
11

12

13
14
15 cout << "Constructed with:\n\nt1: all arguments defaulted\n ";
16 t1.printUniversal(); // 00:00:00
17 cout << "\n ";
18 t1.printStandard(); // 12:00:00 AM

19
20 cout << "\n\nt2: hour specified; minute and second defaulted\n ";
21 t2.printUniversal(); // 02:00:00

22 cout << "\n ";
23 t2.printStandard(); // 2:00:00 AM

24
25 cout << "\n\nt3: hour and minute specified; second defaulted\n ";
26 t3.printUniversal(); // 21:34:00

27 cout << "\n ";
28 t3.printStandard(); // 9:34:00 PM
29
30 cout << "\n\nt4: hour, minute and second specified\n ";
31 t4.printUniversal(); // 12:25:42
32 cout << "\n ";
33 t4.printStandard(); // 12:25:42 PM

34
35 // attempt to initialize t6 with invalid values

36 try
37 {
38

39 } // end try

40 catch (invalid_argument &e)
41 {

42 cerr << "\n\nException while initializing t5: " << e.what() << endl;
43 } // end catch
44 } // end main

Fig. 17.6 | Constructor with default arguments. (Part 1 of 2.)

Time t1; // all arguments defaulted
Time t2(2); // hour specified; minute and second defaulted
Time t3(21, 34); // hour and minute specified; second defaulted
Time t4(12, 25, 42); // hour, minute and second specified

Time t5(27, 74, 99); // all bad values specified

17.5 Time Class Case Study: Constructors with Default Arguments 641

Notes Regarding Class Time’s Set and Get Functions and Constructor
Time’s set and get functions are called throughout the class’s body. In particular, function
setTime (lines 16–21 of Fig. 17.5) calls functions setHour, setMinute and setSecond, and
functions printUniversal and printStandard call functions getHour, getMinute and
getSecond in line 71–72 and lines 78–80. In each case, these functions could have accessed
the class’s private data directly. However, consider changing the representation of the time
from three int values (requiring 12 bytes of memory on systems with four-byte ints) to a
single int value representing the total number of seconds that have elapsed since midnight
(requiring only four bytes of memory). If we made such a change, only the bodies of the
functions that access the private data directly would need to change—in particular, the
individual set and get functions for the hour, minute and second. There would be no need
to modify the bodies of functions setTime, printUniversal or printStandard, because
they do not access the data directly. Designing the class in this manner reduces the likeli-
hood of programming errors when altering the class’s implementation.

Similarly, the Time constructor could be written to include a copy of the appropriate
statements from function setTime. Doing so may be slightly more efficient, because the
extra call to setTime is eliminated. However, duplicating statements in multiple functions
or constructors makes changing the class’s internal data representation more difficult.
Having the Time constructor call setTime and having setTime call setHour, setMinute
and setSecond enables us to limit the changes to code that validates the hour, minute or
second to the corresponding set function. This reduces the likelihood of errors when
altering the class’s implementation.

Constructed with:

t1: all arguments defaulted
 00:00:00
 12:00:00 AM

t2: hour specified; minute and second defaulted
 02:00:00
 2:00:00 AM

t3: hour and minute specified; second defaulted
 21:34:00
 9:34:00 PM

t4: hour, minute and second specified
 12:25:42
 12:25:42 PM

Exception while initializing t5: hour must be 0-23

Software Engineering Observation 17.6
If a member function of a class already provides all or part of the functionality required
by a constructor (or other member function) of the class, call that member function from
the constructor (or other member function). This simplifies the maintenance of the code
and reduces the likelihood of an error if the implementation of the code is modified. As a
general rule: Avoid repeating code.

Fig. 17.6 | Constructor with default arguments. (Part 2 of 2.)

642 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

C++11: Using List Initializers to Call Constructors
C++11 now provides a uniform initialization syntax called list initializers that can be used
to initialize any variable. Lines 11–13 of Fig. 17.6 can be written using list initializers as
follows:

or

The form without the = is preferred.

C++11: Overloaded Constructors and Delegating Constructors
Chapter 15 showed how to overload functions. A class’s constructors and member func-
tions can also be overloaded. Overloaded constructors typically allow objects to be initial-
ized with different types and/or numbers of arguments. To overload a constructor, provide
in the class definition a prototype for each version of the constructor, and provide a sepa-
rate constructor definition for each overloaded version. This also applies to the class’s
member functions.

In Figs. 17.4–17.6, the Time constructor with three parameters had a default argu-
ment for each parameter. We could have defined that constructor instead as four over-
loaded constructors with the following prototypes:

Just as a constructor can call a class’s other member functions to perform tasks, C++11
now allows constructors to call other constructors in the same class. The calling construc-
tor is known as a delegating constructor—it delegates its work to another constructor. This
is useful when overloaded constructors have common code that previously would have
been defined in a private utility function and called by all the constructors.

The first three of the four Time constructors declared above can delegate work to one
with three int arguments, passing 0 as the default value for the extra parameters. To do
so, you use a member initializer with the name of the class as follows:

Common Programming Error 17.1
A constructor can call other member functions of the class, such as set or get functions, but
because the constructor is initializing the object, the data members may not yet be initial-
ized. Using data members before they have been properly initialized can cause logic errors.

Time t2{ 2 }; // hour specified; minute and second defaulted
Time t3{ 21, 34 }; // hour and minute specified; second defaulted
Time t4{ 12, 25, 42 }; // hour, minute and second specified

Time t2 = { 2 }; // hour specified; minute and second defaulted
Time t3 = { 21, 34 }; // hour and minute specified; second defaulted
Time t4 = { 12, 25, 42 }; // hour, minute and second specified

Time(); // default hour, minute and second to 0

Time(int); // initialize hour; default minute and second to 0
Time(int, int); // initialize hour and minute; default second to 0
Time(int, int, int); // initialize hour, minute and second

Time::Time()

{

} // end constructor with no arguments

: Time(0, 0, 0) // delegate to Time(int, int, int)

17.6 Destructors 643

17.6 Destructors
A destructor is another type of special member function. The name of the destructor for
a class is the tilde character (~) followed by the class name. This naming convention has
intuitive appeal, because the tilde symnol is also used as the bitwise complement operator,
and, in a sense, the destructor is the complement of the constructor. A destructor may not
specify parameters or a return type.

A class’s destructor is called implicitly when an object is destroyed. This occurs, for
example, as an object is destroyed when program execution leaves the scope in which that
object was instantiated. The destructor itself does not actually release the object’s memory—it
performs termination housekeeping before the object’s memory is reclaimed, so the
memory may be reused to hold new objects.

Even though destructors have not been defined for the classes presented so far, every
class has one destructor. If you do not explicitly define a destructor, the compiler defines an
“empty” destructor. [Note: We’ll see that such an implicitly created destructor does, in fact,
perform important operations on class-type objects that are created through composition
(Section 17.11) and inheritance (Chapter 19).] In Chapter 18, we’ll build destructors
appropriate for classes whose objects contain dynamically allocated memory (e.g., for arrays
and strings) or use other system resources (e.g., files on disk). We discuss how to dynami-
cally allocate and deallocate memory in Chapter 18.

17.7 When Constructors and Destructors Are Called
Constructors and destructors are called implicitly by the compiler. The order in which
these function calls occur depends on the order in which execution enters and leaves the
scopes where the objects are instantiated. Generally, destructor calls are made in the reverse
order of the corresponding constructor calls, but as we’ll see in Figs. 17.7–17.9, the storage
classes of objects can alter the order in which destructors are called.

Constructors and Destructors for Objects in Global Scope
Constructors are called for objects defined in global scope (also called global namespace
scope) before any other function (including main) in that program begins execution (al-
though the order of execution of global object constructors between files is not guaranteed).
The corresponding destructors are called when main terminates. Function exit forces a
program to terminate immediately and does not execute the destructors of local objects.
The exit function often is used to terminate a program when a fatal unrecoverable error
occurs. Function abort performs similarly to function exit but forces the program to ter-

Time::Time(int hour)

{
} // end constructor with one argument

Time::Time(int hour, int minute)

{

} // end constructor with two arguments

: Time(hour, 0, 0) // delegate to Time(int, int, int)

: Time(hour, minute, 0) // delegate to Time(int, int, int)

644 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

minate immediately, without allowing the destructors of any objects to be called. Function
abort is usually used to indicate an abnormal termination of the program.

Constructors and Destructors for Local Objects
The constructor for an local object is called when execution reaches the point where that
object is defined—the corresponding destructor is called when execution leaves the ob-
ject’s scope (i.e., the block in which that object is defined has finished executing). Con-
structors and destructors for local objects are called each time execution enters and leaves
the scope of the object. Destructors are not called for local objects if the program termi-
nates with a call to function exit or function abort.

Constructors and Destructors for static Local Objects
The constructor for a static local object is called only once, when execution first reaches
the point where the object is defined—the corresponding destructor is called when main
terminates or the program calls function exit. Global and static objects are destroyed in
the reverse order of their creation. Destructors are not called for static objects if the pro-
gram terminates with a call to function abort.

Demonstrating When Constructors and Destructors Are Called
The program of Figs. 17.7–17.9 demonstrates the order in which constructors and de-
structors are called for objects of class CreateAndDestroy (Fig. 17.7 and Fig. 17.8) of var-
ious storage classes in several scopes. Each object of class CreateAndDestroy contains an
integer (objectID) and a string (message) that are used in the program’s output to iden-
tify the object (Fig. 17.7, lines 16–17). This mechanical example is purely for pedagogic
purposes. For this reason, line 19 of the destructor in Fig. 17.8 determines whether the
object being destroyed has an objectID value 1 or 6 (line 19) and, if so, outputs a newline
character. This line makes the program’s output easier to follow.

1 // Fig. 17.7: CreateAndDestroy.h
2 // CreateAndDestroy class definition.

3 // Member functions defined in CreateAndDestroy.cpp.

4 #include <string>
5 using namespace std;
6
7 #ifndef CREATE_H
8 #define CREATE_H
9

10 class CreateAndDestroy
11 {

12 public:
13
14

15 private:
16 int objectID; // ID number for object
17 string message; // message describing object

18 }; // end class CreateAndDestroy

19
20 #endif

Fig. 17.7 | CreateAndDestroy class definition.

CreateAndDestroy(int, string); // constructor
~CreateAndDestroy(); // destructor

17.7 When Constructors and Destructors Are Called 645

Figure 17.9 defines object first (line 10) in global scope. Its constructor is actually
called before any statements in main execute and its destructor is called at program termi-
nation after the destructors for all objects with automatic storage duration have run.

1 // Fig. 17.8: CreateAndDestroy.cpp

2 // CreateAndDestroy class member-function definitions.

3 #include <iostream>
4 #include "CreateAndDestroy.h"// include CreateAndDestroy class definition
5 using namespace std;
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Fig. 17.8 | CreateAndDestroy class member-function definitions.

1 // Fig. 17.9: fig17_09.cpp

2 // Order in which constructors and

3 // destructors are called.
4 #include <iostream>
5 #include "CreateAndDestroy.h" // include CreateAndDestroy class definition
6 using namespace std;
7
8 void create(void); // prototype
9

10
11
12 int main()
13 {

14 cout << "\nMAIN FUNCTION: EXECUTION BEGINS" << endl;
15
16

17

18
19
20 cout << "\nMAIN FUNCTION: EXECUTION RESUMES" << endl;
21

Fig. 17.9 | Order in which constructors and destructors are called. (Part 1 of 2.)

// constructor sets object's ID number and descriptive message
CreateAndDestroy::CreateAndDestroy(int ID, string messageString)
 : objectID(ID), message(messageString)

{
 cout << "Object " << objectID << " constructor runs "
 << message << endl;

} // end CreateAndDestroy constructor

// destructor

CreateAndDestroy::~CreateAndDestroy()
{

 // output newline for certain objects; helps readability

 cout << (objectID == 1 || objectID == 6 ? "\n" : "");

 cout << "Object " << objectID << " destructor runs "
 << message << endl;

} // end ~CreateAndDestroy destructor

CreateAndDestroy first(1, "(global before main)"); // global object

CreateAndDestroy second(2, "(local automatic in main)");
static CreateAndDestroy third(3, "(local static in main)");

create(); // call function to create objects

CreateAndDestroy fourth(4, "(local automatic in main)");

646 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

Function main (lines 12–23) declares three objects. Objects second (line 15) and
fourth (line 21) are local objects, and object third (line 16) is a static local object. The
constructor for each of these objects is called when execution reaches the point where that
object is declared. The destructors for objects fourth then second are called—in the
reverse of the order in which their constructors were called—when execution reaches the
end of main. Because object third is static, it exists until program termination. The
destructor for object third is called before the destructor for global object first, but after
all other objects are destroyed.

22 cout << "\nMAIN FUNCTION: EXECUTION ENDS" << endl;
23 } // end main

24
25 // function to create objects

26 void create(void)
27 {
28 cout << "\nCREATE FUNCTION: EXECUTION BEGINS" << endl;
29

30
31

32 cout << "\nCREATE FUNCTION: EXECUTION ENDS" << endl;
33 } // end function create

Object 1 constructor runs (global before main)

MAIN FUNCTION: EXECUTION BEGINS
Object 2 constructor runs (local automatic in main)
Object 3 constructor runs (local static in main)

CREATE FUNCTION: EXECUTION BEGINS
Object 5 constructor runs (local automatic in create)
Object 6 constructor runs (local static in create)
Object 7 constructor runs (local automatic in create)

CREATE FUNCTION: EXECUTION ENDS
Object 7 destructor runs (local automatic in create)
Object 5 destructor runs (local automatic in create)

MAIN FUNCTION: EXECUTION RESUMES
Object 4 constructor runs (local automatic in main)

MAIN FUNCTION: EXECUTION ENDS
Object 4 destructor runs (local automatic in main)
Object 2 destructor runs (local automatic in main)

Object 6 destructor runs (local static in create)
Object 3 destructor runs (local static in main)

Object 1 destructor runs (global before main)

Fig. 17.9 | Order in which constructors and destructors are called. (Part 2 of 2.)

CreateAndDestroy fifth(5, "(local automatic in create)");
static CreateAndDestroy sixth(6, "(local static in create)");
CreateAndDestroy seventh(7, "(local automatic in create)");

17.8 Returning a Reference or a Pointer to a private Data Member 647

Function create (lines 26–33) declares three objects—fifth (line 29) and seventh
(line 31) as local automatic objects, and sixth (line 30) as a static local object. The
destructors for objects seventh then fifth are called—the reverse of the order in which
their constructors were called—when create terminates. Because sixth is static, it exists
until program termination. The destructor for sixth is called before the destructors for
third and first, but after all other objects are destroyed.

17.8 Time Class Case Study: A Subtle Trap— Returning
a Reference or a Pointer to a private Data Member
A reference to an object is an alias for the name of the object and, hence, may be used on
the left side of an assignment statement. In this context, the reference makes a perfectly
acceptable lvalue that can receive a value. One way to use this capability is to have a public
member function of a class return a reference to a private data member of that class. If a
function returns a reference that is declared const, the reference is a non-modifiable lvalue
and cannot be used to modify the data.

The program of Figs. 17.10–17.12 uses a simplified Time class (Fig. 17.10 and
Fig. 17.11) to demonstrate returning a reference to a private data member with member
function badSetHour (declared in Fig. 17.10 in line 15 and defined in Fig. 17.11 in lines
37–45). Such a reference return actually makes a call to member function badSetHour an
alias for private data member hour! The function call can be used in any way that the
private data member can be used, including as an lvalue in an assignment statement, thus
enabling clients of the class to clobber the class’s private data at will! A similar problem would
occur if a pointer to the private data were to be returned by the function.

1 // Fig. 17.10: Time.h

2 // Time class declaration.

3 // Member functions defined in Time.cpp
4
5 // prevent multiple inclusions of header

6 #ifndef TIME_H
7 #define TIME_H
8
9 class Time

10 {

11 public:
12 explicit Time(int = 0, int = 0, int = 0);
13 void setTime(int, int, int);
14 unsigned int getHour() const;
15
16 private:
17 unsigned int hour;
18 unsigned int minute;
19 unsigned int second;
20 }; // end class Time

21
22 #endif

Fig. 17.10 | Time class declaration.

unsigned int &badSetHour(int); // dangerous reference return

648 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

Figure 17.12 declares Time object t (line 10) and reference hourRef (line 13), which
is initialized with the reference returned by the call t.badSetHour(20). Line 15 displays
the value of the alias hourRef. This shows how hourRef breaks the encapsulation of the
class—statements in main should not have access to the private data of the class. Next,
line 16 uses the alias to set the value of hour to 30 (an invalid value) and line 17 displays

1 // Fig. 17.11: Time.cpp

2 // Time class member-function definitions.

3 #include <stdexcept>
4 #include "Time.h" // include definition of class Time
5 using namespace std;
6
7 // constructor function to initialize private data; calls member function

8 // setTime to set variables; default values are 0 (see class definition)

9 Time::Time(int hr, int min, int sec)
10 {

11 setTime(hr, min, sec);

12 } // end Time constructor
13
14 // set values of hour, minute and second

15 void Time::setTime(int h, int m, int s)
16 {

17 // validate hour, minute and second

18 if ((h >= 0 && h < 24) && (m >= 0 && m < 60) &&
19 (s >= 0 && s < 60))
20 {

21 hour = h;

22 minute = m;
23 second = s;

24 } // end if

25 else
26 throw invalid_argument(
27 "hour, minute and/or second was out of range");
28 } // end function setTime
29
30 // return hour value

31 unsigned int Time::getHour()
32 {

33 return hour;
34 } // end function getHour
35
36
37
38 {

39 if (hh >= 0 && hh < 24)
40 hour = hh;
41 else
42 throw invalid_argument("hour must be 0-23");
43
44 return hour; // dangerous reference return
45 } // end function badSetHour

Fig. 17.11 | Time class member-function definitions.

// poor practice: returning a reference to a private data member.

unsigned int &Time::badSetHour(int hh)

17.8 Returning a Reference or a Pointer to a private Data Member 649

the value returned by function getHour to show that assigning a value to hourRef actually
modifies the private data in the Time object t. Finally, line 21 uses the badSetHour func-
tion call itself as an lvalue and assigns 74 (another invalid value) to the reference returned
by the function. Line 26 again displays the value returned by function getHour to show
that assigning a value to the result of the function call in line 21 modifies the private data
in the Time object t.

Software Engineering Observation 17.7
Returning a reference or a pointer to a private data member breaks the encapsulation of
the class and makes the client code dependent on the representation of the class’s data.
There are cases where doing this is appropriate—we’ll show an example of this when we
build our custom Array class in Section 18.10.

1 // Fig. 17.12: fig17_12.cpp

2 // Demonstrating a public member function that

3 // returns a reference to a private data member.

4 #include <iostream>
5 #include "Time.h" // include definition of class Time
6 using namespace std;
7
8 int main()
9 {

10 Time t; // create Time object
11
12

13
14
15

16
17 cout << "\nInvalid hour after modification: " << t.getHour();
18
19
20

21

22
23 cout << "\n\n***\n"
24 << "POOR PROGRAMMING PRACTICE!!!!!!!!\n"
25 << "t.badSetHour(12) as an lvalue, invalid hour: "
26 << t.getHour()

27 << "\n***" << endl;
28 } // end main

Valid hour before modification: 20
Invalid hour after modification: 30

POOR PROGRAMMING PRACTICE!!!!!!!!
t.badSetHour(12) as an lvalue, invalid hour: 74

Fig. 17.12 | public member function that returns a reference to a private data member.

// initialize hourRef with the reference returned by badSetHour

int &hourRef = t.badSetHour(20); // 20 is a valid hour

cout << "Valid hour before modification: " << hourRef;

hourRef = 30; // use hourRef to set invalid value in Time object t

// Dangerous: Function call that returns

// a reference can be used as an lvalue!
t.badSetHour(12) = 74; // assign another invalid value to hour

650 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

17.9 Default Memberwise Assignment
The assignment operator (=) can be used to assign an object to another object of the
same class. By default, such assignment is performed by memberwise assignment (also
called copy assignment)—each data member of the object on the right of the assignment
operator is assigned individually to the same data member in the object on the left of the
assignment operator. Figures 17.13–17.14 define a Date class. Line 18 of Fig. 17.15
uses default memberwise assignment to assign the data members of Date object date1
to the corresponding data members of Date object date2. In this case, the month member
of date1 is assigned to the month member of date2, the day member of date1 is assigned
to the day member of date2 and the year member of date1 is assigned to the year mem-
ber of date2. [Caution: Memberwise assignment can cause serious problems when used
with a class whose data members contain pointers to dynamically allocated memory; we
discuss these problems in Chapter 18 and show how to deal with them.]

1 // Fig. 17.13: Date.h
2 // Date class declaration. Member functions are defined in Date.cpp.

3
4 // prevent multiple inclusions of header
5 #ifndef DATE_H
6 #define DATE_H
7
8 // class Date definition

9 class Date
10 {
11 public:
12 explicit Date(int = 1, int = 1, int = 2000); // default constructor
13 void print();
14 private:
15 unsigned int month;
16 unsigned int day;
17 unsigned int year;
18 }; // end class Date

19
20 #endif

Fig. 17.13 | Date class declaration.

1 // Fig. 17.14: Date.cpp
2 // Date class member-function definitions.

3 #include <iostream>
4 #include "Date.h" // include definition of class Date from Date.h
5 using namespace std;
6
7 // Date constructor (should do range checking)
8 Date::Date(int m, int d, int y)
9 : month(m), day(d), year(y)

10 {
11 } // end constructor Date

Fig. 17.14 | Date class member-function definitions. (Part 1 of 2.)

17.9 Default Memberwise Assignment 651

Objects may be passed as function arguments and may be returned from functions.
Such passing and returning is performed using pass-by-value by default—a copy of the
object is passed or returned. In such cases, C++ creates a new object and uses a copy con-
structor to copy the original object’s values into the new object. For each class, the com-
piler provides a default copy constructor that copies each member of the original object
into the corresponding member of the new object. Like memberwise assignment, copy
constructors can cause serious problems when used with a class whose data members con-
tain pointers to dynamically allocated memory. Chapter 18 discusses how to define cus-
tomized copy constructors that properly copy objects containing pointers to dynamically
allocated memory.

12
13 // print Date in the format mm/dd/yyyy

14 void Date::print()
15 {

16 cout << month << '/' << day << '/' << year;
17 } // end function print

1 // Fig. 17.15: fig17_15.cpp

2 // Demonstrating that class objects can be assigned
3 // to each other using default memberwise assignment.

4 #include <iostream>
5 #include "Date.h" // include definition of class Date from Date.h
6 using namespace std;
7
8 int main()
9 {

10 Date date1(7, 4, 2004);
11 Date date2; // date2 defaults to 1/1/2000

12
13 cout << "date1 = ";
14 date1.print();

15 cout << "\ndate2 = ";
16 date2.print();

17
18
19
20 cout << "\n\nAfter default memberwise assignment, date2 = ";
21 date2.print();
22 cout << endl;

23 } // end main

date1 = 7/4/2004
date2 = 1/1/2000

After default memberwise assignment, date2 = 7/4/2004

Fig. 17.15 | Class objects can be assigned to each other using default memberwise assignment.

Fig. 17.14 | Date class member-function definitions. (Part 2 of 2.)

date2 = date1; // default memberwise assignment

652 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

17.10 const Objects and const Member Functions
Let’s see how the principle of least privilege applies to objects. Some objects need to be
modifiable and some do not. You may use keyword const to specify that an object is not
modifiable and that any attempt to modify the object should result in a compilation error.
The statement

declares a const object noon of class Time and initializes it to 12 noon. It’s possible to in-
stantiate const and non-const objects of the same class.

C++ disallows member function calls for const objects unless the member functions them-
selves are also declared const. This is true even for get member functions that do not modify
the object. This is also a key reason that we’ve declared as const all member-functions that do
not modify the objects on which they’re called.

As you saw starting with class GradeBook in Chapter 16, a member function is speci-
fied as const both in its prototype by inserting the keyword const after the function’s
parameter list and, in the case of the function definition, before the left brace that begins
the function body.

An interesting problem arises for constructors and destructors, each of which typically
modifies objects. A constructor must be allowed to modify an object so that the object can
be initialized properly. A destructor must be able to perform its termination housekeeping
chores before an object’s memory is reclaimed by the system. Attempting to declare a con-
structor or destructor const is a compilation error. The “constness” of a const object is
enforced from the time the constructor completes initialization of the object until that
object’s destructor is called.

const Time noon(12, 0, 0);

Software Engineering Observation 17.8
Attempts to modify a const object are caught at compile time rather than causing
execution-time errors.

Performance Tip 17.3
Declaring variables and objects const when appropriate can improve performance—
compilers can perform optimizations on constants that cannot be performed on non-const
variables.

Common Programming Error 17.2
Defining as const a member function that modifies a data member of the object is a com-
pilation error.

Common Programming Error 17.3
Defining as const a member function that calls a non-const member function of the class
on the same object is a compilation error.

Common Programming Error 17.4
Invoking a non-const member function on a const object is a compilation error.

17.10 const Objects and const Member Functions 653

Using const and Non-const Member Functions
The program of Fig. 17.16 uses class Time from Figs. 17.4–17.5, but removes const from
function printStandard’s prototype and definition so that we can show a compilation er-
ror. We instantiate two Time objects—non-const object wakeUp (line 7) and const object
noon (line 8). The program attempts to invoke non-const member functions setHour
(line 13) and printStandard (line 20) on the const object noon. In each case, the compiler
generates an error message. The program also illustrates the three other member-function-
call combinations on objects—a non-const member function on a non-const object (line
11), a const member function on a non-const object (line 15) and a const member func-
tion on a const object (lines 17–18). The error messages generated for non-const member
functions called on a const object are shown in the output window.

A constructor must be a non-const member function, but it can still be used to initialize
a const object (Fig. 17.16, line 8). Recall from Fig. 17.5 that the Time constructor’s defi-
nition calls another non-const member function—setTime—to perform the initializa-
tion of a Time object. Invoking a non-const member function from the constructor call as
part of the initialization of a const object is allowed.

1 // Fig. 17.16: fig17_16.cpp

2 // const objects and const member functions.
3 #include "Time.h" // include Time class definition
4
5 int main()
6 {
7 Time wakeUp(6, 45, 0); // non-constant object
8 const Time noon(12, 0, 0); // constant object
9

10 // OBJECT MEMBER FUNCTION

11 wakeUp.setHour(18); // non-const non-const
12
13

14

15 wakeUp.getHour(); // non-const const
16

17 noon.getMinute(); // const const

18 noon.printUniversal(); // const const
19

20

21 } // end main

Microsoft Visual C++ compiler error messages:

C:\examples\ch17\Fig17_16_18\fig17_18.cpp(13) : error C2662:
 'Time::setHour' : cannot convert 'this' pointer from 'const Time' to
 'Time &'
 Conversion loses qualifiers
C:\examples\ch17\Fig17_16_18\fig17_18.cpp(20) : error C2662:
 'Time::printStandard' : cannot convert 'this' pointer from 'const Time' to
 'Time &'
 Conversion loses qualifiers

Fig. 17.16 | const objects and const member functions.

noon.setHour(12); // const non-const

noon.printStandard(); // const non-const

654 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

Line 20 in Fig. 17.16 generates a compilation error even though member function
printStandard of class Time does not modify the object on which it’s invoked. The fact
that a member function does not modify an object is not sufficient—the function must
explicitly be declared const.

17.11 Composition: Objects as Members of Classes
An AlarmClock object needs to know when it’s supposed to sound its alarm, so why not
include a Time object as a member of the AlarmClock class? Such a capability is called com-
position and is sometimes referred to as a has-a relationship—a class can have objects of
other classes as members.

Previously, we saw how to pass arguments to the constructor of an object we created
in main. Now we show how an class’s constructor can pass arguments to member-object con-
structors via member initializers.

The next program uses classes Date (Figs. 17.17–17.18) and Employee (Figs. 17.19–
17.20) to demonstrate composition. Class Employee’s definition (Fig. 17.19) contains
private data members firstName, lastName, birthDate and hireDate. Members birth-
Date and hireDate are const objects of class Date, which contains private data members
month, day and year. The Employee constructor’s header (Fig. 17.20, lines 10–11) speci-
fies that the constructor has four parameters (first, last, dateOfBirth and dateOfHire).
The first two parameters are passed via member initializers to the string class constructor
for the firstName and lastName data members. The last two are passed via member ini-
tializers to the Date class constructor for the birthDate and hireDate data members..

Software Engineering Observation 17.9
A common form of software reusability is composition, in which a class has objects of other
types as members.

Software Engineering Observation 17.10
Data members are constructed in the order in which they’re declared in the class definition
(not in the order they’re listed in the constructor’s member initializer list) and before their
enclosing class objects (sometimes called host objects) are constructed.

1 // Fig. 17.17: Date.h
2 // Date class definition; Member functions defined in Date.cpp

3 #ifndef DATE_H
4 #define DATE_H
5
6 class Date
7 {
8 public:
9 static const unsigned int monthsPerYear = 12; // months in a year

10
11 void print() const; // print date in month/day/year format
12

Fig. 17.17 | Date class definition. (Part 1 of 2.)

explicit Date(int = 1, int = 1, int = 1900); // default constructor

~Date(); // provided to confirm destruction order

17.11 Composition: Objects as Members of Classes 655

13 private:
14 unsigned int month; // 1-12 (January-December)
15 unsigned int day; // 1-31 based on month
16 unsigned int year; // any year
17
18 // utility function to check if day is proper for month and year
19 unsigned int checkDay(int) const;
20 }; // end class Date

21
22 #endif

1 // Fig. 17.18: Date.cpp

2 // Date class member-function definitions.

3 #include <array>
4 #include <iostream>
5 #include <stdexcept>
6 #include "Date.h" // include Date class definition
7 using namespace std;
8
9 // constructor confirms proper value for month; calls

10 // utility function checkDay to confirm proper value for day

11 Date::Date(int mn, int dy, int yr)
12 {
13 if (mn > 0 && mn <= monthsPerYear) // validate the month
14 month = mn;

15 else
16 throw invalid_argument("month must be 1-12");
17
18 year = yr; // could validate yr
19 day = checkDay(dy); // validate the day

20
21 // output Date object to show when its constructor is called
22 cout << "Date object constructor for date ";
23 print();

24 cout << endl;
25 } // end Date constructor

26
27 // print Date object in form month/day/year
28 void Date::print() const
29 {

30 cout << month << '/' << day << '/' << year;
31 } // end function print

32
33 // output Date object to show when its destructor is called
34 Date::~Date()

35 {

36 cout << "Date object destructor for date ";
37 print();

38 cout << endl;

39 } // end ~Date destructor

Fig. 17.18 | Date class member-function definitions. (Part 1 of 2.)

Fig. 17.17 | Date class definition. (Part 2 of 2.)

656 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

40
41 // utility function to confirm proper day value based on

42 // month and year; handles leap years, too
43 unsigned int Date::checkDay(int testDay) const
44 {

45 static const array< int, monthsPerYear + 1 > daysPerMonth =
46 { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
47
48 // determine whether testDay is valid for specified month
49 if (testDay > 0 && testDay <= daysPerMonth[month])
50 return testDay;
51
52 // February 29 check for leap year

53 if (month == 2 && testDay == 29 && (year % 400 == 0 ||
54 (year % 4 == 0 && year % 100 != 0)))
55 return testDay;
56
57 throw invalid_argument("Invalid day for current month and year");
58 } // end function checkDay

1 // Fig. 17.19: Employee.h

2 // Employee class definition showing composition.
3 // Member functions defined in Employee.cpp.

4 #ifndef EMPLOYEE_H
5 #define EMPLOYEE_H
6
7 #include <string>
8 #include "Date.h" // include Date class definition
9

10 class Employee
11 {
12 public:
13 Employee(const std::string &, const std::string &,
14 const Date &, const Date &);
15 void print() const;
16 ~Employee(); // provided to confirm destruction order

17 private:
18 std::string firstName; // composition: member object

19 std::string lastName; // composition: member object

20 const Date birthDate; // composition: member object
21 const Date hireDate; // composition: member object
22 }; // end class Employee

23
24 #endif

Fig. 17.19 | Employee class definition showing composition.

Fig. 17.18 | Date class member-function definitions. (Part 2 of 2.)

17.11 Composition: Objects as Members of Classes 657

Employee Constructor’s Member Initializer List
The colon (:) following the constructor’s header (Fig. 17.20, line 12) begins the member ini-
tializer list. The member initializers specify the Employee constructor parameters being
passed to the constructors of the string and Date data members. Parameters first, last,
dateOfBirth and dateOfHire are passed to the constructors for objects firstName (line 12),
lastName (line 13), birthDate (line 14) and hireDate (line 15), respectively. Again, mem-
ber initializers are separated by commas. The order of the member initializers does not mat-
ter. They’re executed in the order that the member objects are declared in class Employee.

1 // Fig. 17.20: Employee.cpp

2 // Employee class member-function definitions.

3 #include <iostream>
4 #include "Employee.h" // Employee class definition
5 #include "Date.h" // Date class definition
6 using namespace std;
7
8 // constructor uses member initializer list to pass initializer

9 // values to constructors of member objects
10 Employee::Employee(const string &first, const string &last,
11 const Date &dateOfBirth, const Date &dateOfHire)
12
13

14

15
16 {

17 // output Employee object to show when constructor is called

18 cout << "Employee object constructor: "
19 << firstName << ' ' << lastName << endl;
20 } // end Employee constructor

21
22 // print Employee object
23 void Employee::print() const
24 {

25 cout << lastName << ", " << firstName << " Hired: ";
26 hireDate.print();

27 cout << " Birthday: ";
28 birthDate.print();
29 cout << endl;

30 } // end function print

31
32 // output Employee object to show when its destructor is called

33 Employee::~Employee()

34 {
35 cout << "Employee object destructor: "
36 << lastName << ", " << firstName << endl;
37 } // end ~Employee destructor

Fig. 17.20 | Employee class member-function definitions.

Good Programming Practice 17.3
For clarity, list member initializers in the order that the class’s data members are declared.

: firstName(first), // initialize firstName

 lastName(last), // initialize lastName
 birthDate(dateOfBirth), // initialize birthDate

 hireDate(dateOfHire) // initialize hireDate

658 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

Date Class’s Default Copy Constructor
As you study class Date (Fig. 17.17), notice that the class does not provide a constructor
that receives a parameter of type Date. So, why can the Employee constructor’s member
initializer list initialize the birthDate and hireDate objects by passing Date objects to
their Date constructors? As we mentioned in Section 17.9, the compiler provides each
class with a default copy constructor that copies each data member of the constructor’s ar-
gument object into the corresponding member of the object being initialized. Chapter 18
discusses how you can define customized copy constructors.

Testing Classes Date and Employee
Figure 17.21 creates two Date objects (lines 10–11) and passes them as arguments to the
constructor of the Employee object created in line 12. Line 15 outputs the Employee ob-
ject’s data. When each Date object is created in lines 10–11, the Date constructor defined
in lines 11–25 of Fig. 17.18 displays a line of output to show that the constructor was
called (see the first two lines of the sample output). [Note: Line 12 of Fig. 17.21 causes
two additional Date constructor calls that do not appear in the program’s output. When
each of the Employee’s Date member objects is initialized in the Employee constructor’s
member-initializer list (Fig. 17.20, lines 14–15), the default copy constructor for class
Date is called. Since this constructor is defined implicitly by the compiler, it does not
contain any output statements to demonstrate when it’s called.]

1 // Fig. 17.21: fig17_21.cpp

2 // Demonstrating composition--an object with member objects.

3 #include <iostream>
4 #include "Date.h" // Date class definition
5 #include "Employee.h" // Employee class definition
6 using namespace std;
7
8 int main()
9 {

10 Date birth(7, 24, 1949);
11 Date hire(3, 12, 1988);
12 Employee manager("Bob", "Blue", birth, hire);
13
14 cout << endl;

15 manager.print();
16 } // end main

Date object constructor for date 7/24/1949
Date object constructor for date 3/12/1988
Employee object constructor: Bob Blue

Blue, Bob Hired: 3/12/1988 Birthday: 7/24/1949
Employee object destructor: Blue, Bob
Date object destructor for date 3/12/1988
Date object destructor for date 7/24/1949
Date object destructor for date 3/12/1988
Date object destructor for date 7/24/1949

Fig. 17.21 | Demonstrating composition—an object with member objects.

There are actually five constructor
calls when an Employee is
constructed—two calls to the
string class’s constructor (lines
12–13 of Fig. 17.20), two calls to the
Date class’s default copy
constructor (lines 14–15 of
Fig. 17.20) and the call to the
Employee class’s constructor.

17.11 Composition: Objects as Members of Classes 659

Class Date and class Employee each include a destructor (lines 34–39 of Fig. 17.18
and lines 33–37 of Fig. 17.20, respectively) that prints a message when an object of its class
is destructed. This enables us to confirm in the program output that objects are con-
structed from the inside out and destroyed in the reverse order, from the outside in (i.e., the
Date member objects are destroyed after the Employee object that contains them).

Notice the last four lines in the output of Fig. 17.21. The last two lines are the outputs
of the Date destructor running on Date objects hire (Fig. 17.21, line 11) and birth
(Fig. 17.21, line 10), respectively. These outputs confirm that the three objects created in
main are destructed in the reverse of the order in which they were constructed. The
Employee destructor output is five lines from the bottom. The fourth and third lines from
the bottom of the output window show the destructors running for the Employee’s
member objects hireDate (Fig. 17.19, line 21) and birthDate (Fig. 17.19, line 20). The
last two lines of the output correspond to the Date objects created in lines 11and 10 of
Fig. 17.21.

These outputs confirm that the Employee object is destructed from the outside in—
i.e., the Employee destructor runs first (output shown five lines from the bottom of the
output window), then the member objects are destructed in the reverse order from which
they were constructed. Class string’s destructor does not contain output statements, so
we do not see the firstName and lastName objects being destructed. Again, Fig. 17.21’s
output did not show the constructors running for member objects birthDate and hire-
Date, because these objects were initialized with the default Date class copy constructors
provided by the compiler.

What Happens When You Do Not Use the Member Initializer List?
If a member object is not initialized through a member initializer, the member object’s de-
fault constructor will be called implicitly. Values, if any, established by the default construc-
tor can be overridden by set functions. However, for complex initialization, this approach
may require significant additional work and time.

Common Programming Error 17.5
A compilation error occurs if a member object is not initialized with a member initializer
and the member object’s class does not provide a default constructor (i.e., the member ob-
ject’s class defines one or more constructors, but none is a default constructor).

Performance Tip 17.4
Initialize member objects explicitly through member initializers. This eliminates the over-
head of “doubly initializing” member objects—once when the member object’s default
constructor is called and again when set functions are called in the constructor body (or
later) to initialize the member object.

Software Engineering Observation 17.11
If a data member is an object of another class, making that member object public does
not violate the encapsulation and hiding of that member object’s private members. But,
it does violate the encapsulation and hiding of the containing class’s implementation, so
member objects of class types should still be private.

660 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

17.12 friend Functions and friend Classes
A friend function of a class is a non-member function that has the right to access the pub-
lic and non-public class members. Standalone functions, entire classes or member func-
tions of other classes may be declared to be friends of another class.

This section presents a mechanical example of how a friend function works. In
Chapter 18 we’ll show friend functions that overload operators for use with class
objects—as you’ll see, sometimes a member function cannot be used for certain over-
loaded operators.

Declaring a friend
To declare a function as a friend of a class, precede the function prototype in the class
definition with keyword friend. To declare all member functions of class ClassTwo as
friends of class ClassOne, place a declaration of the form

in the definition of class ClassOne.
Friendship is granted, not taken—for class B to be a friend of class A, class A must

explicitly declare that class B is its friend. Friendship is not symmetric—if class A is a
friend of class B, you cannot infer that class B is a friend of class A. Friendship is not
transitive—if class A is a friend of class B and class B is a friend of class C, you cannot
infer that class A is a friend of class C.

Modifying a Class’s private Data with a Friend Function
Figure 17.22 is a mechanical example in which we define friend function setX to set the
private data member x of class Count. As a convention, we place the friend declaration
(line 9) first in the class definition, even before public member functions are declared.
Again, this friend declaration can appear anywhere in the class.

Function setX (lines 29–32) is a stand-alone (global) function—it isn’t a member
function of class Count. For this reason, when setX is invoked for object counter, line 41
passes counter as an argument to setX rather than using a handle (such as the name of the
object) to call the function, as in

If you remove the friend declaration in line 9, you’ll receive error messages indicating that
function setX cannot modify class Count’s private data member x.

friend class ClassTwo;

counter.setX(8); // error: setX not a member function

1 //Fig. 17.22: fig17_22.cpp
2 // Friends can access private members of a class.

3 #include <iostream>
4 using namespace std;
5
6 // Count class definition

7 class Count
8 {

9

Fig. 17.22 | Friends can access private members of a class. (Part 1 of 2.)

friend void setX(Count &, int); // friend declaration

17.12 friend Functions and friend Classes 661

As we mentioned, Fig. 17.22 is a mechanical example of using the friend construct.
It would normally be appropriate to define function setX as a member function of class
Count. It would also normally be appropriate to separate the program of Fig. 17.22 into
three files:

1. A header (e.g., Count.h) containing the Count class definition, which in turn con-
tains the prototype of friend function setX

2. An implementation file (e.g., Count.cpp) containing the definitions of class
Count’s member functions and the definition of friend function setX

3. A test program (e.g., fig17_22.cpp) with main.

10 public:
11 // constructor

12 Count()
13 : x(0) // initialize x to 0
14 {

15 // empty body
16 } // end constructor Count

17
18 // output x
19 void print() const
20 {

21 cout << x << endl;
22 } // end function print

23 private:
24 int x; // data member
25 }; // end class Count

26
27
28
29
30
31
32
33
34 int main()
35 {

36 Count counter; // create Count object

37
38 cout << "counter.x after instantiation: ";
39 counter.print();

40
41

42 cout << "counter.x after call to setX friend function: ";
43 counter.print();
44 } // end main

counter.x after instantiation: 0
counter.x after call to setX friend function: 8

Fig. 17.22 | Friends can access private members of a class. (Part 2 of 2.)

// function setX can modify private data of Count

// because setX is declared as a friend of Count (line 9)
void setX(Count &c, int val)
{

 c.x = val; // allowed because setX is a friend of Count

} // end function setX

setX(counter, 8); // set x using a friend function

662 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

Overloaded friend Functions
It’s possible to specify overloaded functions as friends of a class. Each function intended
to be a friend must be explicitly declared in the class definition as a friend of the class.

17.13 Using the this Pointer
We’ve seen that an object’s member functions can manipulate the object’s data. There can
be many objects of a class, so how do member functions know which object’s data members
to manipulate? Every object has access to its own address through a pointer called this (a
C++ keyword). The this pointer is not part of the object itself—i.e., the memory occupied
by the this pointer is not reflected in the result of a sizeof operation on the object. Rath-
er, the this pointer is passed (by the compiler) as an implicit argument to each of the ob-
ject’s non-static member functions. Section 17.14 introduces static class members and
explains why the this pointer is not implicitly passed to static member functions.

Using the this Pointer to Avoid Naming Collisions
Member functions use the this pointer implicitly (as we’ve done so far) or explicitly to ref-
erence an object’s data members and other member functions. A common explicit use of
the this pointer is to avoid naming conflicts between a class’s data members and member-
function parameters (or other local variables). Consider the Time class’s hour data member
and setHour member function in Figs. 17.4–17.5. We could have defined setHour as:

In this function definition, setHour’s parameter has the same name as the data member
hour. In setHour’s scope, the parameter hour hides the data member. However, you can
still access the data member hour by qualifying its name with this->. So the following
statement assigns the hour parameter’s value to the data member hour

Software Engineering Observation 17.12
Even though the prototypes for friend functions appear in the class definition, friends are
not member functions.

Software Engineering Observation 17.13
Member access notions of private, protected and public are not relevant to friend
declarations, so friend declarations can be placed anywhere in a class definition.

Good Programming Practice 17.4
Place all friendship declarations first inside the class definition’s body and do not precede
them with any access specifier.

// set hour value
void Time::setHour()

{

 if (>= 0 && < 24)

 else
 throw invalid_argument("hour must be 0-23");
} // end function setHour

this->hour = hour; // use this pointer to access data member

int hour

hour hour

this->hour = hour; // use this pointer to access data member

17.13 Using the this Pointer 663

Type of the this Pointer
The type of the this pointer depends on the type of the object and whether the member
function in which this is used is declared const. For example, in a non-const member
function of class Employee, the this pointer has the type Employee *. In a const member
function, the this pointer has the type const Employee *.

Implicitly and Explicitly Using the this Pointer to Access an Object’s Data Members
Figure 17.23 demonstrates the implicit and explicit use of the this pointer to enable a
member function of class Test to print the private data x of a Test object. In the next
example and in Chapter 18, we show some substantial and subtle examples of using this.

Error-Prevention Tip 17.4
To make your code clearer and more maintainable, and to avoid errors, never hide data
members with local variable names.

1 // Fig. 17.23: fig17_23.cpp

2 // Using the this pointer to refer to object members.
3 #include <iostream>
4 using namespace std;
5
6 class Test
7 {

8 public:
9 explicit Test(int = 0); // default constructor

10 void print() const;
11 private:
12 int x;
13 }; // end class Test

14
15 // constructor

16 Test::Test(int value)
17 : x(value) // initialize x to value
18 {

19 // empty body

20 } // end constructor Test
21
22 // print x using implicit and explicit this pointers;

23 // the parentheses around *this are required
24 void Test::print() const
25 {

26
27

28
29
30

31

32

Fig. 17.23 | using the this pointer to refer to object members. (Part 1 of 2.)

// implicitly use the this pointer to access the member x

cout << " x = " << x;

// explicitly use the this pointer and the arrow operator

// to access the member x
cout << "\n this->x = " << this->x;

664 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

For illustration purposes, member function print (lines 24–36) first prints x by using
the this pointer implicitly (line 27)—only the name of the data member is specified. Then
print uses two different notations to access x through the this pointer—the arrow oper-
ator (->) off the this pointer (line 31) and the dot operator (.) off the dereferenced this
pointer (line 35). Note the parentheses around *this (line 35) when used with the dot
member selection operator (.). The parentheses are required because the dot operator has
higher precedence than the * operator. Without the parentheses, the expression *this.x
would be evaluated as if it were parenthesized as *(this.x), which is a compilation error,
because the dot operator cannot be used with a pointer.

One interesting use of the this pointer is to prevent an object from being assigned to
itself. As we’ll see in Chapter 18, self-assignment can cause serious errors when the object
contains pointers to dynamically allocated storage.

Using the this Pointer to Enable Cascaded Function Calls
Another use of the this pointer is to enable cascaded member-function calls—that is, in-
voking multiple functions in the same statement (as in line 12 of Fig. 17.26). The program
of Figs. 17.24–17.26 modifies class Time’s set functions setTime, setHour, setMinute and
setSecond such that each returns a reference to a Time object to enable cascaded member-
function calls. Notice in Fig. 17.25 that the last statement in the body of each of these
member functions returns *this (lines 23, 34, 45 and 56) into a return type of Time &.

The program of Fig. 17.26 creates Time object t (line 9), then uses it in cascaded
member-function calls (lines 12 and 24). Why does the technique of returning *this as a
reference work? The dot operator (.) associates from left to right, so line 12 first evaluates
t.setHour(18), then returns a reference to object t as the value of this function call. The
remaining expression is then interpreted as

The t.setMinute(30) call executes and returns a reference to the object t. The remaining
expression is interpreted as

33

34

35
36 } // end function print

37
38 int main()
39 {

40 Test testObject(12); // instantiate and initialize testObject
41
42 testObject.print();

43 } // end main

 x = 12
 this->x = 12
(*this).x = 12

t.setMinute(30).setSecond(22);

t.setSecond(22);

Fig. 17.23 | using the this pointer to refer to object members. (Part 2 of 2.)

// explicitly use the dereferenced this pointer and
// the dot operator to access the member x

cout << "\n(*this).x = " << (*this).x << endl;

17.13 Using the this Pointer 665

1 // Fig. 17.24: Time.h

2 // Cascading member function calls.

3
4 // Time class definition.

5 // Member functions defined in Time.cpp.

6 #ifndef TIME_H
7 #define TIME_H
8
9 class Time

10 {

11 public:
12 explicit Time(int = 0, int = 0, int = 0); // default constructor
13
14

15
16

17

18

19
20 // get functions (normally declared const)

21 unsigned int getHour() const; // return hour
22 unsigned int getMinute() const; // return minute
23 unsigned int getSecond() const; // return second
24
25 // print functions (normally declared const)
26 void printUniversal() const; // print universal time
27 void printStandard() const; // print standard time
28 private:
29 unsigned int hour; // 0 - 23 (24-hour clock format)
30 unsigned int minute; // 0 - 59
31 unsigned int second; // 0 - 59
32 }; // end class Time

33
34 #endif

Fig. 17.24 | Time class modified to enable cascaded member-function calls.

1 // Fig. 17.25: Time.cpp
2 // Time class member-function definitions.

3 #include <iostream>
4 #include <iomanip>
5 #include <stdexcept>
6 #include "Time.h" // Time class definition
7 using namespace std;
8
9 // constructor function to initialize private data;

10 // calls member function setTime to set variables;
11 // default values are 0 (see class definition)

12 Time::Time(int hr, int min, int sec)
13 {

Fig. 17.25 | Time class member-function definitions modified to enable cascaded member-
function calls. (Part 1 of 3.)

// set functions (the Time & return types enable cascading)

Time &setTime(int, int, int); // set hour, minute, second
Time &setHour(int); // set hour
Time &setMinute(int); // set minute
Time &setSecond(int); // set second

666 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

14 setTime(hr, min, sec);

15 } // end Time constructor

16
17 // set values of hour, minute, and second

18
19 {
20 setHour(h);

21 setMinute(m);

22 setSecond(s);
23

24 } // end function setTime

25
26 // set hour value

27
28 {
29 if (h >= 0 && h < 24)
30 hour = h;

31 else
32 throw invalid_argument("hour must be 0-23");
33
34

35 } // end function setHour
36
37 // set minute value

38
39 {

40 if (m >= 0 && m < 60)
41 minute = m;
42 else
43 throw invalid_argument("minute must be 0-59");
44
45

46 } // end function setMinute

47
48 // set second value

49
50 {
51 if (s >= 0 && s < 60)
52 second = s;

53 else
54 throw invalid_argument("second must be 0-59");
55
56
57 } // end function setSecond

58
59 // get hour value
60 unsigned int Time::getHour() const
61 {

62 return hour;
63 } // end function getHour

64

Fig. 17.25 | Time class member-function definitions modified to enable cascaded member-
function calls. (Part 2 of 3.)

Time &Time::setTime(int h, int m, int s) // note Time & return

return *this; // enables cascading

Time &Time::setHour(int h) // note Time & return

return *this; // enables cascading

Time &Time::setMinute(int m) // note Time & return

return *this; // enables cascading

Time &Time::setSecond(int s) // note Time & return

return *this; // enables cascading

17.13 Using the this Pointer 667

Line 24 (Fig. 17.26) also uses cascading. Note that we cannot chain another member-
function call after printStandard here, because printStandard does not return a reference
to t. Placing the call to printStandard before the call to setTime in line 24 results in a com-
pilation error. Chapter 18 presents several practical examples of using cascaded function
calls. One such example uses multiple << operators with cout to output multiple values in a
single statement.

65 // get minute value

66 unsigned int Time::getMinute() const
67 {
68 return minute;
69 } // end function getMinute

70
71 // get second value

72 unsigned int Time::getSecond() const
73 {
74 return second;
75 } // end function getSecond

76
77 // print Time in universal-time format (HH:MM:SS)

78 void Time::printUniversal() const
79 {
80 cout << setfill('0') << setw(2) << hour << ":"
81 << setw(2) << minute << ":" << setw(2) << second;
82 } // end function printUniversal

83
84 // print Time in standard-time format (HH:MM:SS AM or PM)

85 void Time::printStandard() const
86 {
87 cout << ((hour == 0 || hour == 12) ? 12 : hour % 12)
88 << ":" << setfill('0') << setw(2) << minute
89 << ":" << setw(2) << second << (hour < 12 ? " AM" : " PM");
90 } // end function printStandard

1 // Fig. 17.26: fig17_26.cpp

2 // Cascading member-function calls with the this pointer.
3 #include <iostream>
4 #include "Time.h" // Time class definition
5 using namespace std;
6
7 int main()
8 {
9 Time t; // create Time object

10
11
12

13

Fig. 17.26 | Cascading member-function calls with the this pointer. (Part 1 of 2.)

Fig. 17.25 | Time class member-function definitions modified to enable cascaded member-
function calls. (Part 3 of 3.)

// cascaded function calls

t.setHour(18).setMinute(30).setSecond(22);

668 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

17.14 static Class Members
There is an important exception to the rule that each object of a class has its own copy of
all the data members of the class. In certain cases, only one copy of a variable should be
shared by all objects of a class. A static data member is used for these and other reasons.
Such a variable represents “class-wide” information, i.e., data that is shared by all instances
and is not specific to any one object of the class.

Motivating Class-Wide Data
Let’s further motivate the need for static class-wide data with an example. Suppose that
we have a video game with Martians and other space creatures. Each Martian tends to be
brave and willing to attack other space creatures when the Martian is aware that there are
at least five Martians present. If fewer than five are present, each Martian becomes cow-
ardly. So each Martian needs to know the martianCount. We could endow each instance
of class Martian with martianCount as a data member. If we do, every Martian will have
a separate copy of the data member. Every time we create a new Martian, we’ll have to up-
date the data member martianCount in all Martian objects. Doing this would require ev-
ery Martian object to have, or have access to, handles to all other Martian objects in
memory. This wastes space with the redundant copies of the martianCount and wastes
time in updating the separate copies. Instead, we declare martianCount to be static. This
makes martianCount class-wide data. Every Martian can access martianCount as if it were
a data member of the Martian, but only one copy of the static variable martianCount is
maintained in the program. This saves space. We save time by having the Martian con-
structor increment static variable martianCount and having the Martian destructor dec-
rement martianCount. Because there’s only one copy, we do not have to increment or
decrement separate copies of martianCount for each Martian object.

14 // output time in universal and standard formats

15 cout << "Universal time: ";
16 t.printUniversal();
17
18 cout << "\nStandard time: ";
19 t.printStandard();
20
21 cout << "\n\nNew standard time: ";
22
23

24

25 cout << endl;
26 } // end main

Universal time: 18:30:22
Standard time: 6:30:22 PM

New standard time: 8:20:20 PM

Fig. 17.26 | Cascading member-function calls with the this pointer. (Part 2 of 2.)

// cascaded function calls
t.setTime(20, 20, 20).printStandard();

17.14 static Class Members 669

Scope and Initialization of static Data Members
A class’s static data members have class scope. A static data member must be initialized
exactly once. Fundamental-type static data members are initialized by default to 0. Prior
to C++11, a static const data member of int or enum type could be initialized in its dec-
laration in the class definition and all other static data members had to be defined and
intialized at global namespace scope (i.e., outside the body of the class definition). Again,
C++11’s in-class initializers also allow you to initialize these variables where they’re de-
clared in the class definition. If a static data member is an object of a class that provides
a default constructor, the static data member need not be initialized because its default
constructor will be called.

Accessing static Data Members
A class’s private and protected static members are normally accessed through the
class’s public member functions or friends. A class’s static members exist even when no
objects of that class exist. To access a public static class member when no objects of the
class exist, simply prefix the class name and the scope resolution operator (::) to the name
of the data member. For example, if our preceding variable martianCount is public, it can
be accessed with the expression Martian::martianCount, even when there are no Martian
objects. (Of course, using public data is discouraged.)

To access a private or protected static class member when no objects of the class
exist, provide a public static member function and call the function by prefixing its
name with the class name and scope resolution operator. A static member function is a
service of the class, not of a specific object of the class.

Demonstrating static Data Members
The program of Figs. 17.27–17.29 demonstrates a private static data member called
count (Fig. 17.27, line 24) and a public static member function called getCount
(Fig. 17.27, line 18). In Fig. 17.28, line 8 defines and initializes the data member count
to zero at global namespace scope and lines 12–15 define static member function get-
Count. Notice that neither line 8 nor line 12 includes keyword static, yet both lines de-
fine static class members. The static keyword cannot be applied to a member
definition that appears outside the class definition. Data member count maintains a count
of the number of objects of class Employee that have been instantiated. When objects of
class Employee exist, member count can be referenced through any member function of
an Employee object—in Fig. 17.28, count is referenced by both line 22 in the constructor
and line 32 in the destructor.

Performance Tip 17.5
Use static data members to save storage when a single copy of the data for all objects of
a class will suffice.

Software Engineering Observation 17.14
A class’s static data members and static member functions exist and can be used even
if no objects of that class have been instantiated.

670 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

1 // Fig. 17.27: Employee.h
2 // Employee class definition with a static data member to

3 // track the number of Employee objects in memory

4 #ifndef EMPLOYEE_H
5 #define EMPLOYEE_H
6
7 #include <string>
8
9 class Employee

10 {
11 public:
12 Employee(const std::string &, const std::string &); // constructor
13 ~Employee(); // destructor
14 std::string getFirstName() const; // return first name
15 std::string getLastName() const; // return last name
16
17

18

19 private:
20 std::string firstName;
21 std::string lastName;
22
23 // static data
24

25 }; // end class Employee

26
27 #endif

Fig. 17.27 | Employee class definition with a static data member to track the number of
Employee objects in memory.

1 // Fig. 17.28: Employee.cpp

2 // Employee class member-function definitions.

3 #include <iostream>
4 #include "Employee.h" // Employee class definition
5 using namespace std;
6
7
8
9

10
11
12
13
14
15
16
17 // constructor initializes non-static data members and

18 // increments static data member count
19 Employee::Employee(const string &first, const string &last)
20 : firstName(first), lastName(last)

21 {

Fig. 17.28 | Employee class member-function definitions. (Part 1 of 2.)

// static member function
static unsigned int getCount(); // return # of objects instantiated

static unsigned int count; // number of objects instantiated

// define and initialize static data member at global namespace scope
unsigned int Employee::count = 0; // cannot include keyword static

// define static member function that returns number of
// Employee objects instantiated (declared static in Employee.h)

unsigned int Employee::getCount()
{
 return count;
} // end static function getCount

17.14 static Class Members 671

Figure 17.29 uses static member function getCount to determine the number of
Employee objects in memory at various points in the program. The program calls
Employee::getCount() before any Employee objects have been created (line 12), after two
Employee objects have been created (line 23) and after those Employee objects have been
destroyed (line 34). Lines 16–29 in main define a nested scope. Recall that local variables
exist until the scope in which they’re defined terminates. In this example, we create two
Employee objects in lines 17–18 inside the nested scope. As each constructor executes, it
increments class Employee’s static data member count. These Employee objects are
destroyed when the program reaches line 29. At that point, each object’s destructor exe-
cutes and decrements class Employee’s static data member count.

22

23 cout << "Employee constructor for " << firstName
24 << ' ' << lastName << " called." << endl;
25 } // end Employee constructor

26
27 // destructor deallocates dynamically allocated memory
28 Employee::~Employee()

29 {

30 cout << "~Employee() called for " << firstName
31 << ' ' << lastName << endl;
32

33 } // end ~Employee destructor
34
35 // return first name of employee

36 string Employee::getFirstName() const
37 {

38 return firstName; // return copy of first name
39 } // end function getFirstName

40
41 // return last name of employee

42 string Employee::getLastName() const
43 {
44 return lastName; // return copy of last name
45 } // end function getLastName

1 // Fig. 17.29: fig17_29.cpp
2 // static data member tracking the number of objects of a class.

3 #include <iostream>
4 #include "Employee.h" // Employee class definition
5 using namespace std;
6
7 int main()
8 {

9 // no objects exist; use class name and binary scope resolution

10 // operator to access static member function getCount
11 cout << "Number of employees before instantiation of any objects is "
12 << << endl; // use class name

Fig. 17.29 | static data member tracking the number of objects of a class. (Part 1 of 2.)

Fig. 17.28 | Employee class member-function definitions. (Part 2 of 2.)

++count; // increment static count of employees

--count; // decrement static count of employees

Employee::getCount()

672 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

A member function should be declared static if it does not access non-static data
members or non-static member functions of the class. Unlike non-static member func-
tions, a static member function does not have a this pointer, because static data members
and static member functions exist independently of any objects of a class. The this pointer
must refer to a specific object of the class, and when a static member function is called,
there might not be any objects of its class in memory.

13
14 // the following scope creates and destroys

15 // Employee objects before main terminates
16 {

17 Employee e1("Susan", "Baker");
18 Employee e2("Robert", "Jones");
19
20 // two objects exist; call static member function getCount again

21 // using the class name and the scope resolution operator
22 cout << "Number of employees after objects are instantiated is "
23 << ;

24
25 cout << "\n\nEmployee 1: "
26 << e1.getFirstName() << " " << e1.getLastName()
27 << "\nEmployee 2: "
28 << e2.getFirstName() << " " << e2.getLastName() << "\n\n";
29 } // end nested scope in main

30
31 // no objects exist, so call static member function getCount again
32 // using the class name and the scope resolution operator

33 cout << "\nNumber of employees after objects are deleted is "
34 << << endl;
35 } // end main

Number of employees before instantiation of any objects is 0
Employee constructor for Susan Baker called.
Employee constructor for Robert Jones called.
Number of employees after objects are instantiated is 2

Employee 1: Susan Baker
Employee 2: Robert Jones

~Employee() called for Robert Jones
~Employee() called for Susan Baker

Number of employees after objects are deleted is 0

Common Programming Error 17.6
Using the this pointer in a static member function is a compilation error.

Common Programming Error 17.7
Declaring a static member function const is a compilation error. The const qualifier
indicates that a function cannot modify the contents of the object on which it operates,
but static member functions exist and operate independently of any objects of the class.

Fig. 17.29 | static data member tracking the number of objects of a class. (Part 2 of 2.)

Employee::getCount()

Employee::getCount()

17.15 Wrap-Up 673

17.15 Wrap-Up
This chapter deepened our coverage of classes, using a Time class case study to introduce sev-
eral new features. We used an include guard to prevent the code in a header (.h) file from
being included multiple times in the same source code (.cpp) file. You learned how to use
the arrow operator to access an object’s members via a pointer of the object’s class type. You
learned that member functions have class scope—the member function’s name is known
only to the class’s other members unless referred to by a client of the class via an object name,
a reference to an object of the class, a pointer to an object of the class or the scope resolution
operator. We also discussed access functions (commonly used to retrieve the values of data
members or to test the truth or falsity of conditions) and utility functions (private member
functions that support the operation of the class’s public member functions).

You learned that a constructor can specify default arguments that enable it to be called
in a variety of ways. You also learned that any constructor that can be called with no argu-
ments is a default constructor and that there can be at most one default constructor per
class. We discussed destructors for performing termination housekeeping on an object of
a class before that object is destroyed, and demonstrated the order in which an object’s
constructors and destructors are called.

We demonstrated the problems that can occur when a member function returns a ref-
erence or a pointer to a private data member, which breaks the encapsulation of the class.
We also showed that objects of the same type can be assigned to one another using default
memberwise assignment—in Chapter 18, we’ll discuss how this can cause problems when
an object contains pointer members.

You learned how to specify const objects and const member functions to prevent
modifications to objects, thus enforcing the principle of least privilege. You also learned
that, through composition, a class can have objects of other classes as members. We dem-
onstrated how to use friend functions.

You learned that the this pointer is passed as an implicit argument to each of a class’s
non-static member functions, allowing them to access the correct object’s data members
and other non-static member functions. We used the this pointer explicitly to access
the class’s members and to enable cascaded member-function calls. We motivated the
notion of static data members and member functions and demonstrated how to declare
and use them in your own classes.

In Chapter 18, we continue our study of classes and objects by showing how to enable
C++’s operators to work with class-type objects—a process called operator overloading. For
example, you’ll see how to overload the << operator so it can be used to output a complete
array without explicitly using a repetition statement.

Summary
Section 17.2 Time Class Case Study
• Preprocessing directives #ifndef (which means “if not defined”; p. 630) and #endif (p. 630) are

used to prevent multiple inclusions of a header. If the code between these directives has not pre-
viously been included in an application, #define (p. 630) defines a name that can be used to pre-
vent future inclusions, and the code is included in the source code file.

• Before C++11, only static const int data members could be initialized where they were de-
clared in the class body. For this reason, data members typically should be initialized by the class’s

674 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

constructor. As of C++11, you can now use an in-class initializer to initialize any data member
where it’s declared in the class definition.

• A class’s functions can throw (p. 631) exceptions (such as invalid_argument; p. 631) to indicate
invalid data.

• Stream manipulator setfill (p. 632) specifies the fill character (p. 632) that’s displayed when
an integer is output in a field that’s wider than the number of digits in the value.

• If a member function defines a variable with the same name as a variable with class scope
(p. 632), the class-scope variable is hidden in the function by the block-scope variable.

• By default, the fill characters appear before the digits in the number.

• Stream manipulator setfill is a “sticky” setting, meaning that once the fill character is set, it
applies for all subsequent fields being printed.

• Even though a member function declared in a class definition may be defined outside that class
definition (and “tied” to the class via the scope resolution operator), that member function is still
within that class’s scope.

• If a member function is defined in the body of a class definition, the member function is implic-
itly declared inline.

• Classes can include objects of other classes as members or they may be derived (p. 635) from oth-
er classes that provide attributes and behaviors the new classes can use.

Section 17.3 Class Scope and Accessing Class Members
• A class’s data members and member functions belong to that class’s scope.

• Nonmember functions are defined at global namespace scope.

• Within a class’s scope, class members are immediately accessible by all of that class’s member
functions and can be referenced by name.

• Outside a class’s scope, class members are referenced through one of the handles on an object—
an object name, a reference to an object or a pointer to an object.

• Variables declared in a member function have block scope and are known only to that function.

• The dot member selection operator (.) is preceded by an object’s name or by a reference to an
object to access the object’s public members.

• The arrow member selection operator (->; p. 636) is preceded by a pointer to an object to access
that object’s public members.

Section 17.4 Access Functions and Utility Functions
• Access functions (p. 636) read or display data. They can also be used to test the truth or falsity

of conditions—such functions are often called predicate functions.

• A utility function (p. 636) is a private member function that supports the operation of the class’s
public member functions. Utility functions are not intended to be used by clients of a class.

Section 17.5 Time Class Case Study: Constructors with Default Arguments
• Like other functions, constructors can specify default arguments.

Section 17.6 Destructors
• A class’s destructor (p. 643) is called implicitly when an object of the class is destroyed.

• The name of the destructor for a class is the tilde (~) character followed by the class name.

• A destructor does not release an object’s storage—it performs termination housekeeping (p. 643)
before the system reclaims an object’s memory, so the memory may be reused to hold new objects.

 Summary 675

• A destructor receives no parameters and returns no value. A class may have only one destructor.

• If you do not explicitly provide a destructor, the compiler creates an “empty” destructor, so every
class has exactly one destructor.

Section 17.7 When Constructors and Destructors Are Called
• The order in which constructors and destructors are called depends on the order in which exe-

cution enters and leaves the scopes where the objects are instantiated.

• Generally, destructor calls are made in the reverse order of the corresponding constructor calls,
but the storage classes of objects can alter the order in which destructors are called.

Section 17.8 Time Class Case Study: A Subtle Trap—Returning a Reference or a
Pointer to a private Data Member
• A reference to an object is an alias for the name of the object and, hence, may be used on the left

side of an assignment statement. In this context, the reference makes a perfectly acceptable lvalue
that can receive a value.

• If the function returns a reference to const data, then the reference cannot be used as a modifi-
able lvalue.

Section 17.9 Default Memberwise Assignment
• The assignment operator (=) can be used to assign an object to another object of the same type.

By default, such assignment is performed by memberwise assignment (p. 650).

• Objects may be passed by value to or returned by value from functions. C++ creates a new object
and uses a copy constructor (p. 651) to copy the original object’s values into the new object.

• For each class, the compiler provides a default copy constructor that copies each member of the
original object into the corresponding member of the new object.

Section 17.10 const Objects and const Member Functions
• The keyword const can be used to specify that an object is not modifiable and that any attempt

to modify the object should result in a compilation error.

• C++ compilers disallow non-const member function calls on const objects.

• An attempt by a const member function to modify an object of its class is a compilation error.

• A member function is specified as const both in its prototype and in its definition.

• A const object must be initialized.

• Constructors and destructors cannot be declared const.

Section 17.11 Composition: Objects as Members of Classes
• A class can have objects of other classes as members—this concept is called composition.

• Member objects are constructed in the order in which they’re declared in the class definition and
before their enclosing class objects are constructed.

• If a member initializer is not provided for a member object, the member object’s default con-
structor (p. 654) will be called implicitly.

Section 17.12 friend Functions and friend Classes
• A friend function (p. 660) of a class is defined outside that class’s scope, yet has the right to access

all of the class’s members. Stand-alone functions or entire classes may be declared to be friends.

• A friend declaration can appear anywhere in the class.

• The friendship relation is neither symmetric nor transitive.

676 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

Section 17.13 Using the this Pointer
• Every object has access to its own address through the this pointer (p. 662).

• An object’s this pointer is not part of the object itself—i.e., the size of the memory occupied by
the this pointer is not reflected in the result of a sizeof operation on the object.

• The this pointer is passed as an implicit argument to each non-static member function.

• Objects use the this pointer implicitly (as we’ve done to this point) or explicitly to reference their
data members and member functions.

• The this pointer enables cascaded member-function calls (p. 664) in which multiple functions
are invoked in the same statement.

Section 17.14 static Class Members
• A static data member (p. 668) represents “class-wide” information (i.e., a property of the class

shared by all instances, not a property of a specific object of the class).

• static data members have class scope and can be declared public, private or protected.

• A class’s static members exist even when no objects of that class exist.

• To access a public static class member when no objects of the class exist, simply prefix the class
name and the scope resolution operator (::) to the name of the data member.

• The static keyword cannot be applied to a member definition that appears outside the class def-
inition.

• A member function should be declared static (p. 669) if it does not access non-static data
members or non-static member functions of the class. Unlike non-static member functions,
a static member function does not have a this pointer, because static data members and
static member functions exist independently of any objects of a class.

Self-Review Exercises
17.1 Fill in the blanks in each of the following:

a) Class members are accessed via the operator in conjunction with the name of
an object (or reference to an object) of the class or via the operator in conjunc-
tion with a pointer to an object of the class.

b) Class members specified as are accessible only to member functions of the
class and friends of the class.

c) class members are accessible anywhere an object of the class is in scope.
d) can be used to assign an object of a class to another object of the same class.
e) A nonmember function must be declared as a(n) of a class to have access to

that class’s private data members.
f) A constant object must be ; it cannot be modified after it’s created.
g) A(n) data member represents class-wide information.
h) An object’s non-static member functions have access to a “self pointer” to the object

called the pointer.
i) Keyword specifies that an object or variable is not modifiable.
j) If a member initializer is not provided for a member object of a class, the object's

 is called.
k) A member function should be static if it does not access class members.
l) Member objects are constructed their enclosing class object.

17.2 Find the error(s) in each of the following and explain how to correct it (them):
a) Assume the following prototype is declared in class Time:

void ~Time(int);

 Answers to Self-Review Exercises 677

b) Assume the following prototype is declared in class Employee:

int Employee(string, string);
c) The following is a definition of class Example:

class Example
{

public:
 Example(int y = 10)
 : data(y)

 {

 // empty body

 } // end Example constructor

 int getIncrementedData() const
 {

 return ++data;
 } // end function getIncrementedData

 static int getCount()
 {

 cout << "Data is " << data << endl;
 return count;
 } // end function getCount

private:
 int data;
 static int count;
}; // end class Example

Answers to Self-Review Exercises
17.1 a) dot (.), arrow (->). b) private. c) public. d) Default memberwise assignment (per-
formed by the assignment operator). e) friend. f) initialized. g) static. h) this. i) const. j) default
constructor. k) non-static. l) before.

17.2 a) Error: Destructors are not allowed to return values (or even specify a return type) or take
arguments.
Correction: Remove the return type void and the parameter int from the declaration.

b) Error: Constructors are not allowed to return values.
Correction: Remove the return type int from the declaration.

c) Error: The class definition for Example has two errors. The first occurs in function get-
IncrementedData. The function is declared const, but it modifies the object.
Correction: To correct the first error, remove the const keyword from the definition of
getIncrementedData. [Note: It would also be appropriate to rename this member func-
tion as get functions are typically const member functions.]
Error: The second error occurs in function getCount. This function is declared static,
so it’s not allowed to access any non-static class member (i.e., data).
Correction: To correct the second error, remove the output line from the getCount defi-
nition.

Exercises
17.3 (Scope Resolution Operator) What’s the purpose of the scope resolution operator?

17.4 (Enhancing Class Time) Provide a constructor that’s capable of using the current time from
the time and localtime functions—declared in the C++ Standard Library header <ctime>—to ini-
tialize an object of the Time class.

678 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

17.5 (Complex Class) Create a class called Complex for performing arithmetic with complex num-
bers. Write a program to test your class. Complex numbers have the form

realPart + imaginaryPart * i

where i is

Use double variables to represent the private data of the class. Provide a constructor that enables
an object of this class to be initialized when it’s declared. The constructor should contain default
values in case no initializers are provided. Provide public member functions that perform the fol-
lowing tasks:

a) Adding two Complex numbers: The real parts are added together and the imaginary
parts are added together.

b) Subtracting two Complex numbers: The real part of the right operand is subtracted from
the real part of the left operand, and the imaginary part of the right operand is sub-
tracted from the imaginary part of the left operand.

c) Printing Complex numbers in the form (a, b), where a is the real part and b is the imag-
inary part.

17.6 (Rational Class) Create a class called Rational for performing arithmetic with fractions.
Write a program to test your class. Use integer variables to represent the private data of the class—
the numerator and the denominator. Provide a constructor that enables an object of this class to be
initialized when it’s declared. The constructor should contain default values in case no initializers
are provided and should store the fraction in reduced form. For example, the fraction

would be stored in the object as 1 in the numerator and 2 in the denominator. Provide public
member functions that perform each of the following tasks:

a) Adding two Rational numbers. The result should be stored in reduced form.
b) Subtracting two Rational numbers. The result should be stored in reduced form.
c) Multiplying two Rational numbers. The result should be stored in reduced form.
d) Dividing two Rational numbers. The result should be stored in reduced form.
e) Printing Rational numbers in the form a/b, where a is the numerator and b is the de-

nominator.
f) Printing Rational numbers in floating-point format.

17.7 (Enhancing Class Time) Modify the Time class of Figs. 17.4–17.5 to include a tick member
function that increments the time stored in a Time object by one second. Write a program that tests
the tick member function in a loop that prints the time in standard format during each iteration
of the loop to illustrate that the tick member function works correctly. Be sure to test the following
cases:

a) Incrementing into the next minute.
b) Incrementing into the next hour.
c) Incrementing into the next day (i.e., 11:59:59 PM to 12:00:00 AM).

17.8 (Enhancing Class Date) Modify the Date class of Figs. 17.13–17.14 to perform error check-
ing on the initializer values for data members month, day and year. Also, provide a member function
nextDay to increment the day by one. Write a program that tests function nextDay in a loop that
prints the date during each iteration to illustrate that nextDay works correctly. Be sure to test the
following cases:

a) Incrementing into the next month.
b) Incrementing into the next year.

–1

2
4

 Exercises 679

17.9 (Combining Class Time and Class Date) Combine the modified Time class of Exercise 17.7
and the modified Date class of Exercise 17.8 into one class called DateAndTime. (In Chapter 19, we’ll
discuss inheritance, which will enable us to accomplish this task quickly without modifying the ex-
isting class definitions.) Modify the tick function to call the nextDay function if the time incre-
ments into the next day. Modify functions printStandard and printUniversal to output the date
and time. Write a program to test the new class DateAndTime. Specifically, test incrementing the
time into the next day.

17.10 (Returning Error Indicators from Class Time’s set Functions) Modify the set functions in the
Time class of Figs. 17.4–17.5 to return appropriate error values if an attempt is made to set a data
member of an object of class Time to an invalid value. Write a program that tests your new version
of class Time. Display error messages when set functions return error values.

17.11 (Rectangle Class) Create a class Rectangle with attributes length and width, each of which
defaults to 1. Provide member functions that calculate the perimeter and the area of the rectangle.
Also, provide set and get functions for the length and width attributes. The set functions should ver-
ify that length and width are each floating-point numbers larger than 0.0 and less than 20.0.

17.12 (Enhancing Class Rectangle) Create a more sophisticated Rectangle class than the one you
created in Exercise 17.11. This class stores only the Cartesian coordinates of the four corners of the
rectangle. The constructor calls a set function that accepts four sets of coordinates and verifies that
each of these is in the first quadrant with no single x- or y-coordinate larger than 20.0. The set func-
tion also verifies that the supplied coordinates do, in fact, specify a rectangle. Provide member func-
tions that calculate the length, width, perimeter and area. The length is the larger of the two
dimensions. Include a predicate function square that determines whether the rectangle is a square.

17.13 (Enhancing Class Rectangle) Modify class Rectangle from Exercise 17.12 to include a draw
function that displays the rectangle inside a 25-by-25 box enclosing the portion of the first quadrant
in which the rectangle resides. Include a setFillCharacter function to specify the character out of
which the body of the rectangle will be drawn. Include a setPerimeterCharacter function to specify
the character that will be used to draw the border of the rectangle. If you feel ambitious, you might
include functions to scale the size of the rectangle, rotate it, and move it around within the desig-
nated portion of the first quadrant.

17.14 (HugeInteger Class) Create a class HugeInteger that uses a 40-element array of digits to
store integers as large as 40 digits each. Provide member functions input, output, add and subtract.
For comparing HugeInteger objects, provide functions isEqualTo, isNotEqualTo, isGreaterThan,
isLessThan, isGreaterThanOrEqualTo and isLessThanOrEqualTo—each of these is a “predicate”
function that simply returns true if the relationship holds between the two HugeIntegers and re-
turns false if the relationship does not hold. Also, provide a predicate function isZero. If you feel
ambitious, provide member functions multiply, divide and modulus.

17.15 (TicTacToe Class) Create a class TicTacToe that will enable you to write a complete program
to play the game of tic-tac-toe. The class contains as private data a 3-by-3 two-dimensional array
of integers. The constructor should initialize the empty board to all zeros. Allow two human players.
Wherever the first player moves, place a 1 in the specified square. Place a 2 wherever the second play-
er moves. Each move must be to an empty square. After each move, determine whether the game
has been won or is a draw. If you feel ambitious, modify your program so that the computer makes
the moves for one of the players. Also, allow the player to specify whether he or she wants to go first
or second. If you feel exceptionally ambitious, develop a program that will play three-dimensional
tic-tac-toe on a 4-by-4-by-4 board. [Caution: This is an extremely challenging project that could
take many weeks of effort!]

17.16 (Friendship) Explain the notion of friendship. Explain the negative aspects of friendship as
described in the text.

680 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

17.17 (Constructor Overloading) Can a Time class definition that includes both of the following
constructors:

Time(int h = 0, int m = 0, int s = 0);
Time();

be used to default construct a Time object? If not, explain why.

17.18 (Constructors and Destructors) What happens when a return type, even void, is specified
for a constructor or destructor?

17.19 (Date Class Modification) Modify class Date in Fig. 17.17 to have the following capabilities:
a) Output the date in multiple formats such as

DDD YYYY

MM/DD/YY

June 14, 1992

b) Use overloaded constructors to create Date objects initialized with dates of the formats
in part (a).

c) Create a Date constructor that reads the system date using the standard library functions
of the <ctime> header and sets the Date members. See your compiler’s reference docu-
mentation or en.cppreference.com/w/cpp/chrono/c for information on the functions
in header <ctime>. You might also want to check out C++11’s new chrono library at
en.cppreference.com/w/cpp/chrono.

In Chapter 18, we’ll be able to create operators for testing the equality of two dates and for com-
paring dates to determine whether one date is prior to, or after, another.

17.20 (SavingsAccount Class) Create a SavingsAccount class. Use a static data member annual-
InterestRate to store the annual interest rate for each of the savers. Each member of the class con-
tains a private data member savingsBalance indicating the amount the saver currently has on
deposit. Provide member function calculateMonthlyInterest that calculates the monthly interest
by multiplying the savingsBalance by annualInterestRate divided by 12; this interest should be
added to savingsBalance. Provide a static member function modifyInterestRate that sets the
static annualInterestRate to a new value. Write a driver program to test class SavingsAccount. In-
stantiate two different objects of class SavingsAccount, saver1 and saver2, with balances of
$2000.00 and $3000.00, respectively. Set the annualInterestRate to 3 percent. Then calculate the
monthly interest and print the new balances for each of the savers. Then set the annualInterestRate
to 4 percent, calculate the next month’s interest and print the new balances for each of the savers.

17.21 (IntegerSet Class) Create class IntegerSet for which each object can hold integers in the
range 0 through 100. Represent the set internally as a vector of bool values. Element a[i] is true
if integer i is in the set. Element a[j] is false if integer j is not in the set. The default constructor
initializes a set to the so-called “empty set,” i.e., a set for which all elements contain false.

a) Provide member functions for the common set operations. For example, provide a
unionOfSets member function that creates a third set that is the set-theoretic union of
two existing sets (i.e., an element of the result is set to true if that element is true in
either or both of the existing sets, and an element of the result is set to false if that el-
ement is false in each of the existing sets).

b) Provide an intersectionOfSets member function which creates a third set which is the
set-theoretic intersection of two existing sets (i.e., an element of the result is set to false
if that element is false in either or both of the existing sets, and an element of the result
is set to true if that element is true in each of the existing sets).

c) Provide an insertElement member function that places a new integer k into a set by
setting a[k] to true. Provide a deleteElement member function that deletes integer m
by setting a[m] to false.

 Exercises 681

d) Provide a printSet member function that prints a set as a list of numbers separated by
spaces. Print only those elements that are present in the set (i.e., their position in the
vector has a value of true). Print --- for an empty set.

e) Provide an isEqualTo member function that determines whether two sets are equal.
f) Provide an additional constructor that receives an array of integers and the size of that

array and uses the array to initialize a set object.
Now write a driver program to test your IntegerSet class. Instantiate several IntegerSet

objects. Test that all your member functions work properly.

17.22 (Time Class Modification) It would be perfectly reasonable for the Time class of Figs. 17.4–
17.5 to represent the time internally as the number of seconds since midnight rather than the three
integer values hour, minute and second. Clients could use the same public methods and get the
same results. Modify the Time class of Fig. 17.4 to implement the time as the number of seconds
since midnight and show that there is no visible change in functionality to the clients of the class.
[Note: This exercise nicely demonstrates the virtues of implementation hiding.]

17.23 (Card Shuffling and Dealing) Create a program to shuffle and deal a deck of cards. The
program should consist of class Card, class DeckOfCards and a driver program. Class Card should
provide:

a) Data members face and suit of type int.
b) A constructor that receives two ints representing the face and suit and uses them to ini-

tialize the data members.
c) Two static arrays of strings representing the faces and suits.
d) A toString function that returns the Card as a string in the form “face of suit.” You

can use the + operator to concatenate strings.

Class DeckOfCards should contain:
a) An array of Cards named deck to store the Cards.
b) An integer currentCard representing the next card to deal.
c) A default constructor that initializes the Cards in the deck.
d) A shuffle function that shuffles the Cards in the deck. The shuffle algorithm should

iterate through the array of Cards. For each Card, randomly select another Card in the
deck and swap the two Cards.

e) A dealCard function that returns the next Card object from the deck.
f) A moreCards function that returns a bool value indicating whether there are more Cards

to deal.

The driver program should create a DeckOfCards object, shuffle the cards, then deal the 52 cards.

17.24 (Card Shuffling and Dealing) Modify the program you developed in Exercise 17.23 so that
it deals a five-card poker hand. Then write functions to accomplish each of the following:

a) Determine whether the hand contains a pair.
b) Determine whether the hand contains two pairs.
c) Determine whether the hand contains three of a kind (e.g., three jacks).
d) Determine whether the hand contains four of a kind (e.g., four aces).
e) Determine whether the hand contains a flush (i.e., all five cards of the same suit).
f) Determine whether the hand contains a straight (i.e., five cards of consecutive face

values).

17.25 (Project: Card Shuffling and Dealing) Use the functions from Exercise 17.24 to write a pro-
gram that deals two five-card poker hands, evaluates each hand and determines which is the better
hand.

17.26 (Project: Card Shuffling and Dealing) Modify the program you developed in
Exercise 17.25 so that it can simulate the dealer. The dealer’s five-card hand is dealt “face down” so

682 Chapter 17 Classes: A Deeper Look; Throwing Exceptions

the player cannot see it. The program should then evaluate the dealer’s hand, and, based on the qual-
ity of the hand, the dealer should draw one, two or three more cards to replace the corresponding
number of unneeded cards in the original hand. The program should then reevaluate the dealer’s
hand.

17.27 (Project: Card Shuffling and Dealing) Modify the program you developed in
Exercise 17.26 so that it handles the dealer’s hand, but the player is allowed to decide which cards
of the player’s hand to replace. The program should then evaluate both hands and determine who
wins. Now use this new program to play 20 games against the computer. Who wins more games,
you or the computer? Have one of your friends play 20 games against the computer. Who wins more
games? Based on the results of these games, make appropriate modifications to refine your poker-
playing program. Play 20 more games. Does your modified program play a better game?

Making a Difference
17.28 (Project: Emergency Response Class) The North American emergency response service, 9-1-1,
connects callers to a local Public Service Answering Point (PSAP). Traditionally, the PSAP would
ask the caller for identification information—including the caller’s address, phone number and the
nature of the emergency, then dispatch the appropriate emergency responders (such as the police,
an ambulance or the fire department). Enhanced 9-1-1 (or E9-1-1) uses computers and databases to
determine the caller’s physical address, directs the call to the nearest PSAP, and displays the caller’s
phone number and address to the call taker. Wireless Enhanced 9-1-1 provides call takers with
identification information for wireless calls. Rolled out in two phases, the first phase required carri-
ers to provide the wireless phone number and the location of the cell site or base station transmitting
the call. The second phase required carriers to provide the location of the caller (using technologies
such as GPS). To learn more about 9-1-1, visit www.fcc.gov/pshs/services/911-services/
Welcome.html and people.howstuffworks.com/9-1-1.htm.

An important part of creating a class is determining the class’s attributes (instance variables).
For this class design exercise, research 9-1-1 services on the Internet. Then, design a class called
Emergency that might be used in an object-oriented 9-1-1 emergency response system. List the
attributes that an object of this class might use to represent the emergency. For example, the class
might include information on who reported the emergency (including their phone number), the
location of the emergency, the time of the report, the nature of the emergency, the type of response
and the status of the response. The class attributes should completely describe the nature of the
problem and what’s happening to resolve that problem.

18Operator Overloading; Class
string

O b j e c t i v e s
In this chapter you’ll:

■ Learn how operator
overloading can help you
craft valuable classes.

■ Overload unary and binary
operators.

■ Convert objects from one
class to another class.

■ Use overloaded operators
and additional features of the
string class.

■ Create PhoneNumber, Date
and Array classes that
provide overloaded operators.

■ Perform dynamic memory
allocation with new and
delete.

■ Use keyword explicit to
indicate that a constructor
cannot be used for implicit
conversions.

■ Experience a “light-bulb
moment” when you’ll truly
appreciate the elegance and
beauty of the class concept.

684 Chapter 18 Operator Overloading; Class string

18.1 Introduction
This chapter shows how to enable C++’s operators to work with class objects—a process
called operator overloading. One example of an overloaded operator built into C++ is <<,
which is used both as the stream insertion operator and as the bitwise left-shift operator
(which we discussed in Chapter 10). Similarly, >> also is overloaded; it’s used both as the
stream extraction operator and the bitwise right-shift operator. Both of these operators are
overloaded in the C++ Standard Library. You’ve already been using overloaded operators.
The overloads are built into the base C++ language itself. For example, C++ overloads the
addition operator (+) and the subtraction operator (-) to perform differently, depending
on their context in integer, floating-point and pointer arithmetic with data of fundamental
types.

You can overload most operators to be used with class objects—the compiler generates
the appropriate code based on the types of the operands. The jobs performed by overloaded
operators also can be performed by explicit function calls, but operator notation is often
more natural.

Our examples start by demonstrating the C++ Standard Library’s class string, which
has lots of overloaded operators. This enables you to see overloaded operators in use before
implementing your own overloaded operators. Next, we create a PhoneNumber class that
enables us to use overloaded operators << and >> to conveniently output and input fully
formatted, 10-digit phone numbers. We then present a Date class that overloads the prefix
and postfix increment (++) operators to add one day to the value of a Date. The class also
overloads the += operator to allow a program to increment a Date by the number of days
specified on the right side of the operator.

Next, we present a capstone case study—an Array class that uses overloaded operators
and other capabilities to solve various problems with pointer-based arrays. This is one of
the most important case studies in the book. Many of our students have indicated that the
Array case study is their “light bulb moment” in truly understanding what classes and
object technology are all about. As part of this class, we’ll overload stream insertion, stream
extraction, assignment, equality, relational and subscript operators. Once you master this

18.1 Introduction
18.2 Using the Overloaded Operators

of Standard Library Class string
18.3 Fundamentals of Operator

Overloading
18.4 Overloading Binary Operators
18.5 Overloading the Binary Stream

Insertion and Stream Extraction
Operators

18.6 Overloading Unary Operators
18.7 Overloading the Unary Prefix and

Postfix ++ and -- Operators

18.8 Case Study: A Date Class
18.9 Dynamic Memory Management

18.10 Case Study: Array Class
18.10.1 Using the Array Class
18.10.2 Array Class Definition

18.11 Operators as Member vs. Non-Member
Functions

18.12 Converting Between Types
18.13 explicit Constructors and

Conversion Operators
18.14 Overloading the Function Call Operator ()
18.15 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

18.2 Using the Overloaded Operators of Standard Library Class string 685

Array class, you’ll indeed understand the essence of object technology—crafting, using
and reusing valuable classes.

The chapter concludes with discussions of how you can convert between types
(incuding class types), problems with certain implicit conversions and how to prevent
those problems.

18.2 Using the Overloaded Operators of Standard
Library Class string
Figure 18.1 demonstrates many of class string’s overloaded operators and several other
useful member functions, including empty, substr and at. Function empty determines
whether a string is empty, function substr returns a string that represents a portion of
an existing string and function at returns the character at a specific index in a string
(after checking that the index is in range).

1 // Fig. 18.1: fig18_01.cpp

2 // Standard Library string class test program.

3 #include <iostream>
4 #include <string>
5 using namespace std;
6
7 int main()
8 {

9
10

11

12
13 // test overloaded equality and relational operators

14 cout << "s1 is \"" << "\"; s2 is \""
15 << "\"; s3 is \"" << '\"'
16 << "\n\nThe results of comparing s2 and s1:"
17 << "\ns2 == s1 yields " << (? "true" : "false")
18 << "\ns2 != s1 yields " << (? "true" : "false")
19 << "\ns2 > s1 yields " << (? "true" : "false")
20 << "\ns2 < s1 yields " << (? "true" : "false")
21 << "\ns2 >= s1 yields " << (? "true" : "false")
22 << "\ns2 <= s1 yields " << (? "true" : "false");
23

24 // test string member-function empty
25 cout << "\n\nTesting s3.empty():" << endl;
26
27 if ()
28 {

29 cout << "s3 is empty; assigning s1 to s3;" << endl;
30 ; // assign s1 to s3
31 cout << "s3 is \"" << "\"";
32 } // end if

33
34 // test overloaded string concatenation operator

35 cout << "\n\ns1 += s2 yields s1 = ";

Fig. 18.1 | Standard Library string class test program. (Part 1 of 3.)

string s1("happy");
string s2(" birthday");
string s3;

<< s1 << s2

<< s3

s2 == s1

s2 != s1

s2 > s1
s2 < s1

s2 >= s1

s2 <= s1

s3.empty()

s3 = s1

<< s3

686 Chapter 18 Operator Overloading; Class string

36

37 cout << s1;

38
39 // test overloaded string concatenation operator with a C string

40 cout << "\n\ns1 += \" to you\" yields" << endl;
41
42 cout << "s1 = " << s1 << "\n\n";
43
44 // test string member function substr
45 cout << "The substring of s1 starting at location 0 for\n"
46 << "14 characters, s1.substr(0, 14), is:\n"
47 << << "\n\n";
48
49 // test substr "to-end-of-string" option

50 cout << "The substring of s1 starting at\n"
51 << "location 15, s1.substr(15), is:\n"
52 << << endl;

53
54 // test copy constructor
55

56 cout << "\ns4 = " << s4 << "\n\n";
57
58 // test overloaded copy assignment (=) operator with self-assignment

59 cout << "assigning s4 to s4" << endl;
60
61 cout << "s4 = " << s4 << endl;
62
63 // test using overloaded subscript operator to create lvalue
64

65

66 cout << "\ns1 after s1[0] = 'H' and s1[6] = 'B' is: "
67 << s1 << "\n\n";
68
69 // test subscript out of range with string member function "at"
70 try
71 {

72 cout << "Attempt to assign 'd' to s1.at(30) yields:" << endl;
73 s1.at(30) = 'd'; // ERROR: subscript out of range
74 } // end try

75 catch (out_of_range &ex)
76 {

77 cout << "An exception occurred: " << ex.what() << endl;
78 } // end catch
79 } // end main

s1 is "happy"; s2 is " birthday"; s3 is ""

The results of comparing s2 and s1:
s2 == s1 yields false
s2 != s1 yields true
s2 > s1 yields false
s2 < s1 yields true

Fig. 18.1 | Standard Library string class test program. (Part 2 of 3.)

s1 += s2; // test overloaded concatenation

s1 += " to you";

s1.substr(0, 14)

s1.substr(15)

string s4(s1);

s4 = s4;

s1[0] = 'H';
s1[6] = 'B';

18.2 Using the Overloaded Operators of Standard Library Class string 687

Lines 9–11 create three string objects—s1 is initialized with the literal "happy", s2
is initialized with the literal " birthday" and s3 uses the default string constructor to
create an empty string. Lines 14–15 output these three objects, using cout and operator
<<, which the string class designers overloaded to handle string objects. Then lines 16–
22 show the results of comparing s2 to s1 by using class string’s overloaded equality and
relational operators, which perform lexicographical comparisons (i.e., like a dictionary
ordering) using the numerical values of the characters (see Appendix B, ASCII Character
Set) in each string.

Class string provides member function empty to determine whether a string is
empty, which we demonstrate in line 27. Member function empty returns true if the
string is empty; otherwise, it returns false.

Line 30 demonstrates class string’s overloaded copy assignment operator by assigning
s1 to s3. Line 31 outputs s3 to demonstrate that the assignment worked correctly.

Line 36 demonstrates class string’s overloaded += operator for string concatenation.
In this case, the contents of s2 are appended to s1. Then line 37 outputs the resulting
string that’s stored in s1. Line 41 demonstrates that a string literal can be appended to a
string object by using operator +=. Line 42 displays the result.

Class string provides member function substr (lines 47 and 52) to return a portion
of a string as a string object. The call to substr in line 47 obtains a 14-character substring
(specified by the second argument) of s1 starting at position 0 (specified by the first argu-

s2 >= s1 yields false
s2 <= s1 yields true

Testing s3.empty():
s3 is empty; assigning s1 to s3;
s3 is "happy"

s1 += s2 yields s1 = happy birthday

s1 += " to you" yields
s1 = happy birthday to you

The substring of s1 starting at location 0 for
14 characters, s1.substr(0, 14), is:
happy birthday

The substring of s1 starting at
location 15, s1.substr(15), is:
to you

s4 = happy birthday to you

assigning s4 to s4
s4 = happy birthday to you

s1 after s1[0] = 'H' and s1[6] = 'B' is: Happy Birthday to you

Attempt to assign 'd' to s1.at(30) yields:
An exception occurred: invalid string position

Fig. 18.1 | Standard Library string class test program. (Part 3 of 3.)

688 Chapter 18 Operator Overloading; Class string

ment).The call to substr in line 52 obtains a substring starting from position 15 of s1.
When the second argument is not specified, substr returns the remainder of the string
on which it’s called.

Line 55 creates string object s4 and initializes it with a copy of s1. This results in a
call to class string’s copy constructor. Line 60 uses class string’s overloaded copy assign-
ment (=) operator to demonstrate that it handles self-assignment properly—we’ll see when
we build class Array later in the chapter that self-assignment can be dangerous and we’ll
show how to deal with the issues.

Lines 64–65 use class string’s overloaded [] operator to create lvalues that enable
new characters to replace existing characters in s1. Line 67 outputs the new value of s1.
Class string’s overloaded [] operator does not perform any bounds checking. Therefore, you
must ensure that operations using standard class string’s overloaded [] operator do not acci-
dentally manipulate elements outside the bounds of the string. Class string does provide
bounds checking in its member function at, which throws an exception if its argument is
an invalid subscript. If the subscript is valid, function at returns the character at the spec-
ified location as a modifiable lvalue or an nonmodifiable lvalue (e.g., a const reference),
depending on the context in which the call appears. Line 73 demonstrates a call to func-
tion at with an invalid subscript; this throws an out_of_range exception.

18.3 Fundamentals of Operator Overloading
As you saw in Fig. 18.1, operators provide a concise notation for manipulating string ob-
jects. You can use operators with your own user-defined types as well. Although C++ does
not allow new operators to be created, it does allow most existing operators to be overloaded
so that, when they’re used with objects, they have meaning appropriate to those objects.

Operator overloading is not automatic—you must write operator-overloading func-
tions to perform the desired operations. An operator is overloaded by writing a non-
static member function definition or non-member function definition as you normally
would, except that the function name starts with the keyword operator followed by the
symbol for the operator being overloaded. For example, the function name operator+
would be used to overload the addition operator (+) for use with objects of a particular class
(or enum). When operators are overloaded as member functions, they must be non-static,
because they must be called on an object of the class and operate on that object.

To use an operator on an object of a class, you must define overloaded operator func-
tions for that class—with three exceptions:

• The assignment operator (=) may be used with most classes to perform memberwise
assignment of the data members—each data member is assigned from the assign-
ment’s “source” object (on the right) to the “target” object (on the left). Member-
wise assignment is dangerous for classes with pointer members, so we’ll explicitly
overload the assignment operator for such classes.

• The address (&) operator returns a pointer to the object; this operator also can be
overloaded.

• The comma operator evaluates the expression to its left then the expression to its
right, and returns the value of the latter expression. This operator also can be
overloaded.

18.4 Overloading Binary Operators 689

Operators That Cannot Be Overloaded
Most of C++’s operators can be overloaded. Figure 18.2 shows the operators that cannot
be overloaded.1

Rules and Restrictions on Operator Overloading
As you prepare to overload operators for your own classes, there are several rules and re-
strictions you should keep in mind:

• The precedence of an operator cannot be changed by overloading. However, paren-
theses can be used to force the order of evaluation of overloaded operators in an
expression.

• The associativity of an operator cannot be changed by overloading—if an operator
normally associates from left to right, then so do all of its overloaded versions.

• You cannot change the “arity” of an operator (that is, the number of operands an op-
erator takes)—overloaded unary operators remain unary operators; overloaded bi-
nary operators remain binary operators. Operators &, *, + and - all have both unary
and binary versions; these unary and binary versions can be separately overloaded.

• You cannot create new operators; only existing operators can be overloaded.

• The meaning of how an operator works on values of fundamental types cannot be
changed by operator overloading. For example, you cannot make the + operator
subtract two ints. Operator overloading works only with objects of user-defined types
or with a mixture of an object of a user-defined type and an object of a fundamental type.

• Related operators, like + and +=, must be overloaded separately.

• When overloading (), [], -> or any of the assignment operators, the operator
overloading function must be declared as a class member. For all other overload-
able operators, the operator overloading functions can be member functions or
non-member functions.

18.4 Overloading Binary Operators
A binary operator can be overloaded as a non-static member function with one parameter or
as a non-member function with two parameters (one of those parameters must be either a class

Operators that cannot be overloaded

. .* (pointer to member) :: ?:

Fig. 18.2 | Operators that cannot be overloaded.

1. Although it’s possible to overload the address (&), comma (,), && and || operators, you should avoid
doing so to avoid subtle errors. For insights on this, see CERT guideline DCL10-CPP.

Software Engineering Observation 18.1
Overload operators for class types so they work as closely as possible to the way built-in
operators work on fundamental types.

690 Chapter 18 Operator Overloading; Class string

object or a reference to a class object). A non-member operator function is often declared as
friend of a class for performance reasons.

Binary Overloaded Operators as Member Functions
Consider using < to compare two objects of a String class that you define. When over-
loading binary operator < as a non-static member function of a String class, if y and z
are String-class objects, then y < z is treated as if y.operator<(z) had been written, in-
voking the operator< member function with one argument declared below:

Overloaded operator functions for binary operators can be member functions only when
the left operand is an object of the class in which the function is a member.

Binary Overloaded Operators as Non-Member Functions
As a non-member function, binary operator < must take two arguments—one of which
must be an object (or a reference to an object) of the class that the overloaded operator is
associated with. If y and z are String-class objects or references to String-class objects,
then y < z is treated as if the call operator<(y, z) had been written in the program, in-
voking function operator< which is declared as follows:

18.5 Overloading the Binary Stream Insertion and
Stream Extraction Operators
You can input and output fundamental-type data using the stream extraction operator >>
and the stream insertion operator <<. The C++ class libraries overload these binary opera-
tors for each fundamental type, including pointers and char * strings. You can also over-
load these operators to perform input and output for your own types. The program of
Figs. 18.3–18.5 overloads these operators to input and output PhoneNumber objects in the
format “(000) 000-0000.” The program assumes telephone numbers are input correctly.

class String
{

public:
 bool operator<(const String &) const;
 ...

}; // end class String

bool operator<(const String &, const String &);

1 // Fig. 18.3: PhoneNumber.h

2 // PhoneNumber class definition
3 #ifndef PHONENUMBER_H
4 #define PHONENUMBER_H
5
6 #include <iostream>
7 #include <string>
8
9 class PhoneNumber

10 {

Fig. 18.3 | PhoneNumber class with overloaded stream insertion and stream extraction
operators as friend functions. (Part 1 of 2.)

18.5 Overloading the Binary Stream Insertion and Stream Extraction Operators 691

11

12

13 private:
14 std::string areaCode; // 3-digit area code

15 std::string exchange; // 3-digit exchange

16 std::string line; // 4-digit line
17 }; // end class PhoneNumber

18
19 #endif

1 // Fig. 18.4: PhoneNumber.cpp

2 // Overloaded stream insertion and stream extraction operators

3 // for class PhoneNumber.
4 #include <iomanip>
5 #include "PhoneNumber.h"
6 using namespace std;
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Fig. 18.4 | Overloaded stream insertion and stream extraction operators for class PhoneNumber.

1 // Fig. 18.5: fig18_05.cpp

2 // Demonstrating class PhoneNumber's overloaded stream insertion
3 // and stream extraction operators.

4 #include <iostream>

Fig. 18.5 | Overloaded stream insertion and stream extraction operators. (Part 1 of 2.)

Fig. 18.3 | PhoneNumber class with overloaded stream insertion and stream extraction
operators as friend functions. (Part 2 of 2.)

friend std::ostream &operator<<(std::ostream &, const PhoneNumber &);
friend std::istream &operator>>(std::istream &, PhoneNumber &);

// overloaded stream insertion operator; cannot be

// a member function if we would like to invoke it with

// cout << somePhoneNumber;

ostream &operator<<(ostream &output, const PhoneNumber &number)
{

 output << "(" << number.areaCode << ") "
 << number.exchange << "-" << number.line;
 return output; // enables cout << a << b << c;
} // end function operator<<

// overloaded stream extraction operator; cannot be

// a member function if we would like to invoke it with

// cin >> somePhoneNumber;
istream &operator>>(istream &input, PhoneNumber &number)
{

 input.ignore(); // skip (
 input >> setw(3) >> number.areaCode; // input area code
 input.ignore(2); // skip) and space
 input >> setw(3) >> number.exchange; // input exchange
 input.ignore(); // skip dash (-)

 input >> setw(4) >> number.line; // input line
 return input; // enables cin >> a >> b >> c;
} // end function operator>>

692 Chapter 18 Operator Overloading; Class string

Overloading the Stream Extraction (>>) Operator
The stream extraction operator function operator>> (Fig. 18.4, lines 21–30) takes the
istream reference input and the PhoneNumber reference number as arguments and returns
an istream reference. Operator function operator>> inputs phone numbers of the form

into objects of class PhoneNumber. When the compiler sees the expression

in line 16 of Fig. 18.5, the compiler generates the non-member function call

When this call executes, reference parameter input (Fig. 18.4, line 21) becomes an alias
for cin and reference parameter number becomes an alias for phone. The operator function
reads as strings the three parts of the telephone number into the areaCode (line 24), ex-
change (line 26) and line (line 28) members of the PhoneNumber object referenced by pa-
rameter number. Stream manipulator setw limits the number of characters read into each
string. When used with cin and strings, setw restricts the number of characters read to the
number of characters specified by its argument (i.e., setw(3) allows three characters to be
read). The parentheses, space and dash characters are skipped by calling istream member
function ignore (Fig. 18.4, lines 23, 25 and 27), which discards the specified number of
characters in the input stream (one character by default). Function operator>> returns
istream reference input (i.e., cin). This enables input operations on PhoneNumber objects

5 #include "PhoneNumber.h"
6 using namespace std;
7
8 int main()
9 {

10 PhoneNumber phone; // create object phone
11
12 cout << "Enter phone number in the form (123) 456-7890:" << endl;
13
14

15

16
17
18 cout << "The phone number entered was: ";
19
20

21

22

23 } // end main

Enter phone number in the form (123) 456-7890:
(800) 555-1212
The phone number entered was: (800) 555-1212

(800) 555-1212

cin >> phone

operator>>(cin, phone);

Fig. 18.5 | Overloaded stream insertion and stream extraction operators. (Part 2 of 2.)

// cin >> phone invokes operator>> by implicitly issuing
// the non-member function call operator>>(cin, phone)

cin >> phone;

// cout << phone invokes operator<< by implicitly issuing
// the non-member function call operator<<(cout, phone)

cout << phone << endl;

18.5 Overloading the Binary Stream Insertion and Stream Extraction Operators 693

to be cascaded with input operations on other PhoneNumber objects or other data types. For
example, a program can input two PhoneNumber objects in one statement as follows:

First, the expression cin >> phone1 executes by making the non-member function call

This call then returns a reference to cin as the value of cin >> phone1, so the remaining
portion of the expression is interpreted simply as cin >> phone2. This executes by making
the non-member function call

Overloading the Stream Insertion (<<) Operator
The stream insertion operator function (Fig. 18.4, lines 11–16) takes an ostream reference
(output) and a const PhoneNumber reference (number) as arguments and returns an os-
tream reference. Function operator<< displays objects of type PhoneNumber. When the
compiler sees the expression

in line 22 of Fig. 18.5, the compiler generates the non-member function call

Function operator<< displays the parts of the telephone number as strings, because
they’re stored as string objects.

Overloaded Operators as Non-Member friend Functions
The functions operator>> and operator<< are declared in PhoneNumber as non-member,
friend functions (Fig. 18.3, lines 11–12). They’re non-member functions because the ob-
ject of class PhoneNumber must be the operator’s right operand. If these were to be
PhoneNumber member functions, the following awkward statements would have to be used
to output and input a PhoneNumber:

Such statements would be confusing to most C++ programmers, who are familiar with
cout and cin appearing as the left operands of << and >>, respectively.

Overloaded operator functions for binary operators can be member functions only
when the left operand is an object of the class in which the function is a member. Over-
loaded input and output operators are declared as friends if they need to access non-public
class members directly or because the class may not offer appropriate get functions. Also, the
PhoneNumber reference in function operator<<’s parameter list (Fig. 18.4, line 11) is
const, because the PhoneNumber will simply be output, and the PhoneNumber reference in

cin >> phone1 >> phone2;

operator>>(cin, phone1);

operator>>(cin, phone2);

Good Programming Practice 18.1
Overloaded operators should mimic the functionality of their built-in counterparts—e.g.,
the + operator should perform addition, not subtraction. Avoid excessive or inconsistent
use of operator overloading, as this can make a program cryptic and difficult to read.

cout << phone

operator<<(cout, phone);

phone << cout;

phone >> cin;

694 Chapter 18 Operator Overloading; Class string

function operator>>’s parameter list (line 21) is non-const, because the PhoneNumber
object must be modified to store the input telephone number in the object.

Why Overloaded Stream Insertion and Stream Extraction Operators Are Overloaded
as Non-Member Functions
The overloaded stream insertion operator (<<) is used in an expression in which the left op-
erand has type ostream &, as in cout << classObject. To use the operator in this manner
where the right operand is an object of a user-defined class, it must be overloaded as a non-
member function. To be a member function, operator << would have to be a member of class
ostream. This is not possible for user-defined classes, since we are not allowed to modify C++
Standard Library classes. Similarly, the overloaded stream extraction operator (>>) is used in
an expression in which the left operand has the type istream &, as in cin >> classObject,
and the right operand is an object of a user-defined class, so it, too, must be a non-member
function. Also, each of these overloaded operator functions may require access to the private
data members of the class object being output or input, so these overloaded operator func-
tions can be made friend functions of the class for performance reasons.

18.6 Overloading Unary Operators
A unary operator for a class can be overloaded as a non-static member function with no ar-
guments or as a non-member function with one argument that must be an object (or a reference
to an object) of the class. Member functions that implement overloaded operators must be
non-static so that they can access the non-static data in each object of the class.

Unary Overloaded Operators as Member Functions
Consider overloading unary operator ! to test whether an object of your own String class
is empty. Such a function would return a bool result. When a unary operator such as ! is
overloaded as a member function with no arguments and the compiler sees the expression
!s (in which s is an object of class String), the compiler generates the function call s.op-
erator!(). The operand s is the String object for which the String class member func-
tion operator! is being invoked. The function is declared as follows:

Unary Overloaded Operators as Non-Member Functions
A unary operator such as ! may be overloaded as a non-member function with one param-
eter. If s is a String class object (or a reference to a String class object), then !s is treated
as if the call operator!(s) had been written, invoking the non-member operator! func-
tion that’s declared as follows:

Software Engineering Observation 18.2
New input/output capabilities for user-defined types are added to C++ without modifying
standard input/output library classes. This is another example of C++’s extensibility.

class String
{

public:
 bool operator!() const;
 ...

}; // end class String

bool operator!(const String &);

18.7 Overloading the Unary Prefix and Postfix ++ and -- Operators 695

18.7 Overloading the Unary Prefix and Postfix ++ and --
Operators
The prefix and postfix versions of the increment and decrement operators can all be over-
loaded. We’ll see how the compiler distinguishes between the prefix version and the post-
fix version of an increment or decrement operator.

To overload the prefix and postfix increment operators, each overloaded operator function
must have a distinct signature, so that the compiler will be able to determine which version of
++ is intended. The prefix versions are overloaded exactly as any other prefix unary operator
would be. Everything stated in this section for overloading prefix and postfix increment
operators applies to overloading predecrement and postdecrement operators. In the next
section, we examine a Date class with overloaded prefix and postfix increment operators.

Overloading the Prefix Increment Operator
Suppose that we want to add 1 to the day in Date object d1. When the compiler sees the
preincrementing expression ++d1, the compiler generates the member-function call

The prototype for this operator member function would be

If the prefix increment operator is implemented as a non-member function, then, when
the compiler sees the expression ++d1, the compiler generates the function call

The prototype for this non-member operator function would be declared as

Overloading the Postfix Increment Operator
Overloading the postfix increment operator presents a challenge, because the compiler
must be able to distinguish between the signatures of the overloaded prefix and postfix in-
crement operator functions. The convention that has been adopted is that, when the com-
piler sees the postincrementing expression d1++, it generates the member-function call

The prototype for this operator member function is

The argument 0 is strictly a dummy value that enables the compiler to distinguish between
the prefix and postfix increment operator functions. The same syntax is used to differen-
tiate between the prefix and postfix decrement operator functions.

If the postfix increment is implemented as a non-member function, then, when the
compiler sees the expression d1++, the compiler generates the function call

The prototype for this function would be

d1.operator++()

Date &operator++();

operator++(d1)

Date &operator++(Date &);

d1.operator++(0)

Date operator++(int)

operator++(d1, 0)

Date operator++(Date &, int);

696 Chapter 18 Operator Overloading; Class string

Once again, the 0 argument is used by the compiler to distinguish between the prefix and
postfix increment operators implemented as non-member functions. Note that the postfix
increment operator returns Date objects by value, whereas the prefix increment operator re-
turns Date objects by reference—the postfix increment operator typically returns a tempo-
rary object that contains the original value of the object before the increment occurred.
C++ treats such objects as rvalues, which cannot be used on the left side of an assignment. The
prefix increment operator returns the actual incremented object with its new value. Such
an object can be used as an lvalue in a continuing expression.

18.8 Case Study: A Date Class
The program of Figs. 18.6–18.8 demonstrates a Date class, which uses overloaded prefix
and postfix increment operators to add 1 to the day in a Date object, while causing appro-
priate increments to the month and year if necessary. The Date header (Fig. 18.6) specifies
that Date’s public interface includes an overloaded stream insertion operator (line 11), a
default constructor (line 13), a setDate function (line 14), an overloaded prefix increment
operator (line 15), an overloaded postfix increment operator (line 16), an overloaded +=
addition assignment operator (line 17), a function to test for leap years (line 18) and a
function to determine whether a day is the last day of the month (line 19).

Performance Tip 18.1
The extra object that’s created by the postfix increment (or decrement) operator can result
in a performance problem—especially when the operator is used in a loop. For this reason,
you should prefer the overloaded prefix increment and decrement operators.

1 // Fig. 18.6: Date.h
2 // Date class definition with overloaded increment operators.

3 #ifndef DATE_H
4 #define DATE_H
5
6 #include <array>
7 #include <iostream>
8
9 class Date

10 {
11 friend std::ostream &operator<<(std::ostream &, const Date &);
12 public:
13 Date(int m = 1, int d = 1, int y = 1900); // default constructor
14 void setDate(int, int, int); // set month, day, year
15

16
17

18 static bool leapYear(int); // is date in a leap year?
19 bool endOfMonth(int) const; // is date at the end of month?
20 private:
21 unsigned int month;
22 unsigned int day;
23 unsigned int year;

Fig. 18.6 | Date class definition with overloaded increment operators. (Part 1 of 2.)

Date &operator++(); // prefix increment operator

Date operator++(int); // postfix increment operator
Date &operator+=(unsigned int); // add days, modify object

18.8 Case Study: A Date Class 697

24
25 static const std::array< unsigned int, 13 > days; // days per month
26 void helpIncrement(); // utility function for incrementing date
27 }; // end class Date

28
29 #endif

1 // Fig. 18.7: Date.cpp

2 // Date class member- and friend-function definitions.
3 #include <iostream>
4 #include <string>
5 #include "Date.h"
6 using namespace std;
7
8 // initialize static member; one classwide copy
9 const array< unsigned int, 13 > Date::days =

10 { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
11
12 // Date constructor

13 Date::Date(int month, int day, int year)
14 {
15 setDate(month, day, year);

16 } // end Date constructor

17
18 // set month, day and year

19 void Date::setDate(int mm, int dd, int yy)
20 {
21 if (mm >= 1 && mm <= 12)
22 month = mm;

23 else
24 throw invalid_argument("Month must be 1-12");
25
26 if (yy >= 1900 && yy <= 2100)
27 year = yy;

28 else
29 throw invalid_argument("Year must be >= 1900 and <= 2100");
30
31 // test for a leap year

32 if ((month == 2 && leapYear(year) && dd >= 1 && dd <= 29) ||
33 (dd >= 1 && dd <= days[month]))
34 day = dd;

35 else
36 throw invalid_argument(
37 "Day is out of range for current month and year");
38 } // end function setDate
39
40
41
42

Fig. 18.7 | Date class member- and friend-function definitions. (Part 1 of 3.)

Fig. 18.6 | Date class definition with overloaded increment operators. (Part 2 of 2.)

// overloaded prefix increment operator

Date &Date::operator++()

{

698 Chapter 18 Operator Overloading; Class string

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67 // if the year is a leap year, return true; otherwise, return false
68 bool Date::leapYear(int testYear)
69 {

70 if (testYear % 400 == 0 ||
71 (testYear % 100 != 0 && testYear % 4 == 0))
72 return true; // a leap year
73 else
74 return false; // not a leap year
75 } // end function leapYear

76
77 // determine whether the day is the last day of the month

78 bool Date::endOfMonth(int testDay) const
79 {
80 if (month == 2 && leapYear(year))
81 return testDay == 29; // last day of Feb. in leap year
82 else
83 return testDay == days[month];
84 } // end function endOfMonth

85
86 // function to help increment the date

87 void Date::helpIncrement()
88 {
89 // day is not end of month

90 if (!endOfMonth(day))
91 ++day; // increment day
92 else
93 if (month < 12) // day is end of month and month < 12
94 {
95 ++month; // increment month

Fig. 18.7 | Date class member- and friend-function definitions. (Part 2 of 3.)

 helpIncrement(); // increment date
 return *this; // reference return to create an lvalue
} // end function operator++

// overloaded postfix increment operator; note that the

// dummy integer parameter does not have a parameter name

Date Date::operator++(int)
{

 Date temp = *this; // hold current state of object
 helpIncrement();

 // return unincremented, saved, temporary object

 return temp; // value return; not a reference return
} // end function operator++

// add specified number of days to date
Date &Date::operator+=(unsigned int additionalDays)
{

 for (int i = 0; i < additionalDays; ++i)
 helpIncrement();

 return *this; // enables cascading
} // end function operator+=

18.8 Case Study: A Date Class 699

96 day = 1; // first day of new month
97 } // end if

98 else // last day of year
99 {

100 ++year; // increment year

101 month = 1; // first month of new year
102 day = 1; // first day of new month
103 } // end else

104 } // end function helpIncrement
105
106 // overloaded output operator

107 ostream &operator<<(ostream &output, const Date &d)
108 {

109 static string monthName[13] = { "", "January", "February",
110 "March", "April", "May", "June", "July", "August",
111 "September", "October", "November", "December" };
112 output << monthName[d.month] << ' ' << d.day << ", " << d.year;
113 return output; // enables cascading
114 } // end function operator<<

1 // Fig. 18.8: fig18_08.cpp

2 // Date class test program.
3 #include <iostream>
4 #include "Date.h" // Date class definition
5 using namespace std;
6
7 int main()
8 {
9 Date d1(12, 27, 2010); // December 27, 2010

10 Date d2; // defaults to January 1, 1900

11
12 cout << "d1 is " << d1 << "\nd2 is " << d2;
13 cout << "\n\nd1 += 7 is " << (d1 += 7);
14
15 d2.setDate(2, 28, 2008);
16 cout << "\n\n d2 is " << d2;
17
18
19 Date d3(7, 13, 2010);
20
21

22

23
24

25
26
27

28

29
30 } // end main

Fig. 18.8 | Date class test program. (Part 1 of 2.)

Fig. 18.7 | Date class member- and friend-function definitions. (Part 3 of 3.)

cout << "\n++d2 is " << ++d2 << " (leap year allows 29th)";

cout << "\n\nTesting the prefix increment operator:\n"
 << " d3 is " << d3 << endl;
cout << "++d3 is " << ++d3 << endl;
cout << " d3 is " << d3;

cout << "\n\nTesting the postfix increment operator:\n"
 << " d3 is " << d3 << endl;
cout << "d3++ is " << d3++ << endl;
cout << " d3 is " << d3 << endl;

700 Chapter 18 Operator Overloading; Class string

Function main (Fig. 18.8) creates two Date objects (lines 9–10)—d1 is initialized to
December 27, 2010 and d2 is initialized by default to January 1, 1900. The Date con-
structor (defined in Fig. 18.7, lines 13–16) calls setDate (defined in Fig. 18.7, lines 19–
38) to validate the month, day and year specified. Invalid values for the month, day or year
result in invalid_argument exceptions.

Line 12 of main (Fig. 18.8) outputs each of the Date objects, using the overloaded
stream insertion operator (defined in Fig. 18.7, lines 107–114). Line 13 of main uses the
overloaded operator += (defined in Fig. 18.7, lines 59–65) to add seven days to d1. Line
15 in Fig. 18.8 uses function setDate to set d2 to February 28, 2008, which is a leap year.
Then, line 17 preincrements d2 to show that the date increments properly to February 29.
Next, line 19 creates a Date object, d3, which is initialized with the date July 13, 2010.
Then line 23 increments d3 by 1 with the overloaded prefix increment operator. Lines 21–
24 output d3 before and after the preincrement operation to confirm that it worked cor-
rectly. Finally, line 28 increments d3 with the overloaded postfix increment operator.
Lines 26–29 output d3 before and after the postincrement operation to confirm that it
worked correctly.

Date Class Prefix Increment Operator
Overloading the prefix increment operator is straightforward. The prefix increment opera-
tor (defined in Fig. 18.7, lines 41–45) calls utility function helpIncrement (defined in
Fig. 18.7, lines 87–104) to increment the date. This function deals with “wraparounds” or
“carries” that occur when we increment the last day of the month. These carries require in-
crementing the month. If the month is already 12, then the year must also be incremented
and the month must be set to 1. Function helpIncrement uses function endOfMonth to de-
termine whether the end of a month has been reached and increment the day correctly.

The overloaded prefix increment operator returns a reference to the current Date
object (i.e., the one that was just incremented). This occurs because the current object,
*this, is returned as a Date &. This enables a preincremented Date object to be used as an
lvalue, which is how the built-in prefix increment operator works for fundamental types.

d1 is December 27, 2010
d2 is January 1, 1900

d1 += 7 is January 3, 2011

 d2 is February 28, 2008
++d2 is February 29, 2008 (leap year allows 29th)

Testing the prefix increment operator:
 d3 is July 13, 2010
++d3 is July 14, 2010
 d3 is July 14, 2010

Testing the postfix increment operator:
 d3 is July 14, 2010
d3++ is July 14, 2010
 d3 is July 15, 2010

Fig. 18.8 | Date class test program. (Part 2 of 2.)

18.9 Dynamic Memory Management 701

Date Class Postfix Increment Operator
Overloading the postfix increment operator (defined in Fig. 18.7, lines 49–56) is trickier.
To emulate the effect of the postincrement, we must return an unincremented copy of the
Date object. For example, if int variable x has the value 7, the statement

outputs the original value of variable x. So we’d like our postfix increment operator to op-
erate the same way on a Date object. On entry to operator++, we save the current object
(*this) in temp (line 51). Next, we call helpIncrement to increment the current Date ob-
ject. Then, line 55 returns the unincremented copy of the object previously stored in temp.
This function cannot return a reference to the local Date object temp, because a local vari-
able is destroyed when the function in which it’s declared exits. Thus, declaring the return
type to this function as Date & would return a reference to an object that no longer exists.

18.9 Dynamic Memory Management
You can control the allocation and deallocation of memory in a program for objects and for
arrays of any built-in or user-defined type. This is known as dynamic memory manage-
ment and is performed with the operators new and delete. We’ll use these capabilities to
implement our Array class in the next section.

You can use the new operator to dynamically allocate (i.e., reserve) the exact amount
of memory required to hold an object or built-in array at execution time. The object or
built-in array is created in the free store (also called the heap)—a region of memory assigned
to each program for storing dynamically allocated objects.2 Once memory is allocated in the
free store, you can access it via the pointer that operator new returns. When you no longer
need the memory, you can return it to the free store by using the delete operator to
deallocate (i.e., release) the memory, which can then be reused by future new operations.3

Obtaining Dynamic Memory with new
Consider the following statement:

The new operator allocates storage of the proper size for an object of type Time, calls the
default constructor to initialize the object and returns a pointer to the type specified to the
right of the new operator (i.e., a Time *). If new is unable to find sufficient space in memory
for the object, it indicates that an error occurred by throwing an exception.

cout << x++ << endl;

Common Programming Error 18.1
Returning a reference (or a pointer) to a local variable is a common error for which most
compilers will issue a warning.

2. Operator new could fail to obtain the needed memory, in which case a bad_alloc exception will oc-
cur. Chapter 22 shows how to deal with failures when using new.

3. Operators new and delete can be overloaded, but this is beyond the scope of the book. If you do
overload new, then you should overload delete in the same scope to avoid subtle dynamic memory
management errors.

Time *timePtr = new Time();

702 Chapter 18 Operator Overloading; Class string

Releasing Dynamic Memory with delete
To destroy a dynamically allocated object and free the space for the object, use the delete
operator as follows:

This statement first calls the destructor for the object to which timePtr points, then deallocates
the memory associated with the object, returning the memory to the free store.

Initializing Dynamic Memory
You can provide an initializer for a newly created fundamental-type variable, as in

which initializes a newly created double to 3.14159 and assigns the resulting pointer to
ptr. The same syntax can be used to specify a comma-separated list of arguments to the
constructor of an object. For example,

initializes a new Time object to 12:45 PM and assigns the resulting pointer to timePtr.

Dynamically Allocating Built-In Arrays with new []
You can also use the new operator to allocate built-in arrays dynamically. For example, a
10-element integer array can be allocated and assigned to gradesArray as follows:

which declares int pointer gradesArray and assigns to it a pointer to the first element of
a dynamically allocated 10-element array of ints. The parentheses following new int[10]
value initialize the array’s elements—fundamental numeric types are set to 0, bools are set
to false, pointers are set to nullptr and class objects are initialized by their default con-
structors. The size of an array created at compile time must be specified using an integral
constant expression; however, a dynamically allocated array’s size can be specified using
any non-negative integral expression that can be evaluated at execution time.

C++11: Using a List Initializer with a Dynamically Allocated Built-In Array
Prior to C++11, when allocating a built-in array of objects dynamically, you could not pass
arguments to each object’s constructor—each object was initialized by its default construc-

delete timePtr;

Common Programming Error 18.2
Not releasing dynamically allocated memory when it’s no longer needed can cause the sys-
tem to run out of memory prematurely. This is sometimes called a “memory leak.”

\

Error-Prevention Tip 18.1
Do not delete memory that was not allocated by new. Doing so results in undefined behavior.

Error-Prevention Tip 18.2
After you delete a block of dynamically allocated memory be sure not to delete the same
block again. One way to guard against this is to immediately set the pointer to nullptr.
Deleting a nullptr has no effect.

double *ptr = new double(3.14159);

Time *timePtr = new Time(12, 45, 0);

int *gradesArray = new int[10]();

18.10 Case Study: Array Class 703

tor. In C++11, you can use a list initializer to initialize the elements of a dynamically allo-
cated built-in array, as in

The empty set of braces as shown here indicates that default initialization should be used
for each element—for fundamental types each element is set to 0. The braces may also
contain a comma-separated list of initializers for the array’s elements.

Releasing Dynamically Allocated Built-In Arrays with delete []
To deallocate the memory to which gradesArray points, use the statement

If the pointer points to a built-in array of objects, the statement first calls the destructor for every
object in the array, then deallocates the memory. If the preceding statement did not include
the square brackets ([]) and gradesArray pointed to a built-in array of objects, the result
is undefined—some compilers call the destructor only for the first object in the array. Using
delete or delete [] on a nullptr has no effect.

C++11: Managing Dynamically Allocated Memory with unique_ptr
C++11’s new unique_ptr is a “smart pointer” for managing dynamically allocated mem-
ory. When a unique_ptr goes out of scope, its destructor automatically returns the man-
aged memory to the free store. In Chapter 22, we introduce unique_ptr and show how to
use it to manage dynamically allocated objects or a dynamically allocated built-in arrays.

18.10 Case Study: Array Class
We discussed built-in arrays in Chapter 6. Pointer-based arrays have many problems, in-
cluding:

• A program can easily “walk off” either end of a built-in array, because C++ does
not check whether subscripts fall outside the range of the array (though you can still
do this explicitly).

• Built-in arrays of size n must number their elements 0, …, n – 1; alternate sub-
script ranges are not allowed.

• An entire built-in array cannot be input or output at once; each element must be
read or written individually (unless the array is a null-terminated C string).

• Two built-in arrays cannot be meaningfully compared with equality or relational
operators (because the array names are simply pointers to where the arrays begin
in memory and two arrays will always be at different memory locations).

int *gradesArray = new int[10]{};

delete [] gradesArray;

Common Programming Error 18.3
Using delete instead of delete [] for built-in arrays of objects can lead to runtime logic
errors. To ensure that every object in the array receives a destructor call, always delete
memory allocated as an array with operator delete []. Similarly, always delete memory
allocated as an individual element with operator delete—the result of deleting a single
object with operator delete [] is undefined.

704 Chapter 18 Operator Overloading; Class string

• When a built-in array is passed to a general-purpose function designed to handle
arrays of any size, the array’s size must be passed as an additional argument.

• One built-in array cannot be assigned to another with the assignment operator(s).

Class development is an interesting, creative and intellectually challenging activity—
always with the goal of crafting valuable classes. With C++, you can implement more robust
array capabilities via classes and operator overloading as has been done with class templates
array and vector in the C++ Standard Library. In this section, we’ll develop our own
custom array class that’s preferable to built-in arrays. When we refer to “arrays” in this case
study, we mean built-in arrays.

In this example, we create a powerful Array class that performs range checking to
ensure that subscripts remain within the bounds of the Array. The class allows one Array
object to be assigned to another with the assignment operator. Array objects know their
size, so the size does not need to be passed separately to functions that receive Array
parameters. Entire Arrays can be input or output with the stream extraction and stream
insertion operators, respectively. You can compare Arrays with the equality operators ==
and !=.

18.10.1 Using the Array Class
The program of Figs. 18.9–18.11 demonstrates class Array and its overloaded operators.
First we walk through main (Fig. 18.9) and the program’s output, then we consider the
class definition (Fig. 18.10) and each of its member-function definitions (Fig. 18.11).

1 // Fig. 18.9: fig18_09.cpp
2 // Array class test program.

3 #include <iostream>
4 #include <stdexcept>
5 #include "Array.h"
6 using namespace std;
7
8 int main()
9 {

10
11

12
13 // print integers1 size and contents
14 cout << "Size of Array integers1 is "
15 <<

16 << "\nArray after initialization:\n" << integers1;
17
18 // print integers2 size and contents

19 cout << "\nSize of Array integers2 is "
20 <<

21 << "\nArray after initialization:\n" << integers2;
22
23 // input and print integers1 and integers2

24 cout << "\nEnter 17 integers:" << endl;
25

Fig. 18.9 | Array class test program. (Part 1 of 3.)

Array integers1(7); // seven-element Array
Array integers2; // 10-element Array by default

integers1.getSize()

integers2.getSize()

cin >> integers1 >> integers2;

18.10 Case Study: Array Class 705

26
27 cout << "\nAfter input, the Arrays contain:\n"
28 << "integers1:\n"
29 << "integers2:\n" ;

30
31 // use overloaded inequality (!=) operator
32 cout << "\nEvaluating: integers1 != integers2" << endl;
33
34 if ()
35 cout << "integers1 and integers2 are not equal" << endl;
36
37
38

39

40
41 cout << "\nSize of Array integers3 is "
42 <<

43 << "\nArray after initialization:\n" << integers3;
44
45 // use overloaded assignment (=) operator

46 cout << "\nAssigning integers2 to integers1:" << endl;
47
48
49 cout << "integers1:\n"
50 << "integers2:\n" ;
51
52 // use overloaded equality (==) operator

53 cout << "\nEvaluating: integers1 == integers2" << endl;
54
55 if ()

56 cout << "integers1 and integers2 are equal" << endl;
57
58 // use overloaded subscript operator to create rvalue

59 cout << "\nintegers1[5] is " << ;
60
61 // use overloaded subscript operator to create lvalue

62 cout << "\n\nAssigning 1000 to integers1[5]" << endl;
63

64 cout << "integers1:\n" ;

65
66 // attempt to use out-of-range subscript

67 try
68 {
69 cout << "\nAttempt to assign 1000 to integers1[15]" << endl;
70

71 } // end try
72 catch (out_of_range &ex)
73 {

74 cout << "An exception occurred: " << ex.what() << endl;
75 } // end catch

76 } // end main

Fig. 18.9 | Array class test program. (Part 2 of 3.)

<< integers1

<< integers2

integers1 != integers2

// create Array integers3 using integers1 as an

// initializer; print size and contents
Array integers3(integers1); // invokes copy constructor

integers3.getSize()

integers1 = integers2; // note target Array is smaller

<< integers1

<< integers2

integers1 == integers2

integers1[5]

integers1[5] = 1000;
<< integers1

integers1[15] = 1000; // ERROR: subscript out of range

706 Chapter 18 Operator Overloading; Class string

Size of Array integers1 is 7
Array after initialization:
 0 0 0 0
 0 0 0

Size of Array integers2 is 10
Array after initialization:
 0 0 0 0
 0 0 0 0
 0 0

Enter 17 integers:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

After input, the Arrays contain:
integers1:
 1 2 3 4
 5 6 7
integers2:
 8 9 10 11
 12 13 14 15
 16 17

Evaluating: integers1 != integers2
integers1 and integers2 are not equal

Size of Array integers3 is 7
Array after initialization:
 1 2 3 4
 5 6 7

Assigning integers2 to integers1:
integers1:
 8 9 10 11
 12 13 14 15
 16 17

integers2:
 8 9 10 11
 12 13 14 15
 16 17

Evaluating: integers1 == integers2
integers1 and integers2 are equal

integers1[5] is 13

Assigning 1000 to integers1[5]
integers1:
 8 9 10 11
 12 1000 14 15
 16 17

Attempt to assign 1000 to integers1[15]
An exception occurred: Subscript out of range

Fig. 18.9 | Array class test program. (Part 3 of 3.)

18.10 Case Study: Array Class 707

Creating Arrays, Outputting Their Size and Displaying Their Contents
The program begins by instantiating two objects of class Array—integers1 (Fig. 18.9,
line 10) with seven elements, and integers2 (line 11) with the default Array size—10 el-
ements (specified by the Array default constructor’s prototype in Fig. 18.10, line 14).
Lines 14–16 in Fig. 18.9 use member function getSize to determine the size of
integers1 then output integers1’s contents, using the Array overloaded stream inser-
tion operator. The sample output confirms that the Array elements were set correctly to
zeros by the constructor. Next, lines 19–21 output the size of Array integers2 then out-
put integers2’s contents, using the Array overloaded stream insertion operator.

Using the Overloaded Stream Insertion Operator to Fill an Array
Line 24 prompts the user to input 17 integers. Line 25 uses the Array overloaded stream
extraction operator to read the first seven values into integers1 and the remaining 10 val-
ues into integers2. Lines 27–29 output the two arrays with the overloaded Array stream
insertion operator to confirm that the input was performed correctly.

Using the Overloaded Inequality Operator
Line 34 tests the overloaded inequality operator by evaluating the condition

The program output shows that the Arrays are not equal.

Initializing a New Array with a Copy of an Existing Array’s Contents
Line 39 instantiates a third Array called integers3 and initializes it with a copy of Array
integers1. This invokes class Array’s copy constructor to copy the elements of
integers1 into integers3. We discuss the details of the copy constructor shortly. The
copy constructor can also be invoked by writing line 39 as follows:

The equal sign in the preceding statement is not the assignment operator. When an equal
sign appears in the declaration of an object, it invokes a constructor for that object. This
form can be used to pass only a single argument to a constructor—specifically, the value
on the right side of the = symbol.

Lines 41–43 output the size of integers3 then output integers3’s contents, using
the Array overloaded stream insertion operator to confirm that integers3’s elements were
set correctly by the copy constructor.

Using the Overloaded Assignment Operator
Line 47 tests the overloaded assignment operator (=) by assigning integers2 to
integers1. Lines 49–50 display both Array objects’ contents to confirm that the assign-
ment was successful. Array integers1 originally held 7 integers, but was resized to hold a
copy of the 10 elements in integers2. As we’ll see, the overloaded assignment operator
performs this resizing operation in a manner that’s transparent to the client code.

Using the Overloaded Equality Operator
Line 55 uses the overloaded equality operator (==) to confirm that objects integers1 and
integers2 are indeed identical after the assignment in line 47.

integers1 != integers2

Array integers3 = integers1;

708 Chapter 18 Operator Overloading; Class string

Using the Overloaded Subscript Operator
Line 59 uses the overloaded subscript operator to refer to integers1[5]—an in-range el-
ement of integers1. This subscripted name is used as an rvalue to print the value stored
in integers1[5]. Line 63 uses integers1[5] as a modifiable lvalue on the left side of an
assignment statement to assign a new value, 1000, to element 5 of integers1. We’ll see
that operator[] returns a reference to use as the modifiable lvalue after the operator con-
firms that 5 is a valid subscript for integers1.

Line 70 attempts to assign the value 1000 to integers1[15]—an out-of-range ele-
ment. In this example, operator[] determines that the subscript is out of range and
throws an out_of_range exception.

Interestingly, the array subscript operator [] is not restricted for use only with arrays; it
also can be used, for example, to select elements from other kinds of container classes, such
as strings and dictionaries. Also, when overloaded operator[] functions are defined, sub-
scripts no longer have to be integers—characters, strings or even objects of user-defined
classes also could be used.

18.10.2 Array Class Definition
Now that we’ve seen how this program operates, let’s walk through the class header
(Fig. 18.10). As we refer to each member function in the header, we discuss that function’s
implementation in Fig. 18.11. In Fig. 18.10, lines 34–35 represent the private data
members of class Array. Each Array object consists of a size member indicating the num-
ber of elements in the Array and an int pointer—ptr—that points to the dynamically al-
located pointer-based array of integers managed by the Array object.

1 // Fig. 18.10: Array.h
2 // Array class definition with overloaded operators.

3 #ifndef ARRAY_H
4 #define ARRAY_H
5
6 #include <iostream>
7
8 class Array
9 {

10
11

12
13 public:
14 explicit Array(int = 10); // default constructor
15

16
17 size_t getSize() const; // return size
18
19
20

21

Fig. 18.10 | Array class definition with overloaded operators. (Part 1 of 2.)

friend std::ostream &operator<<(std::ostream &, const Array &);
friend std::istream &operator>>(std::istream &, Array &);

Array(const Array &); // copy constructor
~Array(); // destructor

const Array &operator=(const Array &); // assignment operator
bool operator==(const Array &) const; // equality operator

18.10 Case Study: Array Class 709

22

23

24
25

26

27
28

29

30
31

32

33 private:
34 size_t size; // pointer-based array size

35 int *ptr; // pointer to first element of pointer-based array
36 }; // end class Array
37
38 #endif

1 // Fig. 18.11: Array.cpp

2 // Array class member- and friend-function definitions.
3 #include <iostream>
4 #include <iomanip>
5 #include <stdexcept>
6
7 #include "Array.h" // Array class definition
8 using namespace std;
9

10 // default constructor for class Array (default size 10)

11 Array::Array(int arraySize)
12 : size(arraySize > 0 ? arraySize :
13 throw invalid_argument("Array size must be greater than 0")),
14 ptr(new int[size])
15 {

16 for (size_t i = 0; i < size; ++i)
17 ptr[i] = 0; // set pointer-based array element
18 } // end Array default constructor

19
20 // copy constructor for class Array;
21 // must receive a reference to an Array

22 Array::Array(const Array &arrayToCopy)
23 : size(arrayToCopy.size),
24 ptr(new int[size])
25 {

26 for (size_t i = 0; i < size; ++i)
27 ptr[i] = arrayToCopy.ptr[i]; // copy into object

28 } // end Array copy constructor

29
30 // destructor for class Array

31 Array::~Array()

32 {

Fig. 18.11 | Array class member- and friend-function definitions. (Part 1 of 3.)

Fig. 18.10 | Array class definition with overloaded operators. (Part 2 of 2.)

// inequality operator; returns opposite of == operator
bool operator!=(const Array &right) const
{

 return ! (*this == right); // invokes Array::operator==
} // end function operator!=

// subscript operator for non-const objects returns modifiable lvalue
int &operator[](int);

// subscript operator for const objects returns rvalue
int operator[](int) const;

710 Chapter 18 Operator Overloading; Class string

33 delete [] ptr; // release pointer-based array space
34 } // end destructor

35
36 // return number of elements of Array

37 size_t Array::getSize() const
38 {
39 return size; // number of elements in Array
40 } // end function getSize

41
42 // overloaded assignment operator;

43
44 const Array &Array::operator=(const Array &right)
45 {

46 if (&right != this)
47 {
48 // for Arrays of different sizes, deallocate original

49 // left-side Array, then allocate new left-side Array

50 if (size != right.size)
51 {
52 delete [] ptr; // release space
53 size = right.size; // resize this object

54 ptr = new int[size]; // create space for Array copy
55 } // end inner if

56
57 for (size_t i = 0; i < size; ++i)
58 ptr[i] = right.ptr[i]; // copy array into object

59 } // end outer if

60
61 return *this; // enables x = y = z, for example
62 } // end function operator=

63
64 // determine if two Arrays are equal and

65 // return true, otherwise return false

66 bool Array::operator==(const Array &right) const
67 {

68 if (size != right.size)
69 return false; // arrays of different number of elements
70
71 for (size_t i = 0; i < size; ++i)
72 if (ptr[i] != right.ptr[i])
73 return false; // Array contents are not equal
74
75 return true; // Arrays are equal
76 } // end function operator==

77
78 // overloaded subscript operator for non-const Arrays;
79 // reference return creates a modifiable lvalue

80 int &Array::operator[](int subscript)
81 {
82 // check for subscript out-of-range error

83 if (subscript < 0 || subscript >= size)
84 throw out_of_range("Subscript out of range");
85

Fig. 18.11 | Array class member- and friend-function definitions. (Part 2 of 3.)

// const return avoids: (a1 = a2) = a3

// avoid self-assignment

18.10 Case Study: Array Class 711

Overloading the Stream Insertion and Stream Extraction Operators as friends
Lines 10–11 of Fig. 18.10 declare the overloaded stream insertion operator and the overload-
ed stream extraction operator as friends of class Array. When the compiler sees an expres-
sion like cout << arrayObject, it invokes non-member function operator<< with the call

When the compiler sees an expression like cin >> arrayObject, it invokes non-member
function operator>> with the call

86 return ptr[subscript]; // reference return
87 } // end function operator[]

88
89 // overloaded subscript operator for const Arrays

90 // const reference return creates an rvalue

91 int Array::operator[](int subscript) const
92 {

93 // check for subscript out-of-range error

94 if (subscript < 0 || subscript >= size)
95 throw out_of_range("Subscript out of range");
96
97 return ptr[subscript]; // returns copy of this element
98 } // end function operator[]

99
100 // overloaded input operator for class Array;
101 // inputs values for entire Array

102 istream &operator>>(istream &input, Array &a)
103 {

104 for (size_t i = 0; i < a.size; ++i)
105 input >> a.ptr[i];

106
107 return input; // enables cin >> x >> y;
108 } // end function

109
110 // overloaded output operator for class Array
111 ostream &operator<<(ostream &output, const Array &a)
112 {

113 // output private ptr-based array
114 for (size_t i = 0; i < a.size; ++i)
115 {

116 output << setw(12) << a.ptr[i];
117
118 if ((i + 1) % 4 == 0) // 4 numbers per row of output
119 output << endl;
120 } // end for

121
122 if (a.size % 4 != 0) // end last line of output
123 output << endl;

124
125 return output; // enables cout << x << y;
126 } // end function operator<<

operator<<(cout, arrayObject)

operator>>(cin, arrayObject)

Fig. 18.11 | Array class member- and friend-function definitions. (Part 3 of 3.)

712 Chapter 18 Operator Overloading; Class string

Again, these stream insertion and stream extraction operator functions cannot be members
of class Array, because the Array object is always mentioned on the right side of the stream
insertion or stream extraction operator.

Function operator<< (defined in Fig. 18.11, lines 111–126) prints the number of
elements indicated by size from the integer array to which ptr points. Function oper-
ator>> (defined in Fig. 18.11, lines 102–108) inputs directly into the array to which ptr
points. Each of these operator functions returns an appropriate reference to enable cas-
caded output or input statements, respectively. These functions have access to an Array’s
private data because they’re declared as friends of class Array. We could have used class
Array’s getSize and operator[] functions in the bodies of operator<< and operator>>,
in which case these operator functions would not need to be friends of class Array.

You might be tempted to replace the counter-controlled for statement in lines 104–
105 and many of the other for statements in class Array’s implementation with the
C++11 range-based for statement. Unfortunately, range-based for does not work with
dynamically allocated built-in arrays.

Array Default Constructor
Line 14 of Fig. 18.10 declares the default constructor for the class and specifies a default size
of 10 elements. When the compiler sees a declaration like line 11 in Fig. 18.9, it invokes
class Array’s default constructor to set the size of the Array to 10 elements. The default
constructor (defined in Fig. 18.11, lines 11–18) validates and assigns the argument to data
member size, uses new to obtain the memory for the internal pointer-based representation
of this Array and assigns the pointer returned by new to data member ptr. Then the con-
structor uses a for statement to set all the elements of the array to zero. It’s possible to have
an Array class that does not initialize its members if, for example, these members are to be
read at some later time; but this is considered to be a poor programming practice. Arrays,
and objects in general, should be properly initialized as they’re created.

Array Copy Constructor
Line 15 of Fig. 18.10 declares a copy constructor (defined in Fig. 18.11, lines 22–28) that
initializes an Array by making a copy of an existing Array object. Such copying must be done
carefully to avoid the pitfall of leaving both Array objects pointing to the same dynamically al-
located memory. This is exactly the problem that would occur with default memberwise copy-
ing, if the compiler is allowed to define a default copy constructor for this class. Copy
constructors are invoked whenever a copy of an object is needed, such as in

• passing an object by value to a function,

• returning an object by value from a function or

• initializing an object with a copy of another object of the same class.

The copy constructor is called in a declaration when an object of class Array is instantiated
and initialized with another object of class Array, as in the declaration in line 39 of Fig. 18.9.

The copy constructor for Array copies the size of the initializer Array into data
member size, uses new to obtain the memory for the internal pointer-based representation
of this Array and assigns the pointer returned by new to data member ptr. Then the copy
constructor uses a for statement to copy all the elements of the initializer Array into the
new Array object. An object of a class can look at the private data of any other object of
that class (using a handle that indicates which object to access).

18.10 Case Study: Array Class 713

Array Destructor
Line 16 of Fig. 18.10 declares the class’s destructor (defined in Fig. 18.11, lines 31–34).
The destructor is invoked when an object of class Array goes out of scope. The destructor
uses delete [] to release the memory allocated dynamically by new in the constructor.

getSize Member Function
Line 17 of Fig. 18.10 declares function getSize (defined in Fig. 18.11, lines 37–40) that
returns the number of elements in the Array.

Overloaded Assignment Operator
Line 19 of Fig. 18.10 declares the overloaded assignment operator function for the class.
When the compiler sees the expression integers1 = integers2 in line 47 of Fig. 18.9, the
compiler invokes member function operator= with the call

Member function operator=’s implementation (Fig. 18.11, lines 44–62) tests for self-as-
signment (line 46) in which an Array object is being assigned to itself. When this is equal
to the right operand’s address, a self-assignment is being attempted, so the assignment is
skipped (i.e., the object already is itself; in a moment we’ll see why self-assignment is dan-
gerous). If it isn’t a self-assignment, then the function determines whether the sizes of the
two Arrays are identical (line 50); in that case, the original array of integers in the left-side
Array object is not reallocated. Otherwise, operator= uses delete [] (line 52) to release
the memory originally allocated to the target Array, copies the size of the source Array
to the size of the target Array (line 53), uses new to allocate the memory for the target
Array and places the pointer returned by new into the Array’s ptr member. Then the for
statement in lines 57–58 copies the elements from the source Array to the target Array.

Software Engineering Observation 18.3
The argument to a copy constructor should be a const reference to allow a const object
to be copied.

Common Programming Error 18.4
If the copy constructor simply copied the pointer in the source object to the target object’s
pointer, then both would point to the same dynamically allocated memory. The first de-
structor to execute would delete the dynamically allocated memory, and the other object’s
ptr would point to memory that’s no longer allocated, a situation called a dangling
pointer—this would likely result in a serious runtime error (such as early program termi-
nation) when the pointer was used.

Error-Prevention Tip 18.3
If after deleting dynamically allocated memory, the pointer will continue to exist in mem-
ory, set the pointer’s value to nullptr to indicate that the pointer no longer points to mem-
ory in the free store. By setting the pointer to nullptr, the program loses access to that free-
store space, which could be reallocated for a different purpose. If you do not set the pointer
to nullptr, your code could inadvertently access the reallocated memory, causing sub-
tle, nonrepeatable logic errors. We did not set ptr to nullptr in line 33 of Fig. 18.11
because after the destructor executes, the Array object no longer exists in memory.

integers1.operator=(integers2)

714 Chapter 18 Operator Overloading; Class string

Regardless of whether this is a self-assignment, the member function returns the current
object (i.e., *this in line 61) as a constant reference; this enables cascaded Array assign-
ments such as x = y = z, but prevents ones like (x = y) = z because z cannot be assigned to
the const Array reference that’s returned by (x = y). If self-assignment occurs, and func-
tion operator= did not test for this case, operator= would unnecessarily copy the ele-
ments of the Array into itself.

C++11: Move Constructor and Move Assignment Operator
C++11 adds the notions of a move constructor and a move assignment operator. We discuss
these new functions in Chapter 24, C++11: Additional Features, of our book C++ How to
Program, 9/e.

C++11: Deleting Unwanted Member Functions from Your Class
Prior to C++11, you could prevent class objects from being copied or assigned by declaring
as private the class’s copy constructor and overloaded assignment operator. As of C++11,
you can simply delete these functions from your class. To do so in class Array, replace the
prototypes in lines 15 and 19 of Fig. 18.10 with:

Though you can delete any member function, it’s most commonly used with member
functions that the compiler can auto-generate—the default constructor, copy constructor,
assignment operator, and in C++ 11, the move constructor and move assignment operator.

Overloaded Equality and Inequality Operators
Line 20 of Fig. 18.10 declares the overloaded equality operator (==) for the class. When
the compiler sees the expression integers1 == integers2 in line 55 of Fig. 18.9, the com-
piler invokes member function operator== with the call

Member function operator== (defined in Fig. 18.11, lines 66–76) immediately returns
false if the size members of the Arrays are not equal. Otherwise, operator== compares
each pair of elements. If they’re all equal, the function returns true. The first pair of ele-
ments to differ causes the function to return false immediately.

Lines 23–26 of Fig. 18.9 define the overloaded inequality operator (!=) for the class.
Member function operator!= uses the overloaded operator== function to determine
whether one Array is equal to another, then returns the opposite of that result. Writing
operator!= in this manner enables you to reuse operator==, which reduces the amount of

Software Engineering Observation 18.4
A copy constructor, a destructor and an overloaded assignment operator are usually
provided as a group for any class that uses dynamically allocated memory. With the
addition of move semantics in C++11, other functions should also be provided, as we
discuss in Chapter 24 of our book C++ How to Program, 9/e.

Common Programming Error 18.5
Not providing a copy constructor and overloaded assignment operator for a class when objects
of that class contain pointers to dynamically allocated memory is a potential logic error.

Array(const Array &) = delete;
const Array &operator=(const Array &) = delete;

integers1.operator==(integers2)

18.10 Case Study: Array Class 715

code that must be written in the class. Also, the full function definition for operator!= is in
the Array header. This allows the compiler to inline the definition of operator!=.

Overloaded Subscript Operators
Lines 29 and 32 of Fig. 18.10 declare two overloaded subscript operators (defined in
Fig. 18.11 in lines 80–87 and 91–98, respectively). When the compiler sees the expression
integers1[5] (Fig. 18.9, line 59), it invokes the appropriate overloaded operator[]
member function by generating the call

The compiler creates a call to the const version of operator[] (Fig. 18.11, lines 91–98)
when the subscript operator is used on a const Array object. For example, if you pass an
Array to a function that receives the Array as a const Array & named z, then the const
version of operator[] is required to execute a statement such as

Remember, a program can invoke only the const member functions of a const object.
Each definition of operator[] determines whether the subscript it receives as an argu-

ment is in range and—if not, each throws an out_of_range exception. If the subscript is
in range, the non-const version of operator[] returns the appropriate Array element as
a reference so that it may be used as a modifiable lvalue (e.g., on the left side of an assign-
ment statement). If the subscript is in range, the const version of operator[] returns a
copy of the appropriate element of the Array.

C++11: Managing Dynamically Allocated Memory with unique_ptr
In this case study, class Array’s destructor used delete [] to return the dynamically allo-
cated built-in array to the free store. As you recall, C++11 enables you to use unique_ptr
to ensure that this dynamically allocated memory is deleted when the Array object goes
out of scope. In Chapter 22, we introduce unique_ptr and show how to use it to manage
a dynamically allocated objects or dynamically allocated built-in arrays.

C++11: Passing a List Initializer to a Constructor
You can initialize an array object with a comma-separated list of initializers in braces, as in

C++11 actually allows any object to be initialized with a list initializer. In addition, the pre-
ceding statement can also be written without the =, as in

C++11 also allows you to use list initializers when you declare objects of your own
classes. For example, you can now provide an Array constructor that would enabled the
following declarations:

or

each of which creates an Array object with five elements containing the integers from 1 to 5.

integers1.operator[](5)

cout << z[3] << endl;

array< int, 5 > n = { 32, 27, 64, 18, 95 };

array< int, 5 > n{ 32, 27, 64, 18, 95 };

Array integers = { 1, 2, 3, 4, 5 };

Array integers{ 1, 2, 3, 4, 5 };

716 Chapter 18 Operator Overloading; Class string

To support list initialization, you can define a constructor that receives an object of the
class template initializer_list. For class Array, you’d include the <initializer_list>
header. Then, you’d define a constructor with the first line:

You can determine the number of elements in the list parameter by calling its size mem-
ber function. To obtain each initializer and copy it into the Array object’s dynamically al-
located built-in array, you can use a range-based for as follows:

18.11 Operators as Member vs. Non-Member Functions
Whether an operator function is implemented as a member function or as a non-member
function, the operator is still used the same way in expressions. So which is best?

When an operator function is implemented as a member function, the leftmost (or
only) operand must be an object (or a reference to an object) of the operator’s class. If the
left operand must be an object of a different class or a fundamental type, this operator func-
tion must be implemented as a non-member function (as we did in Section 18.5 when over-
loading << and >> as the stream insertion and stream extraction operators, respectively). A
non-member operator function can be made a friend of a class if that function must access
private or protected members of that class directly.

Operator member functions of a specific class are called (implicitly by the compiler)
only when the left operand of a binary operator is specifically an object of that class, or
when the single operand of a unary operator is an object of that class.

Commutative Operators
Another reason why you might choose a non-member function to overload an operator is
to enable the operator to be commutative. For example, suppose we have a fundamental type
variable, number, of type long int, and an object bigInteger1, of class HugeInt (a class in
which integers may be arbitrarily large rather than being limited by the machine word size
of the underlying hardware; class HugeInt is developed in the chapter exercises). The ad-
dition operator (+) produces a temporary HugeInt object as the sum of a HugeInt and a
long int (as in the expression bigInteger1 + number), or as the sum of a long int and a
HugeInt (as in the expression number + bigInteger1). Thus, we require the addition op-
erator to be commutative (exactly as it is with two fundamental-type operands). The prob-
lem is that the class object must appear on the left of the addition operator if that operator
is to be overloaded as a member function. So, we also overload the operator as a non-member
function to allow the HugeInt to appear on the right of the addition. The operator+ func-
tion that deals with the HugeInt on the left can still be a member function. The non-member
function can simply swap its arguments and call the member function.

18.12 Converting Between Types
Most programs process information of many types. Sometimes all the operations “stay
within a type.” For example, adding an int to an int produces an int. It’s often necessary,

Array::Array(initializer_list< int > list)

size_t i = 0;
for (int item : list)
 ptr[i++] = item;

18.12 Converting Between Types 717

however, to convert data of one type to data of another type. This can happen in assign-
ments, in calculations, in passing values to functions and in returning values from func-
tions. The compiler knows how to perform certain conversions among fundamental types.
You can use cast operators to force conversions among fundamental types.

But what about user-defined types? The compiler cannot know in advance how to
convert among user-defined types, and between user-defined types and fundamental
types, so you must specify how to do this. Such conversions can be performed with con-
version constructors—constructors that can be called with a single argument (we’ll refer
to these as single-argument constructors). Such constructors can turn objects of other types
(including fundamental types) into objects of a particular class.

Conversion Operators
A conversion operator (also called a cast operator) can be used to convert an object of one
class to another type. Such a conversion operator must be a non-static member function.
The function prototype

declares an overloaded cast operator function for converting an object of class MyClass
into a temporary char * object. The operator function is declared const because it does
not modify the original object. The return type of an overloaded cast operator function is
implicitly the type to which the object is being converted. If s is a class object, when the
compiler sees the expression static_cast<char *>(s), the compiler generates the call

to convert the operand s to a char *.

Overloaded Cast Operator Functions
Overloaded cast operator functions can be defined to convert objects of user-defined types
into fundamental types or into objects of other user-defined types. The prototypes

declare overloaded cast operator functions that can convert an object of user-defined type My-
Class into an integer or into an object of user-defined type OtherClass, respectively.

Implicit Calls to Cast Operators and Conversion Constructors
One of the nice features of cast operators and conversion constructors is that, when nec-
essary, the compiler can call these functions implicitly to create temporary objects. For ex-
ample, if an object s of a user-defined String class appears in a program at a location
where an ordinary char * is expected, such as

the compiler can call the overloaded cast-operator function operator char * to convert
the object into a char * and use the resulting char * in the expression. With this cast op-
erator provided for a String class, the stream insertion operator does not have to be over-
loaded to output a String using cout.

MyClass::operator char *() const;

s.operator char *()

MyClass::operator int() const;
MyClass::operator OtherClass() const;

cout << s;

718 Chapter 18 Operator Overloading; Class string

18.13 explicit Constructors and Conversion Operators
Recall that we’ve been declaring as explicit every constructor that can be called with one
argument. With the exception of copy constructors, any constructor that can be called
with a single argument and is not declared explicit can be used by the compiler to perform
an implicit conversion. The constructor’s argument is converted to an object of the class in
which the constructor is defined. The conversion is automatic and you need not use a cast
operator. In some situations, implicit conversions are undesirable or error-prone. For example,
our Array class in Fig. 18.10 defines a constructor that takes a single int argument. The
intent of this constructor is to create an Array object containing the number of elements
specified by the int argument. However, if this constructor were not declared explicit
it could be misused by the compiler to perform an implicit conversion.

Accidentally Using a Single-Argument Constructor as a Conversion Constructor
The program (Fig. 18.12) uses the Array class of Figs. 18.10–18.11 to demonstrate an im-
proper implicit conversion. To allow this implicit conversion, we removed the explicit
keyword from line 14 in Array.h (Fig. 18.10).

Line 11 in main (Fig. 18.12) instantiates Array object integers1 and calls the single-
argument constructor with the int value 7 to specify the number of elements in the Array.
Recall from Fig. 18.11 that the Array constructor that receives an int argument initializes
all the Array elements to 0. Line 12 calls function outputArray (defined in lines 17–21),
which receives as its argument a const Array & to an Array. The function outputs the
number of elements in its Array argument and the contents of the Array. In this case, the
size of the Array is 7, so seven 0s are output.

Line 13 calls function outputArray with the int value 3 as an argument. However,
this program does not contain a function called outputArray that takes an int argument.
So, the compiler determines whether class Array provides a conversion constructor that can
convert an int into an Array. Since the Array constructor receives one int argument, the
compiler assumes that the constructor is a conversion constructor that can be used to con-
vert the argument 3 into a temporary Array object containing three elements. Then, the
compiler passes the temporary Array object to function outputArray to output the
Array’s contents. Thus, even though we do not explicitly provide an outputArray function
that receives an int argument, the compiler is able to compile line 13. The output shows
the contents of the three-element Array containing 0s.

Software Engineering Observation 18.5
When a conversion constructor or conversion operator is used to perform an implicit
conversion, C++ can apply only one implicit constructor or operator function call (i.e.,
a single user-defined conversion) to try to match the needs of another overloaded operator.
The compiler will not satisfy an overloaded operator’s needs by performing a series of
implicit, user-defined conversions.

Common Programming Error 18.6
Unfortunately, the compiler might use implicit conversions in cases that you do not expect,
resulting in ambiguous expressions that generate compilation errors or result in execution-
time logic errors.

18.13 explicit Constructors and Conversion Operators 719

Preventing Implicit Conversions with Single-Argument Constructors
The reason we’ve been declaring every single-argument contructor preceded by the key-
word explicit is to suppress implicit conversions via conversion constructors when such con-
versions should not be allowed. A constructor that’s declared explicit cannot be used in an
implicit conversion. In the example of Figure 18.13, we use the original version of Array.h
from Fig. 18.10, which included the keyword explicit in the declaration of the single-
argument constructor in line 14

Figure 18.13 presents a slightly modified version of the program in Fig. 18.12. When
this program in Fig. 18.13 is compiled, the compiler produces an error message indicating
that the integer value passed to outputArray in line 13 cannot be converted to a const
Array &. The compiler error message (from Visual C++) is shown in the output window.
Line 14 demonstrates how the explicit constructor can be used to create a temporary Array
of 3 elements and pass it to function outputArray.

1 // Fig. 18.12: fig18_12.cpp

2 // Single-argument constructors and implicit conversions.

3 #include <iostream>
4 #include "Array.h"
5 using namespace std;
6
7 void outputArray(const Array &); // prototype
8
9 int main()

10 {

11 Array integers1(7); // 7-element Array
12 outputArray(integers1); // output Array integers1
13

14 } // end main

15
16 // print Array contents

17 void outputArray(const Array &arrayToOutput)
18 {

19 cout << "The Array received has " << arrayToOutput.getSize()
20 << " elements. The contents are:\n" << arrayToOutput << endl;
21 } // end outputArray

The Array received has 7 elements. The contents are:
 0 0 0 0
 0 0 0

The Array received has 3 elements. The contents are:
 0 0 0

Fig. 18.12 | Single-argument constructors and implicit conversions.

explicit Array(int = 10); // default constructor

Error-Prevention Tip 18.4
Always use the explicit keyword on single-argument constructors unless they’re intended
to be used as conversion constructors.

outputArray(3); // convert 3 to an Array and output Array’s contents

720 Chapter 18 Operator Overloading; Class string

C++11: explicit Conversion Operators
As of C++11, similar to declaring single-argument constructors explicit, you can declare
conversion operators explicit to prevent the compiler from using them to perform im-
plicit conversions. For example, the prototype:

declares MyClass’s char * cast operator explicit.

18.14 Overloading the Function Call Operator ()
Overloading the function call operator () is powerful, because functions can take an ar-
bitrary number of comma-separated parameters. In a customized String class, for example,
you could overload this operator to select a substring from a String—the operator’s two
integer parameters could specify the start location and the length of the substring to be select-
ed. The operator() function could check for such errors as a start location out of range or
a negative substring length.

The overloaded function call operator must be a non-static member function and
could be defined with the first line:

1 // Fig. 18.13: fig18_13.cpp

2 // Demonstrating an explicit constructor.

3 #include <iostream>
4 #include "Array.h"
5 using namespace std;
6
7 void outputArray(const Array &); // prototype
8
9 int main()

10 {

11 Array integers1(7); // 7-element Array
12 outputArray(integers1); // output Array integers1
13

14 outputArray(Array(3)); // explicit single-argument constructor call
15 } // end main
16
17 // print Array contents

18 void outputArray(const Array &arrayToOutput)
19 {
20 cout << "The Array received has " << arrayToOutput.getSize()
21 << " elements. The contents are:\n" << arrayToOutput << endl;
22 } // end outputArray

c:\examples\ch18\fig18_13\fig18_13.cpp(13): error C2664: 'outputArray' : can-
not convert parameter 1 from 'int' to 'const Array &'
 Reason: cannot convert from 'int' to 'const Array'
 Constructor for class 'Array' is declared 'explicit'

Fig. 18.13 | Demonstrating an explicit constructor.

explicit MyClass::operator char *() const;

String String::operator()(size_t index, size_t length) const

outputArray(3); // convert 3 to an Array and output Array’s contents

18.15 Wrap-Up 721

In this case, it should be a const member function because obtaining a substring should
not modify the original String object.

Suppose string1 is a String object containing the string "AEIOU". When the com-
piler encounters the expression string1(2, 3), it generates the member-function call

which returns a String containing "IOU".
Another possible use of the function call operator is to enable an alternate Array sub-

scripting notation. Instead of using C++’s double-square-bracket notation, such as in
chessBoard[row][column], you might prefer to overload the function call operator to
enable the notation chessBoard(row, column), where chessBoard is an object of a mod-
ified two-dimensional Array class. Exercise 18.7 asks you to build this class. The primary
use of the function call operator is to define function objects (discussed in Chapter 16 of
our book C++ How to Program, 9/e).

18.15 Wrap-Up
In this chapter, you learned how to overload operators to work with class objects. We dem-
onstrated standard C++ class string, which makes extensive use of overloaded operators
to create a robust, reusable class that can replace C strings. Next, we discussed several re-
strictions that the C++ standard places on overloaded operators. We then presented a
PhoneNumber class that overloaded operators << and >> to conveniently output and input
phone numbers. You also saw a Date class that overloaded the prefix and postfix increment
(++) operators and we showed a special syntax that’s required to differentiate between the
prefix and postfix versions of the increment (++) operator.

Next, we introduced the concept of dynamic memory management. You learned that
you can create and destroy objects dynamically with the new and delete operators, respec-
tively. Then, we presented a capstone Array class case study that used overloaded operators
and other capabilities to solve various problems with pointer-based arrays. This case study
helped you truly understand what classes and object technology are all about—crafting,
using and reusing valuable classes. As part of this class, you saw overloaded stream inser-
tion, stream extraction, assignment, equality and subscript operators.

You learned reasons for implementing overloaded operators as member functions or as
non-member functions. The chapter concluded with discussions of converting between
types (including class types), problems with certain implicit conversions defined by single-
argument constructors and how to prevent those problems by using explicit constructors.

In the next chapter, we continue our discussion of classes by introducing a form of
software reuse called inheritance. We’ll see that when classes share common attributes and
behaviors, it’s possible to define those attributes and behaviors in a common “base” class
and “inherit” those capabilities into new class definitions, enabling you to create the new
classes with a minimal amount of code.

string1.operator()(2, 3)

Summary
Section 18.1 Introduction
• C++ enables you to overload most operators to be sensitive to the context in which they’re used—

the compiler generates the appropriate code based on the types of the operands.

722 Chapter 18 Operator Overloading; Class string

• One example of an overloaded operator built into C++ is operator <<, which is used both as the
stream insertion operator and as the bitwise left-shift operator. Similarly, >> is also overloaded;
it’s used both as the stream extraction operator and as the bitwise right-shift operator. Both of
these operators are overloaded in the C++ Standard Library.

• C++ overloads + and - to perform differently, depending on their context in integer arithmetic,
floating-point arithmetic and pointer arithmetic.

• The jobs performed by overloaded operators can also be performed by explicit function calls, but
operator notation is often more natural.

Section 18.2 Using the Overloaded Operators of Standard Library Class string
• Standard class string is defined in header <string> and belongs to namespace std.

• Class string provides many overloaded operators, including equality, relational, assignment, ad-
dition assignment (for concatenation) and subscript operators.

• Class string provides member function empty (p. 687), which returns true if the string is emp-
ty; otherwise, it returns false.

• Standard class string member function substr (p. 687) obtains a substring of a length specified
by the second argument, starting at the position specified by the first argument. When the second
argument is not specified, substr returns the remainder of the string on which it’s called.

• Class string’s overloaded [] operator does not perform any bounds checking. Therefore, you
must ensure that operations using standard class string’s overloaded [] operator do not acciden-
tally manipulate elements outside the bounds of the string.

• Standard class string provides bounds checking with member function at (p. 688), which
“throws an exception” if its argument is an invalid subscript. By default, this causes the program
to terminate. If the subscript is valid, function at returns a reference or a const reference to the
character at the specified location depending on the context.

Section 18.3 Fundamentals of Operator Overloading
• An operator is overloaded by writing a non-static member-function definition or non-member

function definition in which the function name is the keyword operator followed by the symbol
for the operator being overloaded.

• When operators are overloaded as member functions, they must be non-static, because they
must be called on an object of the class and operate on that object.

• To use an operator on class objects, you must define an overloaded operator function, with three
exceptions—the assignment operator (=), the address operator (&) and the comma operator (,).

• You cannot change the precedence and associativity of an operator by overloading.

• You cannot change the “arity” of an operator (i.e., the number of operands an operator takes).

• You cannot create new operators—only existing operators can be overloaded.

• You cannot change the meaning of how an operator works on objects of fundamental types.

• Overloading an assignment operator and an addition operator for a class does not imply that +=
is also overloaded. You must explicitly overload operator += for that class.

• Overloaded (), [], -> and assignment operators must be declared as class members. For the other
operators, the operator overloading functions can be class members or non-member functions.

Section 18.4 Overloading Binary Operators
• A binary operator can be overloaded as a non-static member function with one argument or as

a non-member function with two arguments (one of those arguments must be either a class ob-
ject or a reference to a class object).

 Summary 723

Section 18.5 Overloading the Binary Stream Insertion and Stream Extraction Operators
• The overloaded stream insertion operator (<<) is used in an expression in which the left operand

has type ostream &. For this reason, it must be overloaded as a non-member function. Similarly,
the overloaded stream extraction operator (>>) must be a non-member function.

• Another reason to choose a non-member function to overload an operator is to enable the oper-
ator to be commutative.

• When used with cin, setw restricts the number of characters read to the number of characters
specified by its argument.

• istream member function ignore discards the specified number of characters in the input stream
(one character by default).

• Overloaded input and output operators are declared as friends if they need to access non-public
class members directly for performance reasons.

Section 18.6 Overloading Unary Operators
• A unary operator for a class can be overloaded as a non-static member function with no argu-

ments or as a non-member function with one argument; that argument must be either an object
of the class or a reference to an object of the class.

• Member functions that implement overloaded operators must be non-static so that they can
access the non-static data in each object of the class.

Section 18.7 Overloading the Unary Prefix and Postfix ++ and -- Operators
• The prefix and postfix increment and decrement operators can all be overloaded.

• To overload the pre- and post-increment operators, each overloaded operator function must have
a distinct signature. The prefix versions are overloaded like any other unary operator. The postfix
increment operator’s unique signature is accomplished by providing a second argument, which
must be of type int. This argument is not supplied in the client code. It’s used implicitly by the
compiler to distinguish between the prefix and postfix versions of the increment operator. The
same syntax is used to differentiate between the prefix and postfix decrement operator functions.

Section 18.9 Dynamic Memory Management
• Dynamic memory management (p. 701) enables you to control the allocation and deallocation

of memory in a program for any built-in or user-defined type.

• The free store (sometimes called the heap; p. 701) is a region of memory assigned to each pro-
gram for storing objects dynamically allocated at execution time.

• The new operator (p. 701) allocates storage of the proper size for an object, runs the object’s con-
structor and returns a pointer of the correct type. If new is unable to find space in memory for
the object, it indicates that an error occurred by “throwing” an “exception.” This usually causes
the program to terminate immediately, unless the exception is handled.

• To destroy a dynamically allocated object and free its space, use the delete operator (p. 701).

• A built-in array of objects can be allocated dynamically with new as in

int *ptr = new int[100]();
which allocates a built-in array of 100 integers, initializes each to 0 with value initialization and
assigns the built-in array’s starting location to ptr. The preceding built-in array is deleted
(p. 703) with the statement

delete [] ptr;

724 Chapter 18 Operator Overloading; Class string

Section 18.10 Case Study: Array Class
• A copy constructor initializes a new object of a class by copying the members of an existing one.

Classes that contain dynamically allocated memory typically provide a copy constructor, a de-
structor and an overloaded assignment operator.

• The implementation of member function operator= should test for self-assignment (p. 713), in
which an object is being assigned to itself.

• The compiler calls the const version of operator[] when the subscript operator is used on a const
object and calls the non-const version of the operator when it’s used on a non-const object.

• The subscript operator ([]) can be used to select elements from other types of containers. Also,
with overloading, the index values no longer need to be integers.

Section 18.11 Operators as Member vs. Non-Member Functions
• Operator functions can be member functions or non-member functions—non-member functions

are often made friends for performance reasons. Member functions use the this pointer implicitly
to obtain one of their class object arguments (the left operand for binary operators). Arguments for
both operands of a binary operator must be explicitly listed in a non-member function call.

• When an operator function is implemented as a member function, the leftmost (or only) operand
must be an object (or a reference to an object) of the operator’s class.

• If the left operand must be an object of a different class or a fundamental type, this operator func-
tion must be implemented as a non-member function.

• A non-member operator function can be made a friend of a class if that function must access
private or protected members of that class directly.

Section 18.12 Converting Between Types
• The compiler cannot know in advance how to convert among user-defined types, and between

user-defined types and fundamental types, so you must specify how to do this. Such conversions
can be performed with conversion constructors (p. 717)—single-argument constructors that
turn objects of other types (including fundamental types) into objects of a particular class.

• A constructor that can be called with a single argument can be used as a conversion constructor.

• A conversion operator (p. 717) must be a non-static member function. Overloaded cast-oper-
ator functions (p. 717) can be defined for converting objects of user-defined types into funda-
mental types or into objects of other user-defined types.

• An overloaded cast operator function does not specify a return type—the return type is the type
to which the object is being converted.

• When necessary, the compiler can call cast operators and conversion constructors implicitly.

Section 18.13 explicit Constructors and Conversion Operators
• A constructor that’s declared explicit (p. 719) cannot be used in an implicit conversion.

Section 18.14 Overloading the Function Call Operator ()
• Overloading the function call operator () (p. 720) is powerful, because functions can have an

arbitrary number of parameters.

Self-Review Exercises
18.1 Fill in the blanks in each of the following:

a) Suppose a and b are integer variables and we form the sum a + b. Now suppose c and
d are floating-point variables and we form the sum c + d. The two + operators here are
clearly being used for different purposes. This is an example of .

 Answers to Self-Review Exercises 725

b) Keyword introduces an overloaded-operator function definition.
c) To use operators on class objects, they must be overloaded, with the exception of oper-

ators , and .
d) The , and of an operator cannot be changed by overload-

ing the operator.
e) The operators that cannot be overloaded are , , and

.
f) The operator reclaims memory previously allocated by new.
g) The operator dynamically allocates memory for an object of a specified type

and returns a(n) to that type.

18.2 Explain the multiple meanings of the operators << and >>.

18.3 In what context might the name operator/ be used?

18.4 (True/False) Only existing operators can be overloaded.

18.5 How does the precedence of an overloaded operator compare with the precedence of the
original operator?

Answers to Self-Review Exercises
18.1 a) operator overloading. b) operator. c) assignment (=), address (&), comma (,).
d) precedence, associativity, “arity.” e) ., ?:, .*, and ::. f) delete. g) new, pointer.

18.2 Operator >> is both the right-shift operator and the stream extraction operator, depending
on its context. Operator << is both the left-shift operator and the stream insertion operator, depend-
ing on its context.

18.3 For operator overloading: It would be the name of a function that would provide an over-
loaded version of the / operator for a specific class.

18.4 True.

18.5 The precedence is identical.

Exercises
18.6 (Memory Allocation and Deallocation Operators) Compare and contrast dynamic memory
allocation and deallocation operators new, new [], delete and delete [].

18.7 (Overloading the Parentheses Operator) One nice example of overloading the function call
operator () is to allow another form of double-array subscripting popular in some programming
languages. Instead of saying

chessBoard[row][column]

for an array of objects, overload the function call operator to allow the alternate form

chessBoard(row, column)

Create a class DoubleSubscriptedArray that has similar features to class Array in Figs. 18.10–
18.11. At construction time, the class should be able to create a DoubleSubscriptedArray of any
number of rows and columns. The class should supply operator() to perform double-subscripting
operations. For example, in a 3-by-5 DoubleSubscriptedArray called chessBoard, the user could
write chessBoard(1, 3) to access the element at row 1 and column 3. Remember that operator()
can receive any number of arguments. The underlying representation of the DoubleSubscriptedArray
could be a one-dimensional array of integers with rows * columns number of elements. Function
operator() should perform the proper pointer arithmetic to access each element of the underlying
array. There should be two versions of operator()—one that returns int & (so that an element of a

726 Chapter 18 Operator Overloading; Class string

DoubleSubscriptedArray can be used as an lvalue) and one that returns int. The class should also
provide the following operators: ==, !=, =, << (for outputting the DoubleSubscriptedArray in row and
column format) and >> (for inputting the entire DoubleSubscriptedArray contents).

18.8 (Complex Class) Consider class Complex shown in Figs. 18.14–18.16. The class enables op-
erations on so-called complex numbers. These are numbers of the form realPart + imaginaryPart
* i, where i has the value

a) Modify the class to enable input and output of complex numbers via overloaded >> and
<< operators, respectively (you should remove the print function from the class).

b) Overload the multiplication operator to enable multiplication of two complex numbers
as in algebra.

c) Overload the == and != operators to allow comparisons of complex numbers.

After doing this exercise, you might want to read about the Standard Library’s complex class (from
header <complex>).

1 // Fig. 18.14: Complex.h

2 // Complex class definition.

3 #ifndef COMPLEX_H
4 #define COMPLEX_H
5
6 class Complex
7 {

8 public:
9 explicit Complex(double = 0.0, double = 0.0); // constructor

10 Complex operator+(const Complex &) const; // addition
11 Complex operator-(const Complex &) const; // subtraction
12 void print() const; // output
13 private:
14 double real; // real part
15 double imaginary; // imaginary part
16 }; // end class Complex

17
18 #endif

Fig. 18.14 | Complex class definition.

1 // Fig. 18.15: Complex.cpp

2 // Complex class member-function definitions.

3 #include <iostream>
4 #include "Complex.h" // Complex class definition
5 using namespace std;
6
7 // Constructor

8 Complex::Complex(double realPart, double imaginaryPart)
9 : real(realPart),

10 imaginary(imaginaryPart)

11 {

12 // empty body

13 } // end Complex constructor

14

Fig. 18.15 | Complex class member-function definitions. (Part 1 of 2.)

1–

 Exercises 727

15 // addition operator

16 Complex Complex::operator+(const Complex &operand2) const
17 {

18 return Complex(real + operand2.real,
19 imaginary + operand2.imaginary);

20 } // end function operator+

21
22 // subtraction operator

23 Complex Complex::operator-(const Complex &operand2) const
24 {

25 return Complex(real - operand2.real,
26 imaginary - operand2.imaginary);

27 } // end function operator-

28
29 // display a Complex object in the form: (a, b)

30 void Complex::print() const
31 {

32 cout << '(' << real << ", " << imaginary << ')';
33 } // end function print

34 // Fig. 18.16: fig18_16.cpp

35 // Complex class test program.

36 #include <iostream>
37 #include "Complex.h"
38 using namespace std;
39
40 int main()
41 {

42 Complex x;

43 Complex y(4.3, 8.2);
44 Complex z(3.3, 1.1);
45
46 cout << "x: ";
47 x.print();

48 cout << "\ny: ";
49 y.print();

50 cout << "\nz: ";
51 z.print();

52
53 x = y + z;

54 cout << "\n\nx = y + z:" << endl;
55 x.print();

56 cout << " = ";
57 y.print();

58 cout << " + ";
59 z.print();

60
61 x = y - z;

62 cout << "\n\nx = y - z:" << endl;
63 x.print();

64 cout << " = ";
65 y.print();

66 cout << " - ";
67 z.print();

68 cout << endl;

69 } // end main

Fig. 18.16 | Complex class test program. (Part 1 of 2.)

Fig. 18.15 | Complex class member-function definitions. (Part 2 of 2.)

728 Chapter 18 Operator Overloading; Class string

18.9 (HugeInt Class) A machine with 32-bit integers can represent integers in the range of ap-
proximately –2 billion to +2 billion. This fixed-size restriction is rarely troublesome, but there are
applications in which we would like to be able to use a much wider range of integers. This is what
C++ was built to do, namely, create powerful new data types. Consider class HugeInt of Figs. 18.17–
18.19. Study the class carefully, then answer the following:

a) Describe precisely how it operates.
b) What restrictions does the class have?
c) Overload the * multiplication operator.
d) Overload the / division operator.
e) Overload all the relational and equality operators.

[Note: We do not show an assignment operator or copy constructor for class HugeInt, because the
assignment operator and copy constructor provided by the compiler are capable of copying the
entire array data member properly.]

x: (0, 0)
y: (4.3, 8.2)
z: (3.3, 1.1)

x = y + z:
(7.6, 9.3) = (4.3, 8.2) + (3.3, 1.1)

x = y - z:
(1, 7.1) = (4.3, 8.2) - (3.3, 1.1)

1 // Fig. 18.17: Hugeint.h

2 // HugeInt class definition.

3 #ifndef HUGEINT_H
4 #define HUGEINT_H
5
6 #include <array>
7 #include <iostream>
8 #include <string>
9

10 class HugeInt
11 {

12 friend std::ostream &operator<<(std::ostream &, const HugeInt &);
13 public:
14 static const int digits = 30; // maximum digits in a HugeInt
15
16 HugeInt(long = 0); // conversion/default constructor
17 HugeInt(const std::string &); // conversion constructor
18
19 // addition operator; HugeInt + HugeInt

20 HugeInt operator+(const HugeInt &) const;
21
22 // addition operator; HugeInt + int

23 HugeInt operator+(int) const;
24
25 // addition operator;

26 // HugeInt + string that represents large integer value

27 HugeInt operator+(const std::string &) const;

Fig. 18.17 | HugeInt class definition. (Part 1 of 2.)

Fig. 18.16 | Complex class test program. (Part 2 of 2.)

 Exercises 729

28 private:
29 std::array< short, digits > integer;
30 }; // end class HugetInt

31
32 #endif

1 // Fig. 18.18: Hugeint.cpp

2 // HugeInt member-function and friend-function definitions.

3 #include <cctype> // isdigit function prototype
4 #include "Hugeint.h" // HugeInt class definition
5 using namespace std;
6
7 // default constructor; conversion constructor that converts

8 // a long integer into a HugeInt object

9 HugeInt::HugeInt(long value)
10 {

11 // initialize array to zero

12 for (short &element : integer)
13 element = 0;
14
15 // place digits of argument into array

16 for (size_t j = digits - 1; value != 0 && j >= 0; j--)
17 {

18 integer[j] = value % 10;
19 value /= 10;
20 } // end for

21 } // end HugeInt default/conversion constructor

22
23 // conversion constructor that converts a character string

24 // representing a large integer into a HugeInt object

25 HugeInt::HugeInt(const string &number)
26 {

27 // initialize array to zero

28 for (short &element : integer)
29 element = 0;
30
31 // place digits of argument into array

32 size_t length = number.size();

33
34 for (size_t j = digits - length, k = 0; j < digits; ++j, ++k)
35 if (isdigit(number[k])) // ensure that character is a digit
36 integer[j] = number[k] - '0';
37 } // end HugeInt conversion constructor

38
39 // addition operator; HugeInt + HugeInt

40 HugeInt HugeInt::operator+(const HugeInt &op2) const
41 {

42 HugeInt temp; // temporary result

43 int carry = 0;
44
45 for (int i = digits - 1; i >= 0; i--)
46 {

47 temp.integer[i] = integer[i] + op2.integer[i] + carry;

48

Fig. 18.18 | HugeInt member-function and friend-function definitions. (Part 1 of 2.)

Fig. 18.17 | HugeInt class definition. (Part 2 of 2.)

730 Chapter 18 Operator Overloading; Class string

49 // determine whether to carry a 1

50 if (temp.integer[i] > 9)
51 {

52 temp.integer[i] %= 10; // reduce to 0-9
53 carry = 1;
54 } // end if

55 else // no carry
56 carry = 0;
57 } // end for

58
59 return temp; // return copy of temporary object
60 } // end function operator+

61
62 // addition operator; HugeInt + int

63 HugeInt HugeInt::operator+(int op2) const
64 {

65 // convert op2 to a HugeInt, then invoke

66 // operator+ for two HugeInt objects

67 return *this + HugeInt(op2);
68 } // end function operator+

69
70 // addition operator;

71 // HugeInt + string that represents large integer value

72 HugeInt HugeInt::operator+(const string &op2) const
73 {

74 // convert op2 to a HugeInt, then invoke

75 // operator+ for two HugeInt objects

76 return *this + HugeInt(op2);
77 } // end operator+

78
79 // overloaded output operator

80 ostream& operator<<(ostream &output, const HugeInt &num)
81 {

82 int i;
83
84 for (i = 0; (i < HugeInt::digits) && (0 == num.integer[i]); ++i)
85 ; // skip leading zeros

86
87 if (i == HugeInt::digits)
88 output << 0;
89 else
90 for (; i < HugeInt::digits; ++i)
91 output << num.integer[i];

92
93 return output;
94 } // end function operator<<

1 // Fig. 18.19: fig18_19.cpp

2 // HugeInt test program.

3 #include <iostream>
4 #include "Hugeint.h"
5 using namespace std;
6
7 int main()
8 {

Fig. 18.19 | HugeInt test program. (Part 1 of 2.)

Fig. 18.18 | HugeInt member-function and friend-function definitions. (Part 2 of 2.)

 Exercises 731

18.10 (RationalNumber Class) Create a class RationalNumber (fractions) with these capabilities:
a) Create a constructor that prevents a 0 denominator in a fraction, reduces or simplifies

fractions that are not in reduced form and avoids negative denominators.
b) Overload the addition, subtraction, multiplication and division operators for this class.
c) Overload the relational and equality operators for this class.

18.11 (Polynomial Class) Develop class Polynomial. The internal representation of a Polynomial
is an array of terms. Each term contains a coefficient and an exponent, e.g., the term

2x4

has the coefficient 2 and the exponent 4. Develop a complete class containing proper constructor
and destructor functions as well as set and get functions. The class should also provide the following
overloaded operator capabilities:

a) Overload the addition operator (+) to add two Polynomials.
b) Overload the subtraction operator (-) to subtract two Polynomials.
c) Overload the assignment operator to assign one Polynomial to another.
d) Overload the multiplication operator (*) to multiply two Polynomials.
e) Overload the addition assignment operator (+=), subtraction assignment operator (-=),

and multiplication assignment operator (*=).

9 HugeInt n1(7654321);
10 HugeInt n2(7891234);
11 HugeInt n3("99999999999999999999999999999");
12 HugeInt n4("1");
13 HugeInt n5;

14
15 cout << "n1 is " << n1 << "\nn2 is " << n2
16 << "\nn3 is " << n3 << "\nn4 is " << n4
17 << "\nn5 is " << n5 << "\n\n";
18
19 n5 = n1 + n2;

20 cout << n1 << " + " << n2 << " = " << n5 << "\n\n";
21
22 cout << n3 << " + " << n4 << "\n= " << (n3 + n4) << "\n\n";
23
24 n5 = n1 + 9;
25 cout << n1 << " + " << 9 << " = " << n5 << "\n\n";
26
27 n5 = n2 + "10000";
28 cout << n2 << " + " << "10000" << " = " << n5 << endl;
29 } // end main

n1 is 7654321
n2 is 7891234
n3 is 99999999999999999999999999999
n4 is 1
n5 is 0

7654321 + 7891234 = 15545555

99999999999999999999999999999 + 1
= 100000000000000000000000000000

7654321 + 9 = 7654330

7891234 + 10000 = 7901234

Fig. 18.19 | HugeInt test program. (Part 2 of 2.)

19 Object-Oriented
Programming: Inheritance

O b j e c t i v e s
In this chapter you’ll learn:

■ What inheritance is and how
it promotes software reuse.

■ The notions of base classes
and derived classes and the
relationships between them.

■ The protected member
access specifier.

■ The use of constructors and
destructors in inheritance
hierarchies.

■ The order in which
constructors and destructors
are called in inheritance
hierarchies.

■ The differences between
public, protected and
private inheritance.

■ To use inheritance to
customize existing software.

19.1 Introduction 733

19.1 Introduction
This chapter continues our discussion of object-oriented programming (OOP) by intro-
ducing inheritance—a form of software reuse in which you create a class that absorbs an
existing class’s capabilities, then customizes or enhances them. Software reuse saves time
during program development by taking advantage of proven, high-quality software.

When creating a class, instead of writing completely new data members and member
functions, you can specify that the new class should inherit the members of an existing class.
This existing class is called the base class, and the new class is called the derived class. Other
programming languages, such as Java and C#, refer to the base class as the superclass and the
derived class as the subclass. A derived class represents a more specialized group of objects.

C++ offers public, protected and private inheritance. In this chapter, we concen-
trate on public inheritance and briefly explain the other two. With public inheritance,
every object of a derived class is also an object of that derived class’s base class. However, base-
class objects are not objects of their derived classes. For example, if we have Vehicle as a
base class and Car as a derived class, then all Cars are Vehicles, but not all Vehicles are
Cars—for example, a Vehicle could also be a Truck or a Boat.

We distinguish between the is-a relationship and the has-a relationship. The is-a rela-
tionship represents inheritance. In an is-a relationship, an object of a derived class also can
be treated as an object of its base class—for example, a Car is a Vehicle, so any attributes and
behaviors of a Vehicle are also attributes and behaviors of a Car. By contrast, the has-a rela-
tionship represents composition, which was discussed in Chapter 17. In a has-a relationship,
an object contains one or more objects of other classes as members. For example, a Car has
many components—it has a steering wheel, has a brake pedal, has a transmission, etc.

19.2 Base Classes and Derived Classes
Figure 19.1 lists several simple examples of base classes and derived classes. Base classes
tend to be more general and derived classes tend to be more specific.

19.1 Introduction
19.2 Base Classes and Derived Classes
19.3 Relationship between Base and Derived

Classes
19.3.1 Creating and Using a

CommissionEmployee Class
19.3.2 Creating a BasePlusCommission-

Employee Class Without Using
Inheritance

19.3.3 Creating a CommissionEmployee–
BasePlusCommissionEmployee
Inheritance Hierarchy

19.3.4 CommissionEmployee–
BasePlusCommissionEmployee
Inheritance Hierarchy Using
protected Data

19.3.5 CommissionEmployee–
BasePlusCommissionEmployee
Inheritance Hierarchy Using private
Data

19.4 Constructors and Destructors in Derived
Classes

19.5 public, protected and private
Inheritance

19.6 Software Engineering with Inheritance
19.7 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

734 Chapter 19 Object-Oriented Programming: Inheritance

Because every derived-class object is an object of its base class, and one base class can
have many derived classes, the set of objects represented by a base class typically is larger
than the set of objects represented by any of its derived classes. For example, the base class
Vehicle represents all vehicles, including cars, trucks, boats, airplanes, bicycles and so on.
By contrast, derived class Car represents a smaller, more specific subset of all vehicles.

Inheritance relationships form class hierarchies. A base class exists in a hierarchical
relationship with its derived classes. Although classes can exist independently, once they’re
employed in inheritance relationships, they become affiliated with other classes. A class
becomes either a base class—supplying members to other classes, a derived class—inher-
iting its members from other classes, or both.

CommunityMember Class Hierarchy
Let’s develop a simple inheritance hierarchy with five levels (represented by the UML class
diagram in Fig. 19.2). A university community has thousands of CommunityMembers.

These CommunityMembers consist of Employees, Students and alumni (each of class
Alumnus). Employees are either Faculty or Staff. Faculty are either Administrators or

Base class Derived classes

Student GraduateStudent, UndergraduateStudent

Shape Circle, Triangle, Rectangle, Sphere, Cube

Loan CarLoan, HomeImprovementLoan, MortgageLoan

Employee Faculty, Staff

Account CheckingAccount, SavingsAccount

Fig. 19.1 | Inheritance examples.

Fig. 19.2 | Inheritance hierarchy for university CommunityMembers.

Student

CommunityMember

Administrator

AdministratorTeacher

AlumnusEmployee

StaffFaculty

Teacher

Single
inheritance

Single
inheritance

Single
inheritance

Multiple
inheritance

19.2 Base Classes and Derived Classes 735

Teachers. Some Administrators, however, are also Teachers. We’ve used multiple inher-
itance to form class AdministratorTeacher. With single inheritance, a class is derived
from one base class. With multiple inheritance, a derived class inherits simultaneously
from two or more (possibly unrelated) base classes. Multiple inheritance is generally dis-
couraged.

Each arrow in the hierarchy (Fig. 19.2) represents an is-a relationship. For example,
as we follow the arrows in this class hierarchy, we can state “an Employee is a Community-
Member” and “a Teacher is a Faculty member.” CommunityMember is the direct base class
of Employee, Student and Alumnus. In addition, CommunityMember is an indirect base
class of all the other classes in the diagram. An indirect base class is inherited from two or
more levels up the class hierarchy.

Starting from the bottom of the diagram, you can follow the arrows upwards and apply
the is-a relationship to the topmost base class. For example, an AdministratorTeacher is an
Administrator, is a Faculty member, is an Employee and is a CommunityMember.

Shape Class Hierarchy
Now consider the Shape inheritance hierarchy in Fig. 19.3. This hierarchy begins with
base class Shape. Classes TwoDimensionalShape and ThreeDimensionalShape derive from
base class Shape—a Shape is a TwoDimensionalShape or is a ThreeDimensionalShape.
The third level of this hierarchy contains more specific types of TwoDimensionalShapes and
ThreeDimensionalShapes. As in Fig. 19.2, we can follow the arrows from the bottom of
the diagram upwards to the topmost base class in this hierarchy to identify several is-a re-
lationships. For instance, a Triangle is a TwoDimensionalShape and is a Shape, while a
Sphere is a ThreeDimensionalShape and is a Shape.

To specify that class TwoDimensionalShape (Fig. 19.3) is derived from (or inherits
from) class Shape, class TwoDimensionalShape’s definition could begin as follows:

This is an example of public inheritance, the most commonly used form. We’ll also
discuss private inheritance and protected inheritance (Section 19.5). With all forms of
inheritance, private members of a base class are not accessible directly from that class’s
derived classes, but these private base-class members are still inherited (i.e., they’re still
considered parts of the derived classes). With public inheritance, all other base-class mem-
bers retain their original member access when they become members of the derived class

Fig. 19.3 | Inheritance hierarchy for Shapes.

class TwoDimensionalShape : public Shape

ThreeDimensionalShape

TetrahedronCubeSphereSquare TriangleCircle

Shape

TwoDimensionalShape

736 Chapter 19 Object-Oriented Programming: Inheritance

(e.g., public members of the base class become public members of the derived class, and,
as we’ll soon see, protected members of the base class become protected members of the
derived class). Through inherited base-class member functions, the derived class can ma-
nipulate private members of the base class (if these inherited member functions provide
such functionality in the base class). Note that friend functions are not inherited.

Inheritance is not appropriate for every class relationship. In Chapter 17, we discussed
the has-a relationship, in which classes have members that are objects of other classes. Such
relationships create classes by composition of existing classes. For example, given the classes
Employee, BirthDate and TelephoneNumber, it’s improper to say that an Employee is a
BirthDate or that an Employee is a TelephoneNumber. However, it is appropriate to say
that an Employee has a BirthDate and that an Employee has a TelephoneNumber.

It’s possible to treat base-class objects and derived-class objects similarly; their com-
monalities are expressed in the members of the base class. Objects of all classes derived
from a common base class can be treated as objects of that base class (i.e., such objects have
an is-a relationship with the base class). In Chapter 20, we consider many examples that
take advantage of this relationship.

19.3 Relationship between Base and Derived Classes
In this section, we use an inheritance hierarchy containing types of employees in a com-
pany’s payroll application to discuss the relationship between a base class and a derived
class. Commission employees (who will be represented as objects of a base class) are paid
a percentage of their sales, while base-salaried commission employees (who will be repre-
sented as objects of a derived class) receive a base salary plus a percentage of their sales. We
divide our discussion of the relationship between commission employees and base-salaried
commission employees into a carefully paced series of five examples.

19.3.1 Creating and Using a CommissionEmployee Class
Let’s examine CommissionEmployee’s class definition (Figs. 19.4–19.5). The Commission-
Employee header (Fig. 19.4) specifies class CommissionEmployee’s public services, which
include a constructor (lines 11–12) and member functions earnings (line 29) and print
(line 30). Lines 14–27 declare public get and set functions that manipulate the class’s data
members (declared in lines 32–36) firstName, lastName, socialSecurityNumber,
grossSales and commissionRate. Member functions setGrossSales (defined in lines
57–63 of Fig. 19.5) and setCommissionRate (defined in lines 72–78 of Fig. 19.5), for ex-
ample, validate their arguments before assigning the values to data members grossSales
and commissionRate, respectively.

1 // Fig. 19.4: CommissionEmployee.h

2 // CommissionEmployee class definition represents a commission employee.
3 #ifndef COMMISSION_H
4 #define COMMISSION_H
5
6 #include <string> // C++ standard string class
7

Fig. 19.4 | CommissionEmployee class header. (Part 1 of 2.)

19.3 Relationship between Base and Derived Classes 737

8 class CommissionEmployee
9 {

10 public:
11

12

13
14 void setFirstName(const std::string &); // set first name
15 std::string getFirstName() const; // return first name
16
17 void setLastName(const std::string &); // set last name
18 std::string getLastName() const; // return last name
19
20 void setSocialSecurityNumber(const std::string &); // set SSN
21 std::string getSocialSecurityNumber() const; // return SSN
22
23 void setGrossSales(double); // set gross sales amount
24 double getGrossSales() const; // return gross sales amount
25
26 void setCommissionRate(double); // set commission rate (percentage)
27 double getCommissionRate() const; // return commission rate
28
29 double earnings() const; // calculate earnings
30 void print() const; // print CommissionEmployee object
31 private:
32
33

34

35
36

37 }; // end class CommissionEmployee

38
39 #endif

1 // Fig. 19.5: CommissionEmployee.cpp

2 // Class CommissionEmployee member-function definitions.
3 #include <iostream>
4 #include <stdexcept>
5 #include "CommissionEmployee.h" // CommissionEmployee class definition
6 using namespace std;
7
8
9

10
11
12
13
14
15
16

Fig. 19.5 | Implementation file for CommissionEmployee class that represents an employee who
is paid a percentage of gross sales. (Part 1 of 3.)

Fig. 19.4 | CommissionEmployee class header. (Part 2 of 2.)

CommissionEmployee(const std::string &, const std::string &,
 const std::string &, double = 0.0, double = 0.0);

std::string firstName;

std::string lastName;
std::string socialSecurityNumber;

double grossSales; // gross weekly sales
double commissionRate; // commission percentage

// constructor

CommissionEmployee::CommissionEmployee(
 const string &first, const string &last, const string &ssn,
 double sales, double rate)
{
 firstName = first; // should validate

 lastName = last; // should validate

 socialSecurityNumber = ssn; // should validate
 setGrossSales(sales); // validate and store gross sales

738 Chapter 19 Object-Oriented Programming: Inheritance

17
18
19
20 // set first name

21 void CommissionEmployee::setFirstName(const string &first)
22 {
23 firstName = first; // should validate

24 } // end function setFirstName

25
26 // return first name

27 string CommissionEmployee::getFirstName() const
28 {
29 return firstName;
30 } // end function getFirstName

31
32 // set last name

33 void CommissionEmployee::setLastName(const string &last)
34 {

35 lastName = last; // should validate
36 } // end function setLastName

37
38 // return last name
39 string CommissionEmployee::getLastName() const
40 {

41 return lastName;
42 } // end function getLastName

43
44 // set social security number
45 void CommissionEmployee::setSocialSecurityNumber(const string &ssn)
46 {

47 socialSecurityNumber = ssn; // should validate
48 } // end function setSocialSecurityNumber

49
50 // return social security number
51 string CommissionEmployee::getSocialSecurityNumber() const
52 {

53 return socialSecurityNumber;
54 } // end function getSocialSecurityNumber

55
56 // set gross sales amount
57 void CommissionEmployee::setGrossSales(double sales)
58 {

59 if (sales >= 0.0)
60 grossSales = sales;

61 else
62 throw invalid_argument("Gross sales must be >= 0.0");
63 } // end function setGrossSales

64
65 // return gross sales amount
66 double CommissionEmployee::getGrossSales() const
67 {

Fig. 19.5 | Implementation file for CommissionEmployee class that represents an employee who
is paid a percentage of gross sales. (Part 2 of 3.)

 setCommissionRate(rate); // validate and store commission rate
} // end CommissionEmployee constructor

19.3 Relationship between Base and Derived Classes 739

CommissionEmployee Constructor
The CommissionEmployee constructor definition purposely does not use member-initializer
syntax in the first several examples of this section, so that we can demonstrate how private
and protected specifiers affect member access in derived classes. As shown in Fig. 19.5,
lines 13–15, we assign values to data members firstName, lastName and socialSecuri-
tyNumber in the constructor body. Later in this section, we’ll return to using member-ini-
tializer lists in the constructors.

We do not validate the values of the constructor’s arguments first, last and ssn
before assigning them to the corresponding data members. We certainly could validate the
first and last names—perhaps by ensuring that they’re of a reasonable length. Similarly, a
social security number could be validated to ensure that it contains nine digits, with or
without dashes (e.g., 123-45-6789 or 123456789).

CommissionEmployee Member Functions earnings and print
Member function earnings (lines 87–90) calculates a CommissionEmployee’s earnings.
Line 89 multiplies the commissionRate by the grossSales and returns the result. Member

68 return grossSales;
69 } // end function getGrossSales

70
71 // set commission rate

72 void CommissionEmployee::setCommissionRate(double rate)
73 {
74 if (rate > 0.0 && rate < 1.0)
75 commissionRate = rate;

76 else
77 throw invalid_argument("Commission rate must be > 0.0 and < 1.0");
78 } // end function setCommissionRate

79
80 // return commission rate

81 double CommissionEmployee::getCommissionRate() const
82 {
83 return commissionRate;
84 } // end function getCommissionRate

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

Fig. 19.5 | Implementation file for CommissionEmployee class that represents an employee who
is paid a percentage of gross sales. (Part 3 of 3.)

// calculate earnings
double CommissionEmployee::earnings() const
{

 return commissionRate * grossSales;
} // end function earnings

// print CommissionEmployee object

void CommissionEmployee::print() const
{

 cout << "commission employee: " << firstName << ' ' << lastName
 << "\nsocial security number: " << socialSecurityNumber
 << "\ngross sales: " << grossSales
 << "\ncommission rate: " << commissionRate;
} // end function print

740 Chapter 19 Object-Oriented Programming: Inheritance

function print (lines 93–99) displays the values of a CommissionEmployee object’s data
members.

Testing Class CommissionEmployee
Figure 19.6 tests class CommissionEmployee. Lines 11–12 instantiate CommissionEmployee
object employee and invoke the constructor to initialize the object with "Sue" as the first
name, "Jones" as the last name, "222-22-2222" as the social security number, 10000 as the
gross sales amount and .06 as the commission rate. Lines 19–24 use employee’s get functions
to display the values of its data members. Lines 26–27 invoke the object’s member functions
setGrossSales and setCommissionRate to change the values of data members grossSales
and commissionRate, respectively. Line 31 then calls employee’s print member function to
output the updated CommissionEmployee information. Finally, line 34 displays the Commis-
sionEmployee’s earnings, calculated by the object’s earnings member function using the
updated values of data members grossSales and commissionRate.

1 // Fig. 19.6: fig19_06.cpp

2 // CommissionEmployee class test program.

3 #include <iostream>
4 #include <iomanip>
5 #include "CommissionEmployee.h" // CommissionEmployee class definition
6 using namespace std;
7
8 int main()
9 {

10

11

12
13

14 // set floating-point output formatting

15 cout << fixed << setprecision(2);
16
17 // get commission employee data

18 cout << "Employee information obtained by get functions: \n"
19 << "\nFirst name is " <<
20 << "\nLast name is " <<
21 << "\nSocial security number is "
22 <<

23 << "\nGross sales is " <<
24 << "\nCommission rate is " << << endl;
25
26

27
28
29 cout << "\nUpdated employee information output by print function: \n"
30 << endl;
31

32
33 // display the employee's earnings
34 cout << "\n\nEmployee's earnings: $" << << endl;

35 } // end main

Fig. 19.6 | CommissionEmployee class test program. (Part 1 of 2.)

// instantiate a CommissionEmployee object
CommissionEmployee employee(

 "Sue", "Jones", "222-22-2222", 10000, .06);

employee.getFirstName()
employee.getLastName()

employee.getSocialSecurityNumber()
employee.getGrossSales()

employee.getCommissionRate()

employee.setGrossSales(8000); // set gross sales
employee.setCommissionRate(.1); // set commission rate

employee.print(); // display the new employee information

employee.earnings()

19.3 Relationship between Base and Derived Classes 741

19.3.2 Creating a BasePlusCommissionEmployee Class Without
Using Inheritance
We now discuss the second part of our introduction to inheritance by creating and testing
(a completely new and independent) class BasePlusCommissionEmployee (Figs. 19.7–
19.8), which contains a first name, last name, social security number, gross sales amount,
commission rate and base salary.

Employee information obtained by get functions:

First name is Sue
Last name is Jones
Social security number is 222-22-2222
Gross sales is 10000.00
Commission rate is 0.06

Updated employee information output by print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 8000.00
commission rate: 0.10

Employee's earnings: $800.00

1 // Fig. 19.7: BasePlusCommissionEmployee.h

2 // BasePlusCommissionEmployee class definition represents an employee

3 // that receives a base salary in addition to commission.
4 #ifndef BASEPLUS_H
5 #define BASEPLUS_H
6
7 #include <string> // C++ standard string class
8
9 class BasePlusCommissionEmployee

10 {

11 public:
12 BasePlusCommissionEmployee(const std::string &, const std::string &,
13 const std::string &, double = 0.0, double = 0.0,);

14

15 void setFirstName(const std::string &); // set first name
16 std::string getFirstName() const; // return first name
17
18 void setLastName(const std::string &); // set last name
19 std::string getLastName() const; // return last name
20
21 void setSocialSecurityNumber(const std::string &); // set SSN
22 std::string getSocialSecurityNumber() const; // return SSN
23
24 void setGrossSales(double); // set gross sales amount
25 double getGrossSales() const; // return gross sales amount

Fig. 19.7 | BasePlusCommissionEmployee class header. (Part 1 of 2.)

Fig. 19.6 | CommissionEmployee class test program. (Part 2 of 2.)

double = 0.0

742 Chapter 19 Object-Oriented Programming: Inheritance

26
27 void setCommissionRate(double); // set commission rate
28 double getCommissionRate() const; // return commission rate
29
30

31
32
33 double earnings() const; // calculate earnings
34 void print() const; // print BasePlusCommissionEmployee object
35 private:
36 std::string firstName;

37 std::string lastName;
38 std::string socialSecurityNumber;

39 double grossSales; // gross weekly sales
40 double commissionRate; // commission percentage
41

42 }; // end class BasePlusCommissionEmployee

43
44 #endif

1 // Fig. 19.8: BasePlusCommissionEmployee.cpp

2 // Class BasePlusCommissionEmployee member-function definitions.

3 #include <iostream>
4 #include <stdexcept>
5 #include "BasePlusCommissionEmployee.h"
6 using namespace std;
7
8 // constructor

9 BasePlusCommissionEmployee::BasePlusCommissionEmployee(
10 const string &first, const string &last, const string &ssn,
11 double sales, double rate,)

12 {
13 firstName = first; // should validate

14 lastName = last; // should validate

15 socialSecurityNumber = ssn; // should validate
16 setGrossSales(sales); // validate and store gross sales

17 setCommissionRate(rate); // validate and store commission rate

18
19 } // end BasePlusCommissionEmployee constructor

20
21 // set first name
22 void BasePlusCommissionEmployee::setFirstName(const string &first)
23 {

24 firstName = first; // should validate
25 } // end function setFirstName

26
27 // return first name
28 string BasePlusCommissionEmployee::getFirstName() const
29 {

Fig. 19.8 | BasePlusCommissionEmployee class represents an employee who receives a base
salary in addition to a commission. (Part 1 of 3.)

Fig. 19.7 | BasePlusCommissionEmployee class header. (Part 2 of 2.)

void setBaseSalary(double); // set base salary
double getBaseSalary() const; // return base salary

double baseSalary; // base salary

double salary

setBaseSalary(salary); // validate and store base salary

19.3 Relationship between Base and Derived Classes 743

30 return firstName;
31 } // end function getFirstName

32
33 // set last name
34 void BasePlusCommissionEmployee::setLastName(const string &last)
35 {

36 lastName = last; // should validate
37 } // end function setLastName

38
39 // return last name
40 string BasePlusCommissionEmployee::getLastName() const
41 {

42 return lastName;
43 } // end function getLastName

44
45 // set social security number
46 void BasePlusCommissionEmployee::setSocialSecurityNumber(
47 const string &ssn)
48 {

49 socialSecurityNumber = ssn; // should validate
50 } // end function setSocialSecurityNumber

51
52 // return social security number
53 string BasePlusCommissionEmployee::getSocialSecurityNumber() const
54 {

55 return socialSecurityNumber;
56 } // end function getSocialSecurityNumber

57
58 // set gross sales amount
59 void BasePlusCommissionEmployee::setGrossSales(double sales)
60 {

61 if (sales >= 0.0)
62 grossSales = sales;

63 else
64 throw invalid_argument("Gross sales must be >= 0.0");
65 } // end function setGrossSales

66
67 // return gross sales amount
68 double BasePlusCommissionEmployee::getGrossSales() const
69 {

70 return grossSales;
71 } // end function getGrossSales

72
73 // set commission rate
74 void BasePlusCommissionEmployee::setCommissionRate(double rate)
75 {

76 if (rate > 0.0 && rate < 1.0)
77 commissionRate = rate;

78 else
79 throw invalid_argument("Commission rate must be > 0.0 and < 1.0");
80 } // end function setCommissionRate

81

Fig. 19.8 | BasePlusCommissionEmployee class represents an employee who receives a base
salary in addition to a commission. (Part 2 of 3.)

744 Chapter 19 Object-Oriented Programming: Inheritance

Defining Class BasePlusCommissionEmployee
The BasePlusCommissionEmployee header (Fig. 19.7) specifies class BasePlusCommis-
sionEmployee’s public services, which include the BasePlusCommissionEmployee con-
structor (lines 12–13) and member functions earnings (line 33) and print (line 34).
Lines 15–31 declare public get and set functions for the class’s private data members (de-
clared in lines 36–41) firstName, lastName, socialSecurityNumber, grossSales, com-
missionRate and baseSalary. These variables and member functions encapsulate all the
necessary features of a base-salaried commission employee. Note the similarity between
this class and class CommissionEmployee (Figs. 19.4–19.5)—in this example, we do not yet
exploit that similarity.

Class BasePlusCommissionEmployee’s earnings member function (defined in lines
104–107 of Fig. 19.8) computes the earnings of a base-salaried commission employee.

82 // return commission rate

83 double BasePlusCommissionEmployee::getCommissionRate() const
84 {
85 return commissionRate;
86 } // end function getCommissionRate

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109 // print BasePlusCommissionEmployee object
110 void BasePlusCommissionEmployee::print() const
111 {

112 cout << "base-salaried commission employee: " << firstName << ' '
113 << lastName << "\nsocial security number: " << socialSecurityNumber
114 << "\ngross sales: " << grossSales
115 << "\ncommission rate: " << commissionRate
116

117 } // end function print

Fig. 19.8 | BasePlusCommissionEmployee class represents an employee who receives a base
salary in addition to a commission. (Part 3 of 3.)

// set base salary
void BasePlusCommissionEmployee::setBaseSalary(double salary)
{

 if (salary >= 0.0)
 baseSalary = salary;

 else
 throw invalid_argument("Salary must be >= 0.0");
} // end function setBaseSalary

// return base salary
double BasePlusCommissionEmployee::getBaseSalary() const
{

 return baseSalary;
} // end function getBaseSalary

// calculate earnings

double BasePlusCommissionEmployee::earnings() const
{

 return baseSalary + (commissionRate * grossSales);
} // end function earnings

<< "\nbase salary: " << baseSalary;

19.3 Relationship between Base and Derived Classes 745

Line 106 returns the result of adding the employee’s base salary to the product of the com-
mission rate and the employee’s gross sales.

Testing Class BasePlusCommissionEmployee
Figure 19.9 tests class BasePlusCommissionEmployee. Lines 11–12 instantiate object em-
ployee of class BasePlusCommissionEmployee, passing "Bob", "Lewis", "333-33-3333",
5000, .04 and 300 to the constructor as the first name, last name, social security number,
gross sales, commission rate and base salary, respectively. Lines 19–25 use BasePlus-
CommissionEmployee’s get functions to retrieve the values of the object’s data members for
output. Line 27 invokes the object’s setBaseSalary member function to change the base
salary. Member function setBaseSalary (Fig. 19.8, lines 89–95) ensures that data mem-
ber baseSalary is not assigned a negative value, because an employee’s base salary cannot
be negative. Line 31 of Fig. 19.9 invokes the object’s print member function to output
the updated BasePlusCommissionEmployee’s information, and line 34 calls member func-
tion earnings to display the BasePlusCommissionEmployee’s earnings.

1 // Fig. 19.9: fig19_09.cpp
2 // BasePlusCommissionEmployee class test program.

3 #include <iostream>
4 #include <iomanip>
5 #include "BasePlusCommissionEmployee.h"
6 using namespace std;
7
8 int main()
9 {

10
11

12 employee("Bob", "Lewis", "333-33-3333", 5000, .04,);

13
14 // set floating-point output formatting

15 cout << fixed << setprecision(2);
16
17 // get commission employee data

18 cout << "Employee information obtained by get functions: \n"
19 << "\nFirst name is " << employee.getFirstName()
20 << "\nLast name is " << employee.getLastName()
21 << "\nSocial security number is "
22 << employee.getSocialSecurityNumber()
23 << "\nGross sales is " << employee.getGrossSales()
24 << "\nCommission rate is " << employee.getCommissionRate()
25
26
27

28
29 cout << "\nUpdated employee information output by print function: \n"
30 << endl;

31
32
33 // display the employee's earnings

34 cout << "\n\nEmployee's earnings: $" << << endl;
35 } // end main

Fig. 19.9 | BasePlusCommissionEmployee class test program. (Part 1 of 2.)

// instantiate BasePlusCommissionEmployee object

BasePlusCommissionEmployee
300

<< "\nBase salary is " << employee.getBaseSalary() << endl;

employee.setBaseSalary(1000); // set base salary

employee.print(); // display the new employee information

employee.earnings()

746 Chapter 19 Object-Oriented Programming: Inheritance

Exploring the Similarities Between Class BasePlusCommissionEmployee and Class
CommissionEmployee
Most of the code for class BasePlusCommissionEmployee (Figs. 19.7–19.8) is similar, if
not identical, to the code for class CommissionEmployee (Figs. 19.4–19.5). For example, in
class BasePlusCommissionEmployee, private data members firstName and lastName
and member functions setFirstName, getFirstName, setLastName and getLastName are
identical to those of class CommissionEmployee. Classes CommissionEmployee and Base-
PlusCommissionEmployee also both contain private data members socialSecurity-
Number, commissionRate and grossSales, as well as get and set functions to manipulate
these members. In addition, the BasePlusCommissionEmployee constructor is almost iden-
tical to that of class CommissionEmployee, except that BasePlusCommissionEmployee’s
constructor also sets the baseSalary. The other additions to class BasePlusCommission-
Employee are private data member baseSalary and member functions setBaseSalary
and getBaseSalary. Class BasePlusCommissionEmployee’s print member function is
nearly identical to that of class CommissionEmployee, except that BasePlusCommissionEm-
ployee’s print also outputs the value of data member baseSalary.

We literally copied code from class CommissionEmployee and pasted it into class Base-
PlusCommissionEmployee, then modified class BasePlusCommissionEmployee to include
a base salary and member functions that manipulate the base salary. This copy-and-paste
approach is error prone and time consuming.

Employee information obtained by get functions:

First name is Bob
Last name is Lewis
Social security number is 333-33-3333
Gross sales is 5000.00
Commission rate is 0.04
Base salary is 300.00

Updated employee information output by print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 1000.00

Employee's earnings: $1200.00

Software Engineering Observation 19.1
Copying and pasting code from one class to another can spread many physical copies of
the same code and can spread errors throughout a system, creating a code-maintenance
nightmare. To avoid duplicating code (and possibly errors), use inheritance, rather than
the “copy-and-paste” approach, in situations where you want one class to “absorb” the
data members and member functions of another class.

Fig. 19.9 | BasePlusCommissionEmployee class test program. (Part 2 of 2.)

19.3 Relationship between Base and Derived Classes 747

19.3.3 Creating a CommissionEmployee–
BasePlusCommissionEmployee Inheritance Hierarchy
Now we create and test a new BasePlusCommissionEmployee class (Figs. 19.10–19.11)
that derives from class CommissionEmployee (Figs. 19.4–19.5). In this example, a Base-
PlusCommissionEmployee object is a CommissionEmployee (because inheritance passes on
the capabilities of class CommissionEmployee), but class BasePlusCommissionEmployee
also has data member baseSalary (Fig. 19.10, line 22). The colon (:) in line 10 of the class
definition indicates inheritance. Keyword public indicates the type of inheritance. As a de-
rived class (formed with public inheritance), BasePlusCommissionEmployee inherits all
the members of class CommissionEmployee, except for the constructor—each class provides
its own constructors that are specific to the class. (Destructors, too, are not inherited.)
Thus, the public services of BasePlusCommissionEmployee include its constructor (lines
13–14) and the public member functions inherited from class CommissionEmployee—al-
though we cannot see these inherited member functions in BasePlusCommissionEmployee’s
source code, they’re nevertheless a part of derived class BasePlusCommissionEmployee.
The derived class’s public services also include member functions setBaseSalary, get-
BaseSalary, earnings and print (lines 16–20).

Software Engineering Observation 19.2
With inheritance, the common data members and member functions of all the classes in
the hierarchy are declared in a base class. When changes are required for these common
features, you need to make the changes only in the base class—derived classes then inherit
the changes. Without inheritance, changes would need to be made to all the source code
files that contain a copy of the code in question.

1 // Fig. 19.10: BasePlusCommissionEmployee.h

2 // BasePlusCommissionEmployee class derived from class
3 // CommissionEmployee.

4 #ifndef BASEPLUS_H
5 #define BASEPLUS_H
6
7 #include <string> // C++ standard string class
8 #include "CommissionEmployee.h" // CommissionEmployee class declaration
9

10
11 {
12 public:
13 BasePlusCommissionEmployee(const std::string &, const std::string &,
14 const std::string &, double = 0.0, double = 0.0, double = 0.0);
15

16 void setBaseSalary(double); // set base salary
17 double getBaseSalary() const; // return base salary
18
19 double earnings() const; // calculate earnings
20 void print() const; // print BasePlusCommissionEmployee object

Fig. 19.10 | BasePlusCommissionEmployee class definition indicating inheritance
relationship with class CommissionEmployee. (Part 1 of 2.)

class BasePlusCommissionEmployee : public CommissionEmployee

748 Chapter 19 Object-Oriented Programming: Inheritance

21 private:
22 double baseSalary; // base salary
23 }; // end class BasePlusCommissionEmployee
24
25 #endif

1 // Fig. 19.11: BasePlusCommissionEmployee.cpp

2 // Class BasePlusCommissionEmployee member-function definitions.
3 #include <iostream>
4 #include <stdexcept>
5 #include "BasePlusCommissionEmployee.h"
6 using namespace std;
7
8 // constructor

9 BasePlusCommissionEmployee::BasePlusCommissionEmployee(
10 const string &first, const string &last, const string &ssn,
11 double sales, double rate, double salary)
12
13

14 {

15 setBaseSalary(salary); // validate and store base salary
16 } // end BasePlusCommissionEmployee constructor

17
18 // set base salary
19 void BasePlusCommissionEmployee::setBaseSalary(double salary)
20 {

21 if (salary >= 0.0)
22 baseSalary = salary;

23 else
24 throw invalid_argument("Salary must be >= 0.0");
25 } // end function setBaseSalary

26
27 // return base salary
28 double BasePlusCommissionEmployee::getBaseSalary() const
29 {

30 return baseSalary;
31 } // end function getBaseSalary

32
33 // calculate earnings
34 double BasePlusCommissionEmployee::earnings() const
35 {

36
37

38 } // end function earnings

39

Fig. 19.11 | BasePlusCommissionEmployee implementation file: private base-class data
cannot be accessed from derived class. (Part 1 of 2.)

Fig. 19.10 | BasePlusCommissionEmployee class definition indicating inheritance
relationship with class CommissionEmployee. (Part 2 of 2.)

// explicitly call base-class constructor

: CommissionEmployee(first, last, ssn, sales, rate)

// derived class cannot access the base class’s private data

return baseSalary + (commissionRate * grossSales);

19.3 Relationship between Base and Derived Classes 749

Figure 19.11 shows BasePlusCommissionEmployee’s member-function implementa-
tions. The constructor (lines 9–16) introduces base-class initializer syntax (line 13),
which uses a member initializer to pass arguments to the base-class (CommissionEmployee)
constructor. C++ requires that a derived-class constructor call its base-class constructor to
initialize the base-class data members that are inherited into the derived class. Line 13 does
this by explicitly invoking the CommissionEmployee constructor by name, passing the con-
structor’s parameters first, last, ssn, sales and rate as arguments to initialize the base-
class data members firstName, lastName, socialSecurityNumber, grossSales and com-
missionRate, respectively. If BasePlusCommissionEmployee’s constructor did not invoke
class CommissionEmployee’s constructor explicitly, C++ would attempt to invoke class
CommissionEmployee’s default constructor implicitly—but the class does not have such a
constructor, so the compiler would issue an error. Recall from Chapter 16 that the com-
piler provides a default constructor with no parameters in any class that does not explicitly
include a constructor. However, CommissionEmployee does explicitly include a con-
structor, so a default constructor is not provided.

40 // print BasePlusCommissionEmployee object

41 void BasePlusCommissionEmployee::print() const
42 {
43

44

45
46

47

48
49 } // end function print

Compilation Errors from the LLVM Compiler in Xcode

BasePlusCommissionEmployee.cpp:37:26:
 'commissionRate' is a private member of 'CommissionEmployee'
BasePlusCommissionEmployee.cpp:37:43:
 'grossSales' is a private member of 'CommissionEmployee'
BasePlusCommissionEmployee.cpp:44:53:
 'firstName' is a private member of 'CommissionEmployee'
BasePlusCommissionEmployee.cpp:45:10:
 'lastName' is a private member of 'CommissionEmployee'
BasePlusCommissionEmployee.cpp:45:54:
 'socialSecurityNumber' is a private member of 'CommissionEmployee'
BasePlusCommissionEmployee.cpp:46:31:
 'grossSales' is a private member of 'CommissionEmployee'
BasePlusCommissionEmployee.cpp:47:35:
 'commissionRate' is a private member of 'CommissionEmployee'

Common Programming Error 19.1
When a derived-class constructor calls a base-class constructor, the arguments passed to the
base-class constructor must be consistent with the number and types of parameters specified
in one of the base-class constructors; otherwise, a compilation error occurs.

Fig. 19.11 | BasePlusCommissionEmployee implementation file: private base-class data
cannot be accessed from derived class. (Part 2 of 2.)

// derived class cannot access the base class’s private data
cout << "base-salaried commission employee: " << firstName << ' '
 << lastName << "\nsocial security number: " << socialSecurityNumber
 << "\ngross sales: " << grossSales
 << "\ncommission rate: " << commissionRate
 << "\nbase salary: " << baseSalary;

750 Chapter 19 Object-Oriented Programming: Inheritance

Compilation Errors from Accessing Base-Class private Members
The compiler generates errors for line 37 of Fig. 19.11 because base class CommissionEm-
ployee’s data members commissionRate and grossSales are private—derived class Base-
PlusCommissionEmployee’s member functions are not allowed to access base class
CommissionEmployee’s private data. The compiler issues additional errors in lines 44–47
of BasePlusCommissionEmployee’s print member function for the same reason. As you can
see, C++ rigidly enforces restrictions on accessing private data members, so that even a de-
rived class (which is intimately related to its base class) cannot access the base class’s private data.

Preventing the Errors in BasePlusCommissionEmployee
We purposely included the erroneous code in Fig. 19.11 to emphasize that a derived class’s
member functions cannot access its base class’s private data. The errors in BasePlusCom-
missionEmployee could have been prevented by using the get member functions inherited
from class CommissionEmployee. For example, line 37 could have invoked getCommis-
sionRate and getGrossSales to access CommissionEmployee’s private data members
commissionRate and grossSales, respectively. Similarly, lines 44–47 could have used ap-
propriate get member functions to retrieve the values of the base class’s data members. In
the next example, we show how using protected data also allows us to avoid the errors
encountered in this example.

Including the Base-Class Header in the Derived-Class Header with #include
Notice that we #include the base class’s header in the derived class’s header (line 8 of
Fig. 19.10). This is necessary for three reasons. First, for the derived class to use the base
class’s name in line 10, we must tell the compiler that the base class exists—the class def-
inition in CommissionEmployee.h does exactly that.

The second reason is that the compiler uses a class definition to determine the size of
an object of that class (as we discussed in Section 16.6). A client program that creates an
object of a class #includes the class definition to enable the compiler to reserve the proper
amount of memory for the object. When using inheritance, a derived-class object’s size
depends on the data members declared explicitly in its class definition and the data mem-
bers inherited from its direct and indirect base classes. Including the base class’s definition
in line 8 allows the compiler to determine the memory requirements for the base class’s
data members that become part of a derived-class object and thus contribute to the total
size of the derived-class object.

The last reason for line 8 is to allow the compiler to determine whether the derived
class uses the base class’s inherited members properly. For example, in the program of
Figs. 19.10–19.11, the compiler uses the base-class header to determine that the data
members being accessed by the derived class are private in the base class. Since these are
inaccessible to the derived class, the compiler generates errors. The compiler also uses the
base class’s function prototypes to validate function calls made by the derived class to the
inherited base-class functions.

Performance Tip 19.1
In a derived-class constructor, invoking base-class constructors and initializing member
objects explicitly in the member initializer list prevents duplicate initialization in which
a default constructor is called, then data members are modified again in the derived-class
constructor’s body.

19.3 Relationship between Base and Derived Classes 751

Linking Process in an Inheritance Hierarchy
In Section 16.7, we discussed the linking process for creating an executable GradeBook ap-
plication. In that example, you saw that the client’s object code was linked with the object
code for class GradeBook, as well as the object code for any C++ Standard Library classes
used in either the client code or in class GradeBook.

The linking process is similar for a program that uses classes in an inheritance hier-
archy. The process requires the object code for all classes used in the program and the
object code for the direct and indirect base classes of any derived classes used by the pro-
gram. Suppose a client wants to create an application that uses class BasePlusCommission-
Employee, which is a derived class of CommissionEmployee (we’ll see an example of this in
Section 19.3.4). When compiling the client application, the client’s object code must be
linked with the object code for classes BasePlusCommissionEmployee and Commission-
Employee, because BasePlusCommissionEmployee inherits member functions from its
base class CommissionEmployee. The code is also linked with the object code for any C++
Standard Library classes used in class CommissionEmployee, class BasePlusCommission-
Employee or the client code. This provides the program with access to the implementa-
tions of all of the functionality that the program may use.

19.3.4 CommissionEmployee–BasePlusCommissionEmployee
Inheritance Hierarchy Using protected Data
Chapter 16 introduced access specifiers public and private. A base class’s public mem-
bers are accessible within its body and anywhere that the program has a handle (i.e., a
name, reference or pointer) to an object of that class or one of its derived classes. A base
class’s private members are accessible only within its body and to the friends of that base
class. In this section, we introduce the access specifier protected.

Using protected access offers an intermediate level of protection between public and
private access. To enable class BasePlusCommissionEmployee to directly access Commis-
sionEmployee data members firstName, lastName, socialSecurityNumber, grossSales
and commissionRate, we can declare those members as protected in the base class. A base
class’s protected members can be accessed within the body of that base class, by members
and friends of that base class, and by members and friends of any classes derived from
that base class.

Defining Base Class CommissionEmployee with protected Data
Class CommissionEmployee (Fig. 19.12) now declares data members firstName, last-
Name, socialSecurityNumber, grossSales and commissionRate as protected (lines 31–
36) rather than private. The member-function implementations are identical to those in
Fig. 19.5, so CommissionEmployee.cpp is not shown here.

1 // Fig. 19.12: CommissionEmployee.h

2 // CommissionEmployee class definition with protected data.
3 #ifndef COMMISSION_H
4 #define COMMISSION_H
5

Fig. 19.12 | CommissionEmployee class definition that declares protected data to allow
access by derived classes. (Part 1 of 2.)

752 Chapter 19 Object-Oriented Programming: Inheritance

Class BasePlusCommissionEmployee
The definition of class BasePlusCommissionEmployee from Figs. 19.10–19.11 remains un-
changed, so we do not show it again here. Now that BasePlusCommissionEmployee inherits
from the updated class CommissionEmployee (Fig. 19.12), BasePlusCommissionEmployee
objects can access inherited data members that are declared protected in class Commission-
Employee (i.e., data members firstName, lastName, socialSecurityNumber, grossSales
and commissionRate). As a result, the compiler does not generate errors when compiling the
BasePlusCommissionEmployee earnings and print member-function definitions in
Fig. 19.11 (lines 34–38 and 41–49, respectively). This shows the special privileges that a de-
rived class is granted to access protected base-class data members. Objects of a derived class
also can access protected members in any of that derived class’s indirect base classes.

Class BasePlusCommissionEmployee does not inherit class CommissionEmployee’s
constructor. However, class BasePlusCommissionEmployee’s constructor (Fig. 19.11,
lines 9–16) calls class CommissionEmployee’s constructor explicitly with member initial-

6 #include <string> // C++ standard string class
7
8 class CommissionEmployee
9 {

10 public:
11 CommissionEmployee(const std::string &, const std::string &,
12 const std::string &, double = 0.0, double = 0.0);
13

14 void setFirstName(const std::string &); // set first name
15 std::string getFirstName() const; // return first name
16
17 void setLastName(const std::string &); // set last name
18 std::string getLastName() const; // return last name
19
20 void setSocialSecurityNumber(const std::string &); // set SSN
21 std::string getSocialSecurityNumber() const; // return SSN
22
23 void setGrossSales(double); // set gross sales amount
24 double getGrossSales() const; // return gross sales amount
25
26 void setCommissionRate(double); // set commission rate
27 double getCommissionRate() const; // return commission rate
28
29 double earnings() const; // calculate earnings
30 void print() const; // print CommissionEmployee object
31
32

33
34

35

36
37 }; // end class CommissionEmployee

38
39 #endif

Fig. 19.12 | CommissionEmployee class definition that declares protected data to allow
access by derived classes. (Part 2 of 2.)

protected:
std::string firstName;

std::string lastName;

std::string socialSecurityNumber;
double grossSales; // gross weekly sales
double commissionRate; // commission percentage

19.3 Relationship between Base and Derived Classes 753

izer syntax (line 13). Recall that BasePlusCommissionEmployee’s constructor must explic-
itly call the constructor of class CommissionEmployee, because CommissionEmployee does
not contain a default constructor that could be invoked implicitly.

Testing the Modified BasePlusCommissionEmployee Class
To test the updated class hierarchy, we reused the test program from Fig. 19.9. As shown
in Fig. 19.13, the output is identical to that of Fig. 19.9. We created the first class Base-
PlusCommissionEmployee without using inheritance and created this version of Base-
PlusCommissionEmployee using inheritance; however, both classes provide the same
functionality. The code for class BasePlusCommissionEmployee (i.e., the header and imple-
mentation files), which is 74 lines, is considerably shorter than the code for the noninherited
version of the class, which is 161 lines, because the inherited version absorbs part of its func-
tionality from CommissionEmployee, whereas the noninherited version does not absorb any
functionality. Also, there is now only one copy of the CommissionEmployee functionality
declared and defined in class CommissionEmployee. This makes the source code easier to
maintain, modify and debug, because the source code related to a CommissionEmployee ex-
ists only in the files CommissionEmployee.h and CommissionEmployee.cpp.

Notes on Using protected Data
In this example, we declared base-class data members as protected, so derived classes can
modify the data directly. Inheriting protected data members slightly improves perfor-
mance, because we can directly access the members without incurring the overhead of calls
to set or get member functions.

Employee information obtained by get functions:

First name is Bob
Last name is Lewis
Social security number is 333-33-3333
Gross sales is 5000.00
Commission rate is 0.04
Base salary is 300.00

Updated employee information output by print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 1000.00

Employee's earnings: $1200.00

Fig. 19.13 | protected base-class data can be accessed from derived class.

Software Engineering Observation 19.3
In most cases, it’s better to use private data members to encourage proper software
engineering, and leave code optimization issues to the compiler. Your code will be easier
to maintain, modify and debug.

754 Chapter 19 Object-Oriented Programming: Inheritance

Using protected data members creates two serious problems. First, the derived-class
object does not have to use a member function to set the value of the base class’s protected
data member. An invalid value can easily be assigned to the protected data member, thus
leaving the object in an inconsistent state—e.g., with CommissionEmployee’s data member
grossSales declared as protected, a derived-class object can assign a negative value to
grossSales. The second problem with using protected data members is that derived-
class member functions are more likely to be written so that they depend on the base-class
implementation. Derived classes should depend only on the base-class services (i.e., non-
private member functions) and not on the base-class implementation. With protected
data members in the base class, if the base-class implementation changes, we may need to
modify all derived classes of that base class. For example, if for some reason we were to
change the names of data members firstName and lastName to first and last, then we’d
have to do so for all occurrences in which a derived class references these base-class data
members directly. Such software is said to be fragile or brittle, because a small change in
the base class can “break” derived-class implementation. You should be able to change the
base-class implementation while still providing the same services to derived classes. Of
course, if the base-class services change, we must reimplement our derived classes—good
object-oriented design attempts to prevent this.

19.3.5 CommissionEmployee–BasePlusCommissionEmployee
Inheritance Hierarchy Using private Data
We now reexamine our hierarchy once more, this time using the best software engineering
practices. Class CommissionEmployee now declares data members firstName, lastName,
socialSecurityNumber, grossSales and commissionRate as private as shown previous-
ly in lines 31–36 of Fig. 19.4.

Changes to Class CommissionEmployee’s Member Function Definitions
In the CommissionEmployee constructor implementation (Fig. 19.14, lines 9–16), we use
member initializers (line 12) to set the values of the members firstName, lastName and
socialSecurityNumber. We show how the derived-class BasePlusCommissionEmployee
(Fig. 19.15) can invoke non-private base-class member functions (setFirstName, get-
FirstName, setLastName, getLastName, setSocialSecurityNumber and getSocialSecu-
rityNumber) to manipulate these data members.

In the body of the constructor and in the bodies of member function’s earnings
(Fig. 19.14, lines 85–88) and print (lines 91–98), we call the class’s set and get member
functions to access the class’s private data members. If we decide to change the data member
names, the earnings and print definitions will not require modification—only the defini-

Software Engineering Observation 19.4
It’s appropriate to use the protected access specifier when a base class should provide a
service (i.e., a non-private member function) only to its derived classes and friends.

Software Engineering Observation 19.5
Declaring base-class data members private (as opposed to declaring them protected)
enables you to change the base-class implementation without having to change derived-
class implementations.

19.3 Relationship between Base and Derived Classes 755

tions of the get and set member functions that directly manipulate the data members will
need to change. These changes occur solely within the base class—no changes to the derived class
are needed. Localizing the effects of changes like this is a good software engineering practice.

1 // Fig. 19.14: CommissionEmployee.cpp

2 // Class CommissionEmployee member-function definitions.

3 #include <iostream>
4 #include <stdexcept>
5 #include "CommissionEmployee.h" // CommissionEmployee class definition
6 using namespace std;
7
8 // constructor

9 CommissionEmployee::CommissionEmployee(
10 const string &first, const string &last, const string &ssn,
11 double sales, double rate)
12 :
13 {

14 setGrossSales(sales); // validate and store gross sales

15 setCommissionRate(rate); // validate and store commission rate

16 } // end CommissionEmployee constructor
17
18 // set first name

19 void CommissionEmployee::setFirstName(const string &first)
20 {

21 firstName = first; // should validate

22 } // end function setFirstName
23
24 // return first name

25 string CommissionEmployee::getFirstName() const
26 {

27 return firstName;
28 } // end function getFirstName
29
30 // set last name

31 void CommissionEmployee::setLastName(const string &last)
32 {

33 lastName = last; // should validate

34 } // end function setLastName
35
36 // return last name

37 string CommissionEmployee::getLastName() const
38 {

39 return lastName;
40 } // end function getLastName
41
42 // set social security number

43 void CommissionEmployee::setSocialSecurityNumber(const string &ssn)
44 {

45 socialSecurityNumber = ssn; // should validate

46 } // end function setSocialSecurityNumber
47

Fig. 19.14 | CommissionEmployee class implementation file: CommissionEmployee class uses
member functions to manipulate its private data. (Part 1 of 2.)

firstName(first), lastName(last), socialSecurityNumber(ssn)

756 Chapter 19 Object-Oriented Programming: Inheritance

48 // return social security number

49 string CommissionEmployee::getSocialSecurityNumber() const
50 {
51 return socialSecurityNumber;
52 } // end function getSocialSecurityNumber

53
54 // set gross sales amount

55 void CommissionEmployee::setGrossSales(double sales)
56 {
57 if (sales >= 0.0)
58 grossSales = sales;

59 else
60 throw invalid_argument("Gross sales must be >= 0.0");
61 } // end function setGrossSales

62
63 // return gross sales amount

64 double CommissionEmployee::getGrossSales() const
65 {

66 return grossSales;
67 } // end function getGrossSales

68
69 // set commission rate
70 void CommissionEmployee::setCommissionRate(double rate)
71 {

72 if (rate > 0.0 && rate < 1.0)
73 commissionRate = rate;

74 else
75 throw invalid_argument("Commission rate must be > 0.0 and < 1.0");
76 } // end function setCommissionRate

77
78 // return commission rate
79 double CommissionEmployee::getCommissionRate() const
80 {

81 return commissionRate;
82 } // end function getCommissionRate

83
84 // calculate earnings
85 double CommissionEmployee::earnings() const
86 {

87 return * ;
88 } // end function earnings

89
90 // print CommissionEmployee object
91 void CommissionEmployee::print() const
92 {

93 cout << "commission employee: "
94 << << ' ' <<

95 << "\nsocial security number: " <<

96 << "\ngross sales: " <<
97 << "\ncommission rate: " << ;

98 } // end function print

Fig. 19.14 | CommissionEmployee class implementation file: CommissionEmployee class uses
member functions to manipulate its private data. (Part 2 of 2.)

getCommissionRate() getGrossSales()

getFirstName() getLastName()
getSocialSecurityNumber()

getGrossSales()

getCommissionRate()

19.3 Relationship between Base and Derived Classes 757

Changes to Class BasePlusCommissionEmployee’s Member Function Definitions
Class BasePlusCommissionEmployee inherits CommissionEmployee’s public member
functions and can access the private base-class members via the inherited member func-
tions. The class’s header remains unchanged from Fig. 19.10. The class has several changes
to its member-function implementations (Fig. 19.15) that distinguish it from the previous
version of the class (Figs. 19.10–19.11). Member functions earnings (Fig. 19.15, lines
34–37) and print (lines 40–48) each invoke member function getBaseSalary to obtain
the base salary value, rather than accessing baseSalary directly. This insulates earnings
and print from potential changes to the implementation of data member baseSalary.
For example, if we decide to rename data member baseSalary or change its type, only
member functions setBaseSalary and getBaseSalary will need to change.

Performance Tip 19.2
Using a member function to access a data member’s value can be slightly slower than ac-
cessing the data directly. However, today’s optimizing compilers are carefully designed to
perform many optimizations implicitly (such as inlining set and get member-function
calls). You should write code that adheres to proper software engineering principles, and
leave optimization to the compiler. A good rule is, “Do not second-guess the compiler.”

1 // Fig. 19.15: BasePlusCommissionEmployee.cpp
2 // Class BasePlusCommissionEmployee member-function definitions.

3 #include <iostream>
4 #include <stdexcept>
5 #include "BasePlusCommissionEmployee.h"
6 using namespace std;
7
8 // constructor

9 BasePlusCommissionEmployee::BasePlusCommissionEmployee(

10 const string &first, const string &last, const string &ssn,
11 double sales, double rate, double salary)
12 // explicitly call base-class constructor

13 : CommissionEmployee(first, last, ssn, sales, rate)
14 {

15 setBaseSalary(salary); // validate and store base salary

16 } // end BasePlusCommissionEmployee constructor
17
18 // set base salary

19 void BasePlusCommissionEmployee::setBaseSalary(double salary)
20 {

21 if (salary >= 0.0)
22 baseSalary = salary;
23 else
24 throw invalid_argument("Salary must be >= 0.0");
25 } // end function setBaseSalary
26
27 // return base salary

28 double BasePlusCommissionEmployee::getBaseSalary() const
29 {

Fig. 19.15 | BasePlusCommissionEmployee class that inherits from class
CommissionEmployee but cannot directly access the class’s private data. (Part 1 of 2.)

758 Chapter 19 Object-Oriented Programming: Inheritance

BasePlusCommissionEmployee Member Function earnings
Class BasePlusCommissionEmployee’s earnings function (Fig. 19.15, lines 34–37) rede-
fines class CommissionEmployee’s earnings member function (Fig. 19.14, lines 85–88) to
calculate the earnings of a base-salaried commission employee. Class BasePlusCommis-
sionEmployee’s version of earnings obtains the portion of the employee’s earnings based
on commission alone by calling base-class CommissionEmployee’s earnings function with
the expression CommissionEmployee::earnings() (Fig. 19.15, line 36). BasePlus-
CommissionEmployee’s earnings function then adds the base salary to this value to calcu-
late the total earnings of the employee. Note the syntax used to invoke a redefined base-
class member function from a derived class—place the base-class name and the scope reso-
lution operator (::) before the base-class member-function name. This member-function
invocation is a good software engineering practice: Recall from Chapter 17 that, if an ob-
ject’s member function performs the actions needed by another object, we should call that
member function rather than duplicating its code body. By having BasePlusCommission-
Employee’s earnings function invoke CommissionEmployee’s earnings function to calcu-
late part of a BasePlusCommissionEmployee object’s earnings, we avoid duplicating the
code and reduce code-maintenance problems.

BasePlusCommissionEmployee Member Function print
Similarly, BasePlusCommissionEmployee’s print function (Fig. 19.15, lines 40–48) rede-
fines class CommissionEmployee’s print function (Fig. 19.14, lines 91–98) to output the ap-

30 return baseSalary;
31 } // end function getBaseSalary

32
33 // calculate earnings

34 double BasePlusCommissionEmployee::earnings() const
35 {
36 return getBaseSalary() + ;

37 } // end function earnings

38
39 // print BasePlusCommissionEmployee object

40 void BasePlusCommissionEmployee::print() const
41 {
42

43
44
45

46

47 cout << "\nbase salary: " << getBaseSalary();
48 } // end function print

Common Programming Error 19.2
When a base-class member function is redefined in a derived class, the derived-class version
often calls the base-class version to do additional work. Failure to use the :: operator prefixed
with the name of the base class when referencing the base class’s member function causes in-
finite recursion, because the derived-class member function would then call itself.

Fig. 19.15 | BasePlusCommissionEmployee class that inherits from class
CommissionEmployee but cannot directly access the class’s private data. (Part 2 of 2.)

CommissionEmployee::earnings()

cout << "base-salaried ";

// invoke CommissionEmployee's print function

CommissionEmployee::print();

19.4 Constructors and Destructors in Derived Classes 759

propriate base-salaried commission employee information. The new version displays part of
a BasePlusCommissionEmployee object’s information (i.e., the string "commission employ-
ee" and the values of class CommissionEmployee’s private data members) by calling
CommissionEmployee’s print member function with the qualified name CommissionEm-
ployee::print() (Fig. 19.15, line 45). BasePlusCommissionEmployee’s print function
then outputs the remainder of a BasePlusCommissionEmployee object’s information (i.e.,
the value of class BasePlusCommissionEmployee’s base salary).

Testing the Modified Class Hierarchy
Once again, this example uses the BasePlusCommissionEmployee test program from
Fig. 19.9 and produces the same output. Although each “base-salaried commission em-
ployee” class behaves identically, the version in this example is the best engineered. By us-
ing inheritance and by calling member functions that hide the data and ensure consistency, we’ve
efficiently and effectively constructed a well-engineered class.

Summary of the CommissionEmployee–BasePlusCommissionEmployee Examples
In this section, you saw an evolutionary set of examples that was carefully designed to teach
key capabilities for good software engineering with inheritance. You learned how to create
a derived class using inheritance, how to use protected base-class members to enable a de-
rived class to access inherited base-class data members and how to redefine base-class func-
tions to provide versions that are more appropriate for derived-class objects. In addition,
you learned how to apply software engineering techniques from Chapter 17 and this chap-
ter to create classes that are easy to maintain, modify and debug.

19.4 Constructors and Destructors in Derived Classes
As we explained in the preceding section, instantiating a derived-class object begins a chain
of constructor calls in which the derived-class constructor, before performing its own tasks,
invokes its direct base class’s constructor either explicitly (via a base-class member initializ-
er) or implicitly (calling the base class’s default constructor). Similarly, if the base class is
derived from another class, the base-class constructor is required to invoke the constructor
of the next class up in the hierarchy, and so on. The last constructor called in this chain is
the one of the class at the base of the hierarchy, whose body actually finishes executing first.
The most derived-class constructor’s body finishes executing last. Each base-class construc-
tor initializes the base-class data members that the derived-class object inherits. In the
CommissionEmployee/BasePlusCommissionEmployee hierarchy that we’ve been studying,
when a program creates a BasePlusCommissionEmployee object, the CommissionEmployee
constructor is called. Since class CommissionEmployee is at the base of the hierarchy, its
constructor executes, initializing the private CommissionEmployee data members that are
part of the BasePlusCommissionEmployee object. When CommissionEmployee’s construc-
tor completes execution, it returns control to BasePlusCommissionEmployee’s constructor,
which initializes the BasePlusCommissionEmployee object’s baseSalary.

Software Engineering Observation 19.6
When a program creates a derived-class object, the derived-class constructor immediately
calls the base-class constructor, the base-class constructor’s body executes, then the derived
class’s member initializers execute and finally the derived-class constructor’s body
executes. This process cascades up the hierarchy if it contains more than two levels.

760 Chapter 19 Object-Oriented Programming: Inheritance

When a derived-class object is destroyed, the program calls that object’s destructor.
This begins a chain (or cascade) of destructor calls in which the derived-class destructor
and the destructors of the direct and indirect base classes and the classes’ members execute
in reverse of the order in which the constructors executed. When a derived-class object’s
destructor is called, the destructor performs its task, then invokes the destructor of the next
base class up the hierarchy. This process repeats until the destructor of the final base class
at the top of the hierarchy is called. Then the object is removed from memory.

Base-class constructors, destructors and overloaded assignment operators (Chapter 18)
are not inherited by derived classes. Derived-class constructors, destructors and overloaded
assignment operators, however, can call base-class versions.

C++11: Inheriting Base Class Constructors
Sometimes a derived class’s constructors simply mimic the base class’s constructors. A fre-
quently requested convenience feature for C++11 was the ability to inherit a base class’s
constructors. You can now do this by explicitly including a using declaration of the form

anywhere in the derived-class definition. In the preceding declaration, BaseClass is the base
class’s name. With a few exceptions (listed below), for each constructor in the base class,
the compiler generates a derived-class constructor that calls the corresponding base-class
constructor. The generated constructors perform only default initialization for the derived
class’s additional data members. When you inherit constructors:

• By default, each inherited constructor has the same access level (public, protect-
ed or private) as its corresponding base-class constructor.

• The default, copy and move constructors are not inherited.

• If a constructor is deleted in the base class by placing = delete in its prototype,
the corresponding constructor in the derived class is also deleted.

• If the derived class does not explicitly define constructors, the compiler generates
a default constructor in the derived class—even if it inherits other constructors
from its base class.

• If a constructor that you explicitly define in a derived class has the same parameter
list as a base-class constructor, then the base-class constructor is not inherited.

• A base-class constructor’s default arguments are not inherited. Instead, the com-
piler generates overloaded constructors in the derived class. For example, if the base
class declares the constructor

Software Engineering Observation 19.7
Suppose that we create an object of a derived class where both the base class and the derived
class contain (via composition) objects of other classes. When an object of that derived class
is created, first the constructors for the base class’s member objects execute, then the base-class
constructor body executes, then the constructors for the derived class’s member objects execute,
then the derived class’s constructor body executes. Destructors for derived-class objects are
called in the reverse of the order in which their corresponding constructors are called.

using BaseClass::BaseClass;

 BaseClass(int = 0, double = 0.0);

19.5 public, protected and private Inheritance 761

the compiler generates the following two derived-class constructors without de-
fault arguments

These each call the BaseClass constructor that specifies the default arguments.

19.5 public, protected and private Inheritance
When deriving a class from a base class, the base class may be inherited through public,
protected or private inheritance. We normally use public inheritance in this book. Use
of protected inheritance is rare. In some cases, private inheritance is used as an alterna-
tive to composition. Figure 19.16 summarizes for each type of inheritance the accessibility
of base-class members in a derived class. The first column contains the base-class access
specifiers.

When deriving a class with public inheritance, public members of the base class
become public members of the derived class, and protected members of the base class
become protected members of the derived class. A base class’s private members are never
accessible directly from a derived class, but can be accessed through calls to the public and
protected members of the base class.

 DerivedClass(int);
 DerivedClass(int, double);

Fig. 19.16 | Summary of base-class member accessibility in a derived class.

Type of inheritance

public
inheritance

protected in derived class.

Can be accessed directly
by member functions and
friend functions.

Hidden in derived class.

Can be accessed by member
functions and friend
functions through public
or protected member
functions of the base class.

public in derived class.

Can be accessed directly
by member functions,
friend functions and
nonmember functions.

protected in derived class.

Can be accessed directly
by member functions and
friend functions.

Hidden in derived class.

Can be accessed by member
functions and friend
functions through public
or protected member
functions of the base class.

private in derived class.

Can be accessed directly
by member functions and
friend functions.

private in derived class.

Can be accessed directly
by member functions and
friend functions.

protected
inheritance

private
inheritance

p
r
i
v
a
t
e

p
r
o
t
e
c
t
e
d

p
u
b
l
i
c

Base-class
member-
access
specifier

protected in derived class.

Can be accessed directly
by member functions and
friend functions.

Hidden in derived class.

Can be accessed by member
functions and friend
functions through public
or protected member
functions of the base class.

762 Chapter 19 Object-Oriented Programming: Inheritance

When deriving a class with protected inheritance, public and protected members
of the base class become protected members of the derived class. When deriving a class
with private inheritance, public and protected members of the base class become pri-
vate members (e.g., the functions become utility functions) of the derived class. Private
and protected inheritance are not is-a relationships.

19.6 Software Engineering with Inheritance
Sometimes it’s difficult for students to appreciate the scope of problems faced by designers
who work on large-scale software projects in industry. People experienced with such proj-
ects say that effective software reuse improves the software development process. Object-
oriented programming facilitates software reuse, thus shortening development times and
enhancing software quality.

When we use inheritance to create a new class from an existing one, the new class
inherits the data members and member functions of the existing class, as described in
Fig. 19.16. We can customize the new class to meet our needs by redefining base-class
members and by including additional members. The derived-class programmer does this
in C++ without accessing the base class’s source code (the derived class must be able to link
to the base class’s object code). This powerful capability is attractive to software devel-
opers. They can develop proprietary classes for sale or license and make these classes avail-
able to users in object-code format. Users then can derive new classes from these library
classes rapidly and without accessing the proprietary source code. The software developers
need to supply the headers along with the object code

The availability of substantial and useful class libraries delivers the maximum benefits
of software reuse through inheritance. The standard C++ libraries tend to be general pur-
pose and limited in scope. There is a worldwide commitment to the development of class
libraries for a huge variety of application arenas.

19.7 Wrap-Up
This chapter introduced inheritance—the ability to create a class by absorbing an existing
class’s data members and member functions and embellishing them with new capabilities.
Through a series of examples using an employee inheritance hierarchy, you learned the no-
tions of base classes and derived classes and used public inheritance to create a derived class
that inherits members from a base class. The chapter introduced the access specifier pro-
tected—derived-class member functions can access protected base-class members. You
learned how to access redefined base-class members by qualifying their names with the base-
class name and scope resolution operator (::). You also saw the order in which constructors

Software Engineering Observation 19.8
At the design stage in an object-oriented system, the designer often determines that certain
classes are closely related. The designer should “factor out” common attributes and
behaviors and place these in a base class, then use inheritance to form derived classes.

Software Engineering Observation 19.9
Creating a derived class does not affect its base class’s source code. Inheritance preserves the
integrity of the base class.

 Summary 763

and destructors are called for objects of classes that are part of an inheritance hierarchy. Fi-
nally, we explained the three types of inheritance—public, protected and private—and
the accessibility of base-class members in a derived class when using each type.

In Chapter 20, Object-Oriented Programming: Polymorphism, we build on our dis-
cussion of inheritance by introducing polymorphism—an object-oriented concept that
enables us to write programs that handle, in a more general manner, objects of a wide
variety of classes related by inheritance. After studying Chapter 20, you’ll be familiar with
classes, objects, encapsulation, inheritance and polymorphism—the essential concepts of
object-oriented programming.

Summary
Section 19.1 Introduction
• Software reuse reduces program development time and cost.

• Inheritance (p. 733) is a form of software reuse in which you create a class that absorbs an existing
class’s capabilities, then customizes or enhances them. The existing class is called the base class
(p. 733), and the new class is referred to as the derived class (p. 733).

• Every object of a derived class is also an object of that class’s base class. However, a base-class
object is not an object of that class’s derived classes.

• The is-a relationship (p. 733) represents inheritance. In an is-a relationship, an object of a de-
rived class also can be treated as an object of its base class.

• The has-a relationship (p. 733) represents composition—an object contains one or more objects
of other classes as members, but does not disclose their behavior directly in its interface.

Section 19.2 Base Classes and Derived Classes
• A direct base class (p. 735) is the one from which a derived class explicitly inherits. An indirect

base class (p. 735) is inherited from two or more levels up the class hierarchy (p. 734).

• With single inheritance (p. 735), a class is derived from one base class. With multiple inheritance
(p. 735), a class inherits from multiple (possibly unrelated) base classes.

• A derived class represents a more specialized group of objects.

• Inheritance relationships form class hierarchies.

• It’s possible to treat base-class objects and derived-class objects similarly; the commonality shared
between the object types is expressed in the base class’s data members and member functions.

Section 19.4 Constructors and Destructors in Derived Classes
• When an object of a derived class is instantiated, the base class’s constructor is called immediately

to initialize the base-class data members in the derived-class object, then the derived-class con-
structor initializes the additional derived-class data members.

• When a derived-class object is destroyed, the destructors are called in the reverse order of the con-
structors—first the derived-class destructor is called, then the base-class destructor is called.

• A base class’s public members are accessible anywhere that the program has a handle to an object
of that base class or to an object of one of that base class’s derived classes—or, when using the
scope resolution operator, whenever the class’s name is in scope.

• A base class’s private members are accessible only within the base class or from its friends.

• A base class’s protected members can be accessed by members and friends of that base class and
by members and friends of any classes derived from that base class.

764 Chapter 19 Object-Oriented Programming: Inheritance

• In C++11, a derived class can inherit constructors from its base class by including anywhere in
the derived-class definition a using declaration of the form

using BaseClass::BaseClass;

Section 19.5 public, protected and private Inheritance
• Declaring data members private, while providing non-private member functions to manipu-

late and perform validity checking on this data, enforces good software engineering.

• When deriving a class, the base class may be declared as either public, protected or private.

• When deriving a class with public inheritance (p. 761), public members of the base class be-
come public members of the derived class, and protected members of the base class become
protected members of the derived class.

• When deriving a class with protected inheritance (p. 762), public and protected members of
the base class become protected members of the derived class.

• When deriving a class with private inheritance (p. 762), public and protected members of the
base class become private members of the derived class.

Self-Review Exercises
19.1 Fill in the blanks in each of the following statements:

a) is a form of software reuse in which new classes absorb the data and behaviors
of existing classes and embellish these classes with new capabilities.

b) A base class’s members can be accessed in the base-class definition, in derived-
class definitions and in friends of the base class its derived classes.

c) In a(n) relationship, an object of a derived class also can be treated as an object
of its base class.

d) In a(n) relationship, a class object has one or more objects of other classes as
members.

e) In single inheritance, a class exists in a(n) relationship with its derived classes.
f) A base class’s members are accessible within that base class and anywhere that

the program has a handle to an object of that class or one of its derived classes.
g) A base class’s protected access members have a level of protection between those of

public and access.
h) C++ provides for , which allows a derived class to inherit from many base class-

es, even if the base classes are unrelated.
i) When an object of a derived class is instantiated, the base class’s is called im-

plicitly or explicitly to do any necessary initialization of the base-class data members in
the derived-class object.

j) When deriving a class with public inheritance, public members of the base class be-
come members of the derived class, and protected members of the base class
become members of the derived class.

k) When deriving a class from with protected inheritance, public members of the base
class become members of the derived class, and protected members of the
base class become members of the derived class.

19.2 State whether each of the following is true or false. If false, explain why.
a) Base-class constructors are not inherited by derived classes.
b) A has-a relationship is implemented via inheritance.
c) A Car class has an is-a relationship with the SteeringWheel and Brakes classes.
d) Inheritance encourages the reuse of proven high-quality software.
e) When a derived-class object is destroyed, the destructors are called in the reverse order

of the constructors.

 Answers to Self-Review Exercises 765

Answers to Self-Review Exercises
19.1 a) Inheritance. b) protected. c) is-a or inheritance (for public inheritance). d) has-a or
composition or aggregation. e) hierarchical. f) public. g) private. h) multiple inheritance.
i) constructor. j) public, protected. k) protected, protected.

19.2 a) True. b) False. A has-a relationship is implemented via composition. An is-a relationship
is implemented via inheritance. c) False. This is an example of a has-a relationship. Class Car has
an is-a relationship with class Vehicle. d) True. e) True.

Exercises
19.3 (Composition as an Alternative to Inheritance) Many programs written with inheritance
could be written with composition instead, and vice versa. Rewrite class BasePlusCommissionEm-
ployee of the CommissionEmployee–BasePlusCommissionEmployee hierarchy to use composition
rather than inheritance. After you do this, assess the relative merits of the two approaches for de-
signing classes CommissionEmployee and BasePlusCommissionEmployee, as well as for object-orient-
ed programs in general. Which approach is more natural? Why?

19.4 (Inheritance Advantage) Discuss the ways in which inheritance promotes software reuse,
saves time during program development and helps prevent errors.

19.5 (Protected vs. Private Base Classes) Some programmers prefer not to use protected access
because they believe it breaks the encapsulation of the base class. Discuss the relative merits of using
protected access vs. using private access in base classes.

19.6 (Student Inheritance Hierarchy) Draw an inheritance hierarchy for students at a university
similar to the hierarchy shown in Fig. 19.2. Use Student as the base class of the hierarchy, then in-
clude classes UndergraduateStudent and GraduateStudent that derive from Student. Continue to
extend the hierarchy as deep (i.e., as many levels) as possible. For example, Freshman, Sophomore,
Junior and Senior might derive from UndergraduateStudent, and DoctoralStudent and Mas-
tersStudent might derive from GraduateStudent. After drawing the hierarchy, discuss the relation-
ships that exist between the classes. [Note: You do not need to write any code for this exercise.]

19.7 (Richer Shape Hierarchy) The world of shapes is much richer than the shapes included in
the inheritance hierarchy of Fig. 19.3. Write down all the shapes you can think of—both two-di-
mensional and three-dimensional—and form them into a more complete Shape hierarchy with as
many levels as possible. Your hierarchy should have the base class Shape from which class TwoDimen-
sionalShape and class ThreeDimensionalShape are derived. [Note: You do not need to write any code
for this exercise.] We’ll use this hierarchy in the exercises of Chapter 20 to process a set of distinct
shapes as objects of base-class Shape. (This technique, called polymorphism, is the subject of
Chapter 20.)

19.8 (Quadrilateral Inheritance Hierarchy) Draw an inheritance hierarchy for classes Quadri-
lateral, Trapezoid, Parallelogram, Rectangle and Square. Use Quadrilateral as the base class of
the hierarchy. Make the hierarchy as deep as possible.

19.9 (Package Inheritance Hierarchy) Package-delivery services, such as FedEx®, DHL® and
UPS®, offer a number of different shipping options, each with specific costs associated. Create an
inheritance hierarchy to represent various types of packages. Use class Package as the base class of
the hierarchy, then include classes TwoDayPackage and OvernightPackage that derive from Package.
Base class Package should include data members representing the name, address, city, state and ZIP
code for both the sender and the recipient of the package, in addition to data members that store
the weight (in ounces) and cost per ounce to ship the package. Package’s constructor should initial-
ize these data members. Ensure that the weight and cost per ounce contain positive values. Package
should provide a public member function calculateCost that returns a double indicating the cost

766 Chapter 19 Object-Oriented Programming: Inheritance

associated with shipping the package. Package’s calculateCost function should determine the cost
by multiplying the weight by the cost per ounce. Derived class TwoDayPackage should inherit the
functionality of base class Package, but also include a data member that represents a flat fee that the
shipping company charges for two-day-delivery service. TwoDayPackage’s constructor should receive
a value to initialize this data member. TwoDayPackage should redefine member function calculate-
Cost so that it computes the shipping cost by adding the flat fee to the weight-based cost calculated
by base class Package’s calculateCost function. Class OvernightPackage should inherit directly
from class Package and contain an additional data member representing an additional fee per ounce
charged for overnight-delivery service. OvernightPackage should redefine member function calcu-
lateCost so that it adds the additional fee per ounce to the standard cost per ounce before calculat-
ing the shipping cost. Write a test program that creates objects of each type of Package and tests
member function calculateCost.

19.10 (Account Inheritance Hierarchy) Create an inheritance hierarchy that a bank might use to
represent customers’ bank accounts. All customers at this bank can deposit (i.e., credit) money into
their accounts and withdraw (i.e., debit) money from their accounts. More specific types of accounts
also exist. Savings accounts, for instance, earn interest on the money they hold. Checking accounts,
on the other hand, charge a fee per transaction (i.e., credit or debit).

Create an inheritance hierarchy containing base class Account and derived classes Savings-
Account and CheckingAccount that inherit from class Account. Base class Account should include one
data member of type double to represent the account balance. The class should provide a constructor
that receives an initial balance and uses it to initialize the data member. The constructor should vali-
date the initial balance to ensure that it’s greater than or equal to 0.0. If not, the balance should be set
to 0.0 and the constructor should display an error message, indicating that the initial balance was
invalid. The class should provide three member functions. Member function credit should add an
amount to the current balance. Member function debit should withdraw money from the Account
and ensure that the debit amount does not exceed the Account’s balance. If it does, the balance should
be left unchanged and the function should print the message "Debit amount exceeded account bal-
ance." Member function getBalance should return the current balance.

Derived class SavingsAccount should inherit the functionality of an Account, but also include
a data member of type double indicating the interest rate (percentage) assigned to the Account.
SavingsAccount’s constructor should receive the initial balance, as well as an initial value for the
SavingsAccount’s interest rate. SavingsAccount should provide a public member function
calculateInterest that returns a double indicating the amount of interest earned by an account.
Member function calculateInterest should determine this amount by multiplying the interest
rate by the account balance. [Note: SavingsAccount should inherit member functions credit and
debit as is without redefining them.]

Derived class CheckingAccount should inherit from base class Account and include an addi-
tional data member of type double that represents the fee charged per transaction. Checking-
Account’s constructor should receive the initial balance, as well as a parameter indicating a fee
amount. Class CheckingAccount should redefine member functions credit and debit so that they
subtract the fee from the account balance whenever either transaction is performed successfully.
CheckingAccount’s versions of these functions should invoke the base-class Account version to per-
form the updates to an account balance. CheckingAccount’s debit function should charge a fee
only if money is actually withdrawn (i.e., the debit amount does not exceed the account balance).
[Hint: Define Account’s debit function so that it returns a bool indicating whether money was
withdrawn. Then use the return value to determine whether a fee should be charged.]

After defining the classes in this hierarchy, write a program that creates objects of each class
and tests their member functions. Add interest to the SavingsAccount object by first invoking its
calculateInterest function, then passing the returned interest amount to the object’s credit
function.

20Object-Oriented
Programming:
Polymorphism

O b j e c t i v e s
In this chapter you’ll learn:
■ How polymorphism makes

programming more
convenient and systems
more extensible.

■ The distinction between
abstract and concrete classes
and how to create abstract
classes.

■ To use runtime type
information (RTTI).

■ How C++ implements
virtual functions and
dynamic binding.

■ How virtual destructors
ensure that all appropriate
destructors run on an object.

768 Chapter 20 Object-Oriented Programming: Polymorphism

20.1 Introduction
We now continue our study of OOP by explaining and demonstrating polymorphism
with inheritance hierarchies. Polymorphism enables you to “program in the general” rather
than “program in the specific.” In particular, polymorphism enables you to write programs
that process objects of classes that are part of the same class hierarchy as if they were all
objects of the hierarchy’s base class. As we’ll soon see, polymorphism works off base-class
pointer handles and base-class reference handles, but not off name handles.

Implementing for Extensibility
With polymorphism, you can design and implement systems that are easily extensible—
new classes can be added with little or no modification to the general portions of the pro-
gram, as long as the new classes are part of the inheritance hierarchy that the program pro-
cesses generally. The only parts of a program that must be altered to accommodate new
classes are those that require direct knowledge of the new classes that you add to the hier-
archy. For example, if we create class Tortoise that inherits from class Animal (which
might respond to a move message by crawling one inch), we need to write only the Tor-
toise class and the part of the simulation that instantiates a Tortoise object. The portions
of the simulation that process each Animal generally can remain the same.

Optional Discussion of Polymorphism “Under the Hood”
A key feature of this chapter is its (optional) detailed discussion of polymorphism, virtual
functions and dynamic binding “under the hood,” which uses a detailed diagram to ex-
plain how polymorphism can be implemented in C++.

20.1 Introduction
20.2 Introduction to Polymorphism:

Polymorphic Video Game
20.3 Relationships Among Objects in an

Inheritance Hierarchy
20.3.1 Invoking Base-Class Functions from

Derived-Class Objects
20.3.2 Aiming Derived-Class Pointers at Base-

Class Objects
20.3.3 Derived-Class Member-Function Calls via

Base-Class Pointers
20.3.4 Virtual Functions and Virtual Destructors

20.4 Type Fields and switch Statements
20.5 Abstract Classes and Pure virtual

Functions
20.6 Case Study: Payroll System Using

Polymorphism
20.6.1 Creating Abstract Base Class Employee

20.6.2 Creating Concrete Derived Class
SalariedEmployee

20.6.3 Creating Concrete Derived Class
CommissionEmployee

20.6.4 Creating Indirect Concrete Derived
Class BasePlusCommission-
Employee

20.6.5 Demonstrating Polymorphic
Processing

20.7 (Optional) Polymorphism, Virtual
Functions and Dynamic Binding
“Under the Hood”

20.8 Case Study: Payroll System Using
Polymorphism and Runtime Type
Information with Downcasting,
dynamic_cast, typeid and
type_info

20.9 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Making a Difference

20.2 Introduction to Polymorphism: Polymorphic Video Game 769

20.2 Introduction to Polymorphism: Polymorphic Video
Game
Suppose that we design a video game that manipulates objects of many different types, in-
cluding objects of classes Martian, Venutian, Plutonian, SpaceShip and LaserBeam.
Imagine that each of these classes inherits from the common base class SpaceObject,
which contains the member function draw. Each derived class implements this function
in a manner appropriate for that class. A screen-manager program maintains a container
(e.g., a vector) that holds SpaceObject pointers to objects of the various classes. To refresh
the screen, the screen manager periodically sends each object the same message—namely,
draw. Each type of object responds in a unique way. For example, a Martian object might
draw itself in red with the appropriate number of antennae, a SpaceShip object might
draw itself as a silver flying saucer, and a LaserBeam object might draw itself as a bright red
beam across the screen. The same message (in this case, draw) sent to a variety of objects
has many forms of results—hence the term polymorphism.

A polymorphic screen manager facilitates adding new classes to a system with minimal
modifications to its code. Suppose that we want to add objects of class Mercurian to our
video game. To do so, we must build a class Mercurian that inherits from SpaceObject,
but provides its own definition of member function draw. Then, when pointers to objects
of class Mercurian appear in the container, you do not need to modify the code for the
screen manager. The screen manager invokes member function draw on every object in the
container, regardless of the object’s type, so the new Mercurian objects simply “plug right
in.” Thus, without modifying the system (other than to build and include the classes
themselves), you can use polymorphism to accommodate additional classes, including
ones that were not even envisioned when the system was created.

20.3 Relationships Among Objects in an Inheritance
Hierarchy
Section 19.3 created an employee class hierarchy, in which class BasePlusCommission-
Employee inherited from class CommissionEmployee. The Chapter 19 examples manipu-
lated CommissionEmployee and BasePlusCommissionEmployee objects by using the

Software Engineering Observation 20.1
Polymorphism enables you to deal in generalities and let the execution-time environment
concern itself with the specifics. You can direct a variety of objects to behave in manners
appropriate to those objects without even knowing their types—as long as those objects
belong to the same inheritance hierarchy and are being accessed off a common base-class
pointer or a common base-class reference.

Software Engineering Observation 20.2
Polymorphism promotes extensibility: Software written to invoke polymorphic behavior
is written independently of the specific types of the objects to which messages are sent.
Thus, new types of objects that can respond to existing messages can be incorporated into
such a system without modifying the base system. Only client code that instantiates new
objects must be modified to accommodate new types.

770 Chapter 20 Object-Oriented Programming: Polymorphism

objects’ names to invoke their member functions. We now examine the relationships
among classes in a hierarchy more closely. The next several sections present a series of ex-
amples that demonstrate how base-class and derived-class pointers can be aimed at base-
class and derived-class objects, and how those pointers can be used to invoke member
functions that manipulate those objects.

• In Section 20.3.1, we assign the address of a derived-class object to a base-class
pointer, then show that invoking a function via the base-class pointer invokes the
base-class functionality in the derived-class object—i.e., the type of the handle de-
termines which function is called.

• In Section 20.3.2, we assign the address of a base-class object to a derived-class
pointer, which results in a compilation error. We discuss the error message and
investigate why the compiler does not allow such an assignment.

• In Section 20.3.3, we assign the address of a derived-class object to a base-class
pointer, then examine how the base-class pointer can be used to invoke only the
base-class functionality—when we attempt to invoke derived-class member functions
through the base-class pointer, compilation errors occur.

• Finally, in Section 20.3.4, we demonstrate how to get polymorphic behavior
from base-class pointers aimed at derived-class objects. We introduce virtual
functions and polymorphism by declaring a base-class function as virtual. We
then assign the address of a derived-class object to the base-class pointer and use
that pointer to invoke derived-class functionality—precisely the capability we need
to achieve polymorphic behavior.

A key concept in these examples is to demonstrate that with public inheritance an
object of a derived class can be treated as an object of its base class. This enables various inter-
esting manipulations. For example, a program can create an array of base-class pointers
that point to objects of many derived-class types. Despite the fact that the derived-class
objects are of different types, the compiler allows this because each derived-class object is an
object of its base class. However, we cannot treat a base-class object as an object of any of its
derived classes. For example, a CommissionEmployee is not a BasePlusCommissionEm-
ployee in the hierarchy defined in Chapter 19—a CommissionEmployee does not have a
baseSalary data member and does not have member functions setBaseSalary and get-
BaseSalary. The is-a relationship applies only from a derived class to its direct and indirect
base classes.

20.3.1 Invoking Base-Class Functions from Derived-Class Objects
The example in Fig. 20.1 reuses the final versions of classes CommissionEmployee and
BasePlusCommissionEmployee from Section 19.3.5. The example demonstrates three
ways to aim base- and derived-class pointers at base- and derived-class objects. The first
two are natural and straightforward—we aim a base-class pointer at a base-class object and
invoke base-class functionality, and we aim a derived-class pointer at a derived-class object
and invoke derived-class functionality. Then, we demonstrate the relationship between
derived classes and base classes (i.e., the is-a relationship of inheritance) by aiming a base-
class pointer at a derived-class object and showing that the base-class functionality is in-
deed available in the derived-class object.

20.3 Relationships Among Objects in an Inheritance Hierarchy 771

1 // Fig. 20.1: fig20_01.cpp

2 // Aiming base-class and derived-class pointers at base-class

3 // and derived-class objects, respectively.
4 #include <iostream>
5 #include <iomanip>
6 #include "CommissionEmployee.h"
7 #include "BasePlusCommissionEmployee.h"
8 using namespace std;
9

10 int main()
11 {

12 // create base-class object
13 CommissionEmployee commissionEmployee(

14 "Sue", "Jones", "222-22-2222", 10000, .06);
15
16 // create base-class pointer

17 CommissionEmployee *commissionEmployeePtr = nullptr;
18
19 // create derived-class object
20 BasePlusCommissionEmployee basePlusCommissionEmployee(

21 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);
22
23 // create derived-class pointer

24 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = nullptr;
25
26 // set floating-point output formatting

27 cout << fixed << setprecision(2);
28
29 // output objects commissionEmployee and basePlusCommissionEmployee

30 cout << "Print base-class and derived-class objects:\n\n";
31 commissionEmployee.print(); // invokes base-class print
32 cout << "\n\n";
33 basePlusCommissionEmployee.print(); // invokes derived-class print

34
35

36

37 cout << "\n\n\nCalling print with base-class pointer to "
38 << "\nbase-class object invokes base-class print function:\n\n";
39

40
41

42

43 cout << "\n\n\nCalling print with derived-class pointer to "
44 << "\nderived-class object invokes derived-class "
45 << "print function:\n\n";
46
47
48

49
50 cout << "\n\n\nCalling print with base-class pointer to "
51 << "derived-class object\ninvokes base-class print "

Fig. 20.1 | Assigning addresses of base-class and derived-class objects to base-class and
derived-class pointers. (Part 1 of 2.)

// aim base-class pointer at base-class object and print
commissionEmployeePtr = &commissionEmployee; // perfectly natural

commissionEmployeePtr->print(); // invokes base-class print

// aim derived-class pointer at derived-class object and print
basePlusCommissionEmployeePtr = &basePlusCommissionEmployee; // natural

basePlusCommissionEmployeePtr->print(); // invokes derived-class print

// aim base-class pointer at derived-class object and print

commissionEmployeePtr = &basePlusCommissionEmployee;

772 Chapter 20 Object-Oriented Programming: Polymorphism

Recall that each BasePlusCommissionEmployee object is a CommissionEmployee that
also has a base salary. Class BasePlusCommissionEmployee’s earnings member function
(lines 34–37 of Fig. 19.15) redefines class CommissionEmployee’s earnings member func-
tion (lines 85–88 of Fig. 19.14) to include the object’s base salary. Class BasePlusCommis-
sionEmployee’s print member function (lines 40–48 of Fig. 19.15) redefines class
CommissionEmployee’s version (lines 91–98 of Fig. 19.14) to display the same informa-
tion plus the employee’s base salary.

52 << "function on that derived-class object:\n\n";
53

54 cout << endl;
55 } // end main

Print base-class and derived-class objects:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Calling print with base-class pointer to
base-class object invokes base-class print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

Calling print with derived-class pointer to
derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Calling print with base-class pointer to derived-class object
invokes base-class print function on that derived-class object:

commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04

Fig. 20.1 | Assigning addresses of base-class and derived-class objects to base-class and
derived-class pointers. (Part 2 of 2.)

commissionEmployeePtr->print(); // invokes base-class print

Notice that the base salary is not displayed

20.3 Relationships Among Objects in an Inheritance Hierarchy 773

Creating Objects and Displaying Their Contents
In Fig. 20.1, lines 13–14 create a CommissionEmployee object and line 17 creates a pointer
to a CommissionEmployee object; lines 20–21 create a BasePlusCommissionEmployee ob-
ject and line 24 creates a pointer to a BasePlusCommissionEmployee object. Lines 31 and
33 use each object’s name to invoke its print member function.

Aiming a Base-Class Pointer at a Base-Class Object
Line 36 assigns the address of base-class object commissionEmployee to base-class pointer
commissionEmployeePtr, which line 39 uses to invoke member function print on that
CommissionEmployee object. This invokes the version of print defined in base class Com-
missionEmployee.

Aiming a Derived-Class Pointer at a Derived-Class Object
Similarly, line 42 assigns the address of derived-class object basePlusCommissionEmploy-
ee to derived-class pointer basePlusCommissionEmployeePtr, which line 46 uses to in-
voke member function print on that BasePlusCommissionEmployee object. This invokes
the version of print defined in derived class BasePlusCommissionEmployee.

Aiming a Base-Class Pointer at a Derived-Class Object
Line 49 then assigns the address of derived-class object basePlusCommissionEmployee to
base-class pointer commissionEmployeePtr, which line 53 uses to invoke member function
print. This “crossover” is allowed because an object of a derived class is an object of its base
class. Despite the fact that the base class CommissionEmployee pointer points to a derived
class BasePlusCommissionEmployee object, the base class CommissionEmployee’s print
member function is invoked (rather than BasePlusCommissionEmployee’s print func-
tion). The output of each print member-function invocation in this program reveals that
the invoked functionality depends on the type of the pointer (or reference) used to invoke the func-
tion, not the type of the object for which the member function is called. In Section 20.3.4, when
we introduce virtual functions, we demonstrate that it’s possible to invoke the object
type’s functionality, rather than invoke the handle type’s functionality. We’ll see that this is
crucial to implementing polymorphic behavior—the key topic of this chapter.

20.3.2 Aiming Derived-Class Pointers at Base-Class Objects
In Section 20.3.1, we assigned the address of a derived-class object to a base-class pointer
and explained that the C++ compiler allows this assignment, because a derived-class object
is a base-class object. We take the opposite approach in Fig. 20.2, as we aim a derived-class
pointer at a base-class object. [Note: This program reuses the final versions of classes Com-
missionEmployee and BasePlusCommissionEmployee from Section 19.3.5.] Lines 8–9 of
Fig. 20.2 create a CommissionEmployee object, and line 10 creates a BasePlusCommis-
sionEmployee pointer. Line 14 attempts to assign the address of base-class object commis-
sionEmployee to derived-class pointer basePlusCommissionEmployeePtr, but the
compiler generates an error. The compiler prevents this assignment, because a Commis-
sionEmployee is not a BasePlusCommissionEmployee.

Consider the consequences if the compiler were to allow this assignment. Through a
BasePlusCommissionEmployee pointer, we can invoke every BasePlusCommission-
Employee member function, including setBaseSalary, for the object to which the pointer
points (i.e., the base-class object commissionEmployee). However, the CommissionEm-

774 Chapter 20 Object-Oriented Programming: Polymorphism

ployee object does not provide a setBaseSalary member function, nor does it provide a
baseSalary data member to set. This could lead to problems, because member function
setBaseSalary would assume that there is a baseSalary data member to set at its “usual
location” in a BasePlusCommissionEmployee object. This memory does not belong to the
CommissionEmployee object, so member function setBaseSalary might overwrite other
important data in memory, possibly data that belongs to a different object.

20.3.3 Derived-Class Member-Function Calls via Base-Class Pointers
Off a base-class pointer, the compiler allows us to invoke only base-class member func-
tions. Thus, if a base-class pointer is aimed at a derived-class object, and an attempt is
made to access a derived-class-only member function, a compilation error will occur.

Figure 20.3 shows the consequences of attempting to invoke a derived-class member
function off a base-class pointer. [Note: We’re again reusing the versions of classes Commis-
sionEmployee and BasePlusCommissionEmployee from Section 19.3.5.] Line 11 creates
commissionEmployeePtr—a pointer to a CommissionEmployee object—and lines 12–13
create a BasePlusCommissionEmployee object. Line 16 aims the base-class commissionEm-
ployeePtr at derived-class object basePlusCommissionEmployee. Recall from
Section 20.3.1 that this is allowed, because a BasePlusCommissionEmployee is a Commis-
sionEmployee (in the sense that a BasePlusCommissionEmployee object contains all the
functionality of a CommissionEmployee object). Lines 20–24 invoke base-class member
functions getFirstName, getLastName, getSocialSecurityNumber, getGrossSales and
getCommissionRate off the base-class pointer. All of these calls are allowed, because Base-
PlusCommissionEmployee inherits these member functions from CommissionEmployee.
We know that commissionEmployeePtr is aimed at a BasePlusCommissionEmployee
object, so in lines 28–29 we attempt to invoke BasePlusCommissionEmployee member

1 // Fig. 20.2: fig20_02.cpp

2 // Aiming a derived-class pointer at a base-class object.

3 #include "CommissionEmployee.h"
4 #include "BasePlusCommissionEmployee.h"
5
6 int main()
7 {

8 CommissionEmployee commissionEmployee(

9 "Sue", "Jones", "222-22-2222", 10000, .06);
10 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = nullptr;
11
12

13
14

15 } // end main

Microsoft Visual C++ compiler error message:

C:\examples\ch20\Fig20_02\fig20_02.cpp(14): error C2440: '=' :
 cannot convert from 'CommissionEmployee *' to 'BasePlusCommissionEmployee *'
 Cast from base to derived requires dynamic_cast or static_cast

Fig. 20.2 | Aiming a derived-class pointer at a base-class object.

// aim derived-class pointer at base-class object

// Error: a CommissionEmployee is not a BasePlusCommissionEmployee
basePlusCommissionEmployeePtr = &commissionEmployee;

20.3 Relationships Among Objects in an Inheritance Hierarchy 775

functions getBaseSalary and setBaseSalary. The compiler generates errors on both of
these calls, because they’re not made to member functions of base-class CommissionEm-
ployee. The handle can be used to invoke only those functions that are members of that
handle’s associated class type. (In this case, off a CommissionEmployee *, we can invoke
only CommissionEmployee member functions setFirstName, getFirstName, setLast-
Name, getLastName, setSocialSecurityNumber, getSocialSecurityNumber, setGross-
Sales, getGrossSales, setCommissionRate, getCommissionRate, earnings and print.)

Downcasting
The compiler will allow access to derived-class-only members from a base-class pointer
that’s aimed at a derived-class object if we explicitly cast the base-class pointer to a derived-
class pointer—this is known as downcasting. As you know, it’s possible to aim a base-class

1 // Fig. 20.3: fig20_03.cpp

2 // Attempting to invoke derived-class-only member functions

3 // via a base-class pointer.
4 #include <string>
5 #include "CommissionEmployee.h"
6 #include "BasePlusCommissionEmployee.h"
7 using namespace std;
8
9 int main()

10 {
11 CommissionEmployee *commissionEmployeePtr = nullptr; // base class ptr
12 BasePlusCommissionEmployee basePlusCommissionEmployee(

13 "Bob", "Lewis", "333-33-3333", 5000, .04, 300); // derived class
14

15 // aim base-class pointer at derived-class object (allowed)

16 commissionEmployeePtr = &basePlusCommissionEmployee;
17
18 // invoke base-class member functions on derived-class

19 // object through base-class pointer (allowed)
20 string firstName = commissionEmployeePtr->getFirstName();

21 string lastName = commissionEmployeePtr->getLastName();

22 string ssn = commissionEmployeePtr->getSocialSecurityNumber();
23 double grossSales = commissionEmployeePtr->getGrossSales();
24 double commissionRate = commissionEmployeePtr->getCommissionRate();
25
26

27

28
29

30 } // end main

GNU C++ compiler error messages:

fig20_03.cpp:28:47: error: ‘class CommissionEmployee’ has no member named
 ‘getBaseSalary’
fig20_03.cpp:29:27: error: ‘class CommissionEmployee’ has no member named
 ‘setBaseSalary’

Fig. 20.3 | Attempting to invoke derived-class-only functions via a base-class pointer.

// attempt to invoke derived-class-only member functions
// on derived-class object through base-class pointer (disallowed)

double baseSalary = commissionEmployeePtr->getBaseSalary();
commissionEmployeePtr->setBaseSalary(500);

776 Chapter 20 Object-Oriented Programming: Polymorphism

pointer at a derived-class object. However, as we demonstrated in Fig. 20.3, a base-class
pointer can be used to invoke only the functions declared in the base class. Downcasting
allows a derived-class-specific operation on a derived-class object pointed to by a base-class
pointer. After a downcast, the program can invoke derived-class functions that are not in
the base class. Downcasting is a potentially dangerous operation. Section 20.8 demon-
strates how to safely use downcasting.

20.3.4 Virtual Functions and Virtual Destructors
In Section 20.3.1, we aimed a base-class CommissionEmployee pointer at a derived-class
BasePlusCommissionEmployee object, then invoked member function print through
that pointer. Recall that the type of the handle determined which class’s functionality to in-
voke. In that case, the CommissionEmployee pointer invoked the CommissionEmployee
member function print on the BasePlusCommissionEmployee object, even though the
pointer was aimed at a BasePlusCommissionEmployee object that has its own custom
print function.

Why virtual Functions Are Useful
First, we consider why virtual functions are useful. Suppose that shape classes such as
Circle, Triangle, Rectangle and Square are all derived from base class Shape. Each of
these classes might be endowed with the ability to draw itself via a member function draw,
but the function for each shape is quite different. In a program that draws a set of shapes,
it would be useful to be able to treat all the shapes generally as objects of the base class
Shape. Then, to draw any shape, we could simply use a base-class Shape pointer to invoke
function draw and let the program determine dynamically (i.e., at runtime) which derived-
class draw function to use, based on the type of the object to which the base-class Shape
pointer points at any given time. This is polymorphic behavior.

Declaring virtual Functions
To enable this behavior, we declare draw in the base class as a virtual function, and we
override draw in each of the derived classes to draw the appropriate shape. From an imple-
mentation perspective, overriding a function is no different than redefining one (which is
the approach we’ve been using until now). An overridden function in a derived class has
the same signature and return type (i.e., prototype) as the function it overrides in its base
class. If we do not declare the base-class function as virtual, we can redefine that function.
By contrast, if we declare the base-class function as virtual, we can override that function
to enable polymorphic behavior. We declare a virtual function by preceding the function’s
prototype with the keyword virtual in the base class. For example,

Software Engineering Observation 20.3
If the address of a derived-class object has been assigned to a pointer of one of its direct or
indirect base classes, it’s acceptable to cast that base-class pointer back to a pointer of the
derived-class type. In fact, this must be done to call derived-class member functions that
do not appear in the base class.

Software Engineering Observation 20.4
With virtual functions, the type of the object, not the type of the handle used to invoke
the member function, determines which version of a virtual function to invoke.

20.3 Relationships Among Objects in an Inheritance Hierarchy 777

would appear in base class Shape. The preceding prototype declares that function draw is
a virtual function that takes no arguments and returns nothing. This function is declared
const because a draw function typically would not make changes to the Shape object on
which it’s invoked—virtual functions do not have to be const functions.

Invoking a virtual Function Through a Base-Class Pointer or Reference
If a program invokes a virtual function through a base-class pointer to a derived-class ob-
ject (e.g., shapePtr->draw()) or a base-class reference to a derived-class object (e.g.,
shapeRef.draw()), the program will choose the correct derived-class draw function dy-
namically (i.e., at execution time) based on the object type—not the pointer or reference type.
Choosing the appropriate function to call at execution time (rather than at compile time)
is known as dynamic binding or late binding.

Invoking a virtual Function Through an Object’s Name
When a virtual function is called by referencing a specific object by name and using the
dot member-selection operator (e.g., squareObject.draw()), the function invocation is
resolved at compile time (this is called static binding) and the virtual function that’s called
is the one defined for (or inherited by) the class of that particular object—this is not poly-
morphic behavior. Thus, dynamic binding with virtual functions occurs only off point-
ers (and, as we’ll soon see, references).

virtual Functions in the CommissionEmployee Hierarchy
Now let’s see how virtual functions can enable polymorphic behavior in our employee
hierarchy. Figures 20.4–20.5 are the headers for classes CommissionEmployee and Base-
PlusCommissionEmployee, respectively. We modified these to declare each class’s earn-
ings and print member functions as virtual (lines 29–30 of Fig. 20.4 and lines 19–20
of Fig. 20.5). Because functions earnings and print are virtual in class CommissionEm-
ployee, class BasePlusCommissionEmployee’s earnings and print functions override
class CommissionEmployee’s. In addition, class BasePlusCommissionEmployee’s earnings
and print functions are declared override.

virtual void draw() const;

Software Engineering Observation 20.5
Once a function is declared virtual, it remains virtual all the way down the
inheritance hierarchy from that point, even if that function is not explicitly declared
virtual when a derived class overrides it.

Good Programming Practice 20.1
Even though certain functions are implicitly virtual because of a declaration made high-
er in the class hierarchy, explicitly declare these functions virtual at every level of the class
hierarchy to promote program clarity.

Software Engineering Observation 20.6
When a derived class chooses not to override a virtual function from its base class, the
derived class simply inherits its base class’s virtual function implementation.

778 Chapter 20 Object-Oriented Programming: Polymorphism

Now, if we aim a base-class CommissionEmployee pointer at a derived-class Base-
PlusCommissionEmployee object, and the program uses that pointer to call either function
earnings or print, the BasePlusCommissionEmployee object’s corresponding function
will be invoked. There were no changes to the member-function implementations of
classes CommissionEmployee and BasePlusCommissionEmployee, so we reuse the versions
of Figs. 19.14 and 19.15.

Error-Prevention Tip 20.1
Apply C++11’s override keyword to every overridden function in a derived-class. This
forces the compiler to check whether the base class has a member function with the same
name and parameter list (i.e., the same signature). If not, the compiler generates an error.

1 // Fig. 20.4: CommissionEmployee.h

2 // CommissionEmployee class header declares earnings and print as virtual.

3 #ifndef COMMISSION_H
4 #define COMMISSION_H
5
6 #include <string> // C++ standard string class
7
8 class CommissionEmployee
9 {

10 public:
11 CommissionEmployee(const std::string &, const std::string &,
12 const std::string &, double = 0.0, double = 0.0);
13
14 void setFirstName(const std::string &); // set first name
15 std::string getFirstName() const; // return first name
16
17 void setLastName(const std::string &); // set last name
18 std::string getLastName() const; // return last name
19
20 void setSocialSecurityNumber(const std::string &); // set SSN
21 std::string getSocialSecurityNumber() const; // return SSN
22
23 void setGrossSales(double); // set gross sales amount
24 double getGrossSales() const; // return gross sales amount
25
26 void setCommissionRate(double); // set commission rate
27 double getCommissionRate() const; // return commission rate
28
29

30

31 private:
32 std::string firstName;

33 std::string lastName;

34 std::string socialSecurityNumber;
35 double grossSales; // gross weekly sales
36 double commissionRate; // commission percentage
37 }; // end class CommissionEmployee
38
39 #endif

Fig. 20.4 | CommissionEmployee class header declares earnings and print as virtual.

virtual double earnings() const; // calculate earnings
virtual void print() const; // print object

20.3 Relationships Among Objects in an Inheritance Hierarchy 779

We modified Fig. 20.1 to create the program of Fig. 20.6. Lines 40–51 of Fig. 20.6
demonstrate again that a CommissionEmployee pointer aimed at a CommissionEmployee
object can be used to invoke CommissionEmployee functionality, and a BasePlusCommis-
sionEmployee pointer aimed at a BasePlusCommissionEmployee object can be used to
invoke BasePlusCommissionEmployee functionality. Line 54 aims the base-class pointer
commissionEmployeePtr at derived-class object basePlusCommissionEmployee. Note that
when line 61 invokes member function print off the base-class pointer, the derived-class
BasePlusCommissionEmployee’s print member function is invoked, so line 61 outputs dif-
ferent text than line 53 does in Fig. 20.1 (when member function print was not declared
virtual). We see that declaring a member function virtual causes the program to dynam-
ically determine which function to invoke based on the type of object to which the handle points,
rather than on the type of the handle. Note again that when commissionEmployeePtr points
to a CommissionEmployee object, class CommissionEmployee’s print function is invoked
(Fig. 20.6, line 40), and when CommissionEmployeePtr points to a BasePlusCommission-
Employee object, class BasePlusCommissionEmployee’s print function is invoked (line 61).
Thus, the same message—print, in this case—sent (off a base-class pointer) to a variety of
objects related by inheritance to that base class, takes on many forms—this is polymorphic
behavior.

1 // Fig. 20.5: BasePlusCommissionEmployee.h

2 // BasePlusCommissionEmployee class derived from class

3 // CommissionEmployee.
4 #ifndef BASEPLUS_H
5 #define BASEPLUS_H
6
7 #include <string> // C++ standard string class
8 #include "CommissionEmployee.h" // CommissionEmployee class declaration
9

10 class BasePlusCommissionEmployee : public CommissionEmployee
11 {

12 public:
13 BasePlusCommissionEmployee(const std::string &, const std::string &,
14 const std::string &, double = 0.0, double = 0.0, double = 0.0);
15
16 void setBaseSalary(double); // set base salary
17 double getBaseSalary() const; // return base salary
18
19
20

21 private:
22 double baseSalary; // base salary
23 }; // end class BasePlusCommissionEmployee

24
25 #endif

Fig. 20.5 | BasePlusCommissionEmployee class header declares earnings and print
functions as virtual and override.

virtual double earnings() const override; // calculate earnings
virtual void print() const override; // print object

780 Chapter 20 Object-Oriented Programming: Polymorphism

1 // Fig. 20.6: fig20_06.cpp

2 // Introducing polymorphism, virtual functions and dynamic binding.

3 #include <iostream>
4 #include <iomanip>
5 #include "CommissionEmployee.h"
6 #include "BasePlusCommissionEmployee.h"
7 using namespace std;
8
9 int main()

10 {

11 // create base-class object

12 CommissionEmployee commissionEmployee(
13 "Sue", "Jones", "222-22-2222", 10000, .06);
14
15 // create base-class pointer
16 CommissionEmployee *commissionEmployeePtr = nullptr;
17
18 // create derived-class object

19 BasePlusCommissionEmployee basePlusCommissionEmployee(
20 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);
21
22 // create derived-class pointer
23 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = nullptr;
24
25 // set floating-point output formatting
26 cout << fixed << setprecision(2);
27
28 // output objects using static binding
29 cout << "Invoking print function on base-class and derived-class "
30 << "\nobjects with static binding\n\n";
31 commissionEmployee.print(); // static binding
32 cout << "\n\n";
33 basePlusCommissionEmployee.print(); // static binding

34
35 // output objects using dynamic binding

36 cout << "\n\n\nInvoking print function on base-class and "
37 << "derived-class \nobjects with dynamic binding";
38
39

40
41 cout << "\n\nCalling virtual function print with base-class pointer"
42 << "\nto base-class object invokes base-class "
43 << "print function:\n\n";
44

45
46
47

48 cout << "\n\nCalling virtual function print with derived-class "
49 << "pointer\nto derived-class object invokes derived-class "
50 << "print function:\n\n";
51

Fig. 20.6 | Demonstrating polymorphism by invoking a derived-class virtual function via a
base-class pointer to a derived-class object. (Part 1 of 2.)

// aim base-class pointer at base-class object and print

commissionEmployeePtr = &commissionEmployee;

commissionEmployeePtr->print(); // invokes base-class print

// aim derived-class pointer at derived-class object and print

basePlusCommissionEmployeePtr = &basePlusCommissionEmployee;

basePlusCommissionEmployeePtr->print(); // invokes derived-class print

20.3 Relationships Among Objects in an Inheritance Hierarchy 781

52
53

54
55 cout << "\n\nCalling virtual function print with base-class pointer"
56 << "\nto derived-class object invokes derived-class "
57 << "print function:\n\n";
58
59

60
61

62 cout << endl;

63 } // end main

Invoking print function on base-class and derived-class
objects with static binding

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Invoking print function on base-class and derived-class
objects with dynamic binding

Calling virtual function print with base-class pointer
to base-class object invokes base-class print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

Calling virtual function print with derived-class pointer
to derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Calling virtual function print with base-class pointer
to derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Fig. 20.6 | Demonstrating polymorphism by invoking a derived-class virtual function via a
base-class pointer to a derived-class object. (Part 2 of 2.)

// aim base-class pointer at derived-class object and print

commissionEmployeePtr = &basePlusCommissionEmployee;

// polymorphism; invokes BasePlusCommissionEmployee's print;

// base-class pointer to derived-class object

commissionEmployeePtr->print();

Notice that the base salary is now displayed

782 Chapter 20 Object-Oriented Programming: Polymorphism

virtual Destructors
A problem can occur when using polymorphism to process dynamically allocated objects
of a class hierarchy. So far you’ve seen destructors that are not declared with keyword
virtual. If a derived-class object with a non-virtual destructor is destroyed by applying
the delete operator to a base-class pointer to the object, the C++ standard specifies that the
behavior is undefined.

The simple solution to this problem is to create a public virtual destructor in the
base class. If a base class destructor is declared virtual, the destructors of any derived
classes are also virtual and they override the base class destructor. For example, in class
CommissionEmployee’s definition, we can define the virtual destructor as follows:

Now, if an object in the hierarchy is destroyed explicitly by applying the delete operator
to a base-class pointer, the destructor for the appropriate class is called based on the object
to which the base-class pointer points. Remember, when a derived-class object is de-
stroyed, the base-class part of the derived-class object is also destroyed, so it’s important
for the destructors of both the derived and base classes to execute. The base-class destructor
automatically executes after the derived-class destructor. From this point forward, we’ll in-
clude a virtual destructor in every class that contains virtual functions.

C++11: final Member Functions and Classes
Prior to C++11, a derived class could override any of its base class’s virtual functions. In
C++11, a base-class virtual function that’s declared final in its prototype, as in

cannot be overridden in any derived class—this guarantees that the base class’s final
member function definition will be used by all base-class objects and by all objects of the
base class’s direct and indirect derived classes. Similarly, prior to C++11, any existing class
could be used as a base class in a hierarchy. As of C++11, you can declare a class as final
to prevent it from being used as a base class, as in

Attempting to override a final member function or inherit from a final base class results
in a compilation error.

virtual ~CommissionEmployee() { }

Error-Prevention Tip 20.2
If a class has virtual functions, always provide a virtual destructor, even if one is not
required for the class. This ensures that a custom derived-class destructor (if there is one)
will be invoked when a derived-class object is deleted via a base class pointer.

Common Programming Error 20.1
Constructors cannot be virtual. Declaring a constructor virtual is a compilation error.

virtual someFunction(parameters) final;

class MyClass final // this class cannot be a base class
{
 // class body

};

20.4 Type Fields and switch Statements 783

20.4 Type Fields and switch Statements
One way to determine the type of an object is to use a switch statement to check the value
of a field in the object. This allows us to distinguish among object types, then invoke an
appropriate action for a particular object. For example, in a hierarchy of shapes in which
each shape object has a shapeType attribute, a switch statement could check the object’s
shapeType to determine which print function to call.

Using switch logic exposes programs to a variety of potential problems. For example,
you might forget to include a type test when one is warranted, or might forget to test all
possible cases in a switch statement. When modifying a switch-based system by adding
new types, you might forget to insert the new cases in all relevant switch statements. Every
addition or deletion of a class requires the modification of every switch statement in the
system; tracking these statements down can be time consuming and error prone.

20.5 Abstract Classes and Pure virtual Functions
When we think of a class as a type, we assume that programs will create objects of that type.
However, there are cases in which it’s useful to define classes from which you never intend to
instantiate any objects. Such classes are called abstract classes. Because these classes normally
are used as base classes in inheritance hierarchies, we refer to them as abstract base classes.
These classes cannot be used to instantiate objects, because, as we’ll soon see, abstract classes
are incomplete—derived classes must define the “missing pieces” before objects of these class-
es can be instantiated. We build programs with abstract classes in Section 20.6.

An abstract class is a base class from which other classes can inherit. Classes that can
be used to instantiate objects are called concrete classes. Such classes define or inherit
implementations for every member function they declare. We could have an abstract base
class TwoDimensionalShape and derive such concrete classes as Square, Circle and Tri-
angle. We could also have an abstract base class ThreeDimensionalShape and derive such
concrete classes as Cube, Sphere and Cylinder. Abstract base classes are too generic to define
real objects; we need to be more specific before we can think of instantiating objects. For
example, if someone tells you to “draw the two-dimensional shape,” what shape would you
draw? Concrete classes provide the specifics that make it possible to instantiate objects.

An inheritance hierarchy does not need to contain any abstract classes, but many
object-oriented systems have class hierarchies headed by abstract base classes. In some
cases, abstract classes constitute the top few levels of the hierarchy. A good example of this
is the shape hierarchy in Fig. 19.3, which begins with abstract base class Shape. On the
next level of the hierarchy we have two more abstract base classes—TwoDimensionalShape

Software Engineering Observation 20.7
Polymorphic programming can eliminate the need for switch logic. By using the
polymorphism mechanism to perform the equivalent logic, you can avoid the kinds of
errors typically associated with switch logic.

Software Engineering Observation 20.8
An interesting consequence of using polymorphism is that programs take on a simplified
appearance. They contain less branching logic and simpler sequential code.

784 Chapter 20 Object-Oriented Programming: Polymorphism

and ThreeDimensionalShape. The next level of the hierarchy defines concrete classes for
two-dimensional shapes (namely, Circle, Square and Triangle) and for three-dimen-
sional shapes (namely, Sphere, Cube and Tetrahedron).

Pure Virtual Functions
A class is made abstract by declaring one or more of its virtual functions to be “pure.” A
pure virtual function is specified by placing “= 0” in its declaration, as in

The “= 0” is a pure specifier. Pure virtual functions typically do not provide implemen-
tations, though they can. Each concrete derived class must override all base-class pure vir-
tual functions with concrete implementations of those functions; otherwise, the derived
class is also abstract. The difference between a virtual function and a pure virtual func-
tion is that a virtual function has an implementation and gives the derived class the op-
tion of overriding the function; by contrast, a pure virtual function does not have an
implementation and requires the derived class to override the function for that derived class
to be concrete; otherwise the derived class remains abstract.

Pure virtual functions are used when it does not make sense for the base class to have
an implementation of a function, but you want all concrete derived classes to implement
the function. Returning to our earlier example of space objects, it does not make sense for
the base class SpaceObject to have an implementation for function draw (as there is no
way to draw a generic space object without having more information about what type of
space object is being drawn). An example of a function that would be defined as virtual
(and not pure virtual) would be one that returns a name for the object. We can name a
generic SpaceObject (for instance, as "space object"), so a default implementation for
this function can be provided, and the function does not need to be pure virtual. The
function is still declared virtual, however, because it’s expected that derived classes will
override this function to provide more specific names for the derived-class objects.

Although we cannot instantiate objects of an abstract base class, we can use the abstract
base class to declare pointers and references that can refer to objects of any concrete classes

virtual void draw() const = 0; // pure virtual function

Software Engineering Observation 20.9
An abstract class defines a common public interface for the various classes in a class
hierarchy. An abstract class contains one or more pure virtual functions that concrete
derived classes must override.

Common Programming Error 20.2
Failure to override a pure virtual function in a derived class makes that class abstract.
Attempting to instantiate an object of an abstract class causes a compilation error.

Software Engineering Observation 20.10
An abstract class has at least one pure virtual function. An abstract class also can have
data members and concrete functions (including constructors and destructors), which are
subject to the normal rules of inheritance by derived classes.

20.6 Case Study: Payroll System Using Polymorphism 785

derived from the abstract class. Programs typically use such pointers and references to
manipulate derived-class objects polymorphically.

Device Drivers and Polymorphism
Polymorphism is particularly effective for implementing layered software systems. In oper-
ating systems, for example, each type of physical device could operate quite differently
from the others. Even so, commands to read or write data from and to devices may have a
certain uniformity. The write message sent to a device-driver object needs to be interpreted
specifically in the context of that device driver and how that device driver manipulates de-
vices of a specific type. However, the write call itself really is no different from the write to
any other device in the system—place some number of bytes from memory onto that de-
vice. An object-oriented operating system could use an abstract base class to provide an
interface appropriate for all device drivers. Then, through inheritance from that abstract
base class, derived classes are formed that all operate similarly. The capabilities (i.e., the
public functions) offered by the device drivers are provided as pure virtual functions in
the abstract base class. The implementations of these pure virtual functions are provided
in the derived classes that correspond to the specific types of device drivers. This architec-
ture also allows new devices to be added to a system easily. The user can just plug in the
device and install its new device driver. The operating system “talks” to this new device
through its device driver, which has the same public member functions as all other device
drivers—those defined in the device driver abstract base class.

20.6 Case Study: Payroll System Using Polymorphism
This section reexamines the CommissionEmployee–BasePlusCommissionEmployee hierar-
chy that we explored throughout Section 19.3. In this example, we use an abstract class
and polymorphism to perform payroll calculations based on the type of employee. We cre-
ate an enhanced employee hierarchy to solve the following problem:

A company pays its employees weekly. The employees are of three types: Salaried
employees are paid a fixed weekly salary regardless of the number of hours worked,
commission employees are paid a percentage of their sales and base-salary-plus-
commission employees receive a base salary plus a percentage of their sales. For the
current pay period, the company has decided to reward base-salary-plus-commission
employees by adding 10 percent to their base salaries. The company wants to imple-
ment a C++ program that performs its payroll calculations polymorphically.

We use abstract class Employee to represent the general concept of an employee. The
classes that derive directly from Employee are SalariedEmployee and CommissionEm-
ployee. Class BasePlusCommissionEmployee—derived from CommissionEmployee—rep-
resents the last employee type. The UML class diagram in Fig. 20.7 shows the inheritance
hierarchy for our polymorphic employee payroll application. The abstract class name
Employee is italicized, as per the convention of the UML.

Abstract base class Employee declares the “interface” to the hierarchy—that is, the set
of member functions that a program can invoke on all Employee objects. Each employee,
regardless of the way his or her earnings are calculated, has a first name, a last name and a
social security number, so private data members firstName, lastName and socialSecu-
rityNumber appear in abstract base class Employee.

786 Chapter 20 Object-Oriented Programming: Polymorphism

The following sections implement the Employee class hierarchy. The first five each
implement one of the abstract or concrete classes. The last section implements a test pro-
gram that builds objects of all these classes and processes the objects polymorphically.

20.6.1 Creating Abstract Base Class Employee
Class Employee (Figs. 20.9–20.10, discussed in further detail shortly) provides functions
earnings and print, in addition to various get and set functions that manipulate Employ-
ee’s data members. An earnings function certainly applies generally to all employees, but
each earnings calculation depends on the employee’s class. So we declare earnings as pure
virtual in base class Employee because a default implementation does not make sense for
that function—there is not enough information to determine what amount earnings
should return. Each derived class overrides earnings with an appropriate implementation.
To calculate an employee’s earnings, the program assigns the address of an employee’s ob-
ject to a base class Employee pointer, then invokes the earnings function on that object.
We maintain a vector of Employee pointers, each of which points to an Employee object.
Of course, there cannot be Employee objects, because Employee is an abstract class—because of
inheritance, however, all objects of all concrete derived classes of Employee may nevertheless be
thought of as Employee objects. The program iterates through the vector and calls function
earnings for each Employee object. C++ processes these function calls polymorphically. In-
cluding earnings as a pure virtual function in Employee forces every direct derived class
of Employee that wishes to be a concrete class to override earnings.

Function print in class Employee displays the first name, last name and social security
number of the employee. As we’ll see, each derived class of Employee overrides function

Fig. 20.7 | Employee hierarchy UML class diagram.

Software Engineering Observation 20.11
A derived class can inherit interface and/or implementation from a base class. Hierarchies
designed for implementation inheritance tend to have their functionality high in the
hierarchy—each new derived class inherits one or more member functions that were
defined in a base class, and the derived class uses the base-class definitions. Hierarchies
designed for interface inheritance tend to have their functionality lower in the
hierarchy—a base class specifies one or more functions that should be defined for each class
in the hierarchy (i.e., they have the same prototype), but the individual derived classes
provide their own implementations of the function(s).

Employee

CommissionEmployeeSalariedEmployee

BasePlusCommissionEmployee

Employee class is abstract;
displayed in italics

20.6 Case Study: Payroll System Using Polymorphism 787

print to output the employee’s type (e.g., "salaried employee:") followed by the rest of
the employee’s information. Function print in the derived classes could also call earn-
ings, even though earnings is a pure-virtual function in base class Employee.

The diagram in Fig. 20.8 shows each of the four classes in the hierarchy down the left
side and functions earnings and print across the top. For each class, the diagram shows
the desired results of each function. Italic text represents where the values from a particular
object are used in the earnings and print functions. Class Employee specifies “= 0” for
function earnings to indicate that this is a pure virtual function and hence has no imple-
mentation. Each derived class overrides this function to provide an appropriate implemen-
tation. We do not list base class Employee’s get and set functions because they’re not
overridden in any of the derived classes—each of these functions is inherited and used “as
is” by each of the derived classes.

Employee Class Header
Let’s consider class Employee’s header (Fig. 20.9). The public member functions include
a constructor that takes the first name, last name and social security number as arguments
(lines 11–12); a virtual destructor (line 13); set functions that set the first name, last name
and social security number (lines 15, 18 and 21, respectively); get functions that return the
first name, last name and social security number (lines 16, 19 and 22, respectively); pure
virtual function earnings (line 25) and virtual function print (line 26).

Fig. 20.8 | Polymorphic interface for the Employee hierarchy classes.

1 // Fig. 20.9: Employee.h
2 // Employee abstract base class.

3 #ifndef EMPLOYEE_H

Fig. 20.9 | Employee abstract base class. (Part 1 of 2.)

weeklySalary

= 0

Commission-
Employee

BasePlus-
Commission-
Employee

Salaried-
Employee

Employee

printearnings

commissionRate * grossSales

(commissionRate *
 grossSales) + baseSalary

salaried employee: firstName lastName
social security number: SSN
weekly salary: weeklySalary

commission employee: firstName lastName
social security number: SSN
gross sales: grossSales;
commission rate: commissionRate

base-salaried commission employee:
 firstName lastName
social security number: SSN
gross sales: grossSales;
commission rate: commissionRate;
base salary: baseSalary

firstName lastName
social security number: SSN

788 Chapter 20 Object-Oriented Programming: Polymorphism

Recall that we declared earnings as a pure virtual function because first we must
know the specific Employee type to determine the appropriate earnings calculations.
Declaring this function as pure virtual indicates that each concrete derived class must
provide an earnings implementation and that a program can use base-class Employee
pointers to invoke function earnings polymorphically for any type of Employee.

Employee Class Member-Function Definitions
Figure 20.10 contains the member-function definitions for class Employee. No implemen-
tation is provided for virtual function earnings. The Employee constructor (lines 9–14)
does not validate the social security number. Normally, such validation should be provided.

4 #define EMPLOYEE_H
5
6 #include <string> // C++ standard string class
7
8 class Employee
9 {

10 public:
11 Employee(const std::string &, const std::string &,
12 const std::string &);
13 virtual ~Employee() { } // virtual destructor
14
15 void setFirstName(const std::string &); // set first name
16 std::string getFirstName() const; // return first name
17
18 void setLastName(const std::string &); // set last name
19 std::string getLastName() const; // return last name
20
21 void setSocialSecurityNumber(const std::string &); // set SSN
22 std::string getSocialSecurityNumber() const; // return SSN
23
24

25
26

27 private:
28 std::string firstName;
29 std::string lastName;

30 std::string socialSecurityNumber;

31 }; // end class Employee
32
33 #endif // EMPLOYEE_H

1 // Fig. 20.10: Employee.cpp
2 // Abstract-base-class Employee member-function definitions.

3 // Note: No definitions are given for pure virtual functions.

4 #include <iostream>
5 #include "Employee.h" // Employee class definition
6 using namespace std;

Fig. 20.10 | Employee class implementation file. (Part 1 of 2.)

Fig. 20.9 | Employee abstract base class. (Part 2 of 2.)

// pure virtual function makes Employee an abstract base class

virtual double earnings() const = 0; // pure virtual
virtual void print() const; // virtual

20.6 Case Study: Payroll System Using Polymorphism 789

7
8 // constructor

9 Employee::Employee(const string &first, const string &last,
10 const string &ssn)
11 : firstName(first), lastName(last), socialSecurityNumber(ssn)

12 {
13 // empty body

14 } // end Employee constructor

15
16 // set first name

17 void Employee::setFirstName(const string &first)
18 {
19 firstName = first;

20 } // end function setFirstName

21
22 // return first name

23 string Employee::getFirstName() const
24 {

25 return firstName;
26 } // end function getFirstName

27
28 // set last name
29 void Employee::setLastName(const string &last)
30 {

31 lastName = last;
32 } // end function setLastName

33
34 // return last name
35 string Employee::getLastName() const
36 {

37 return lastName;
38 } // end function getLastName

39
40 // set social security number
41 void Employee::setSocialSecurityNumber(const string &ssn)
42 {

43 socialSecurityNumber = ssn; // should validate
44 } // end function setSocialSecurityNumber

45
46 // return social security number
47 string Employee::getSocialSecurityNumber() const
48 {

49 return socialSecurityNumber;
50 } // end function getSocialSecurityNumber

51
52 // print Employee's information (virtual, but not pure virtual)
53 void Employee::print() const
54 {

55 cout << getFirstName() << ' ' << getLastName()
56 << "\nsocial security number: " << getSocialSecurityNumber();
57 } // end function print

Fig. 20.10 | Employee class implementation file. (Part 2 of 2.)

790 Chapter 20 Object-Oriented Programming: Polymorphism

The virtual function print (lines 53–57) provides an implementation that will be
overridden in each of the derived classes. Each of these functions will, however, use the
abstract class’s version of print to print information common to all classes in the Employee
hierarchy.

20.6.2 Creating Concrete Derived Class SalariedEmployee
Class SalariedEmployee (Figs. 20.11–20.12) derives from class Employee (line 9 of
Fig. 20.11). The public member functions include a constructor that takes a first name,
a last name, a social security number and a weekly salary as arguments (lines 12–13); a
virtual destructor (line 14); a set function to assign a new nonnegative value to data
member weeklySalary (line 16); a get function to return weeklySalary’s value (line 17);
a virtual function earnings that calculates a SalariedEmployee’s earnings (line 20) and
a virtual function print (line 21) that outputs the employee’s type, namely, "salaried
employee: " followed by employee-specific information produced by base class Employ-
ee’s print function and SalariedEmployee’s getWeeklySalary function.

SalariedEmployee Class Member-Function Definitions
Figure 20.12 contains the member-function definitions for SalariedEmployee. The
class’s constructor passes the first name, last name and social security number to the Em-
ployee constructor (line 11) to initialize the private data members that are inherited
from the base class, but not directly accessible in the derived class. Function earnings

1 // Fig. 20.11: SalariedEmployee.h
2 // SalariedEmployee class derived from Employee.

3 #ifndef SALARIED_H
4 #define SALARIED_H
5
6 #include <string> // C++ standard string class
7 #include "Employee.h" // Employee class definition
8
9

10 {
11 public:
12 SalariedEmployee(const std::string &, const std::string &,
13 const std::string &, double = 0.0);
14 virtual ~SalariedEmployee() { } // virtual destructor
15
16 void setWeeklySalary(double); // set weekly salary
17 double getWeeklySalary() const; // return weekly salary
18
19 // keyword virtual signals intent to override
20

21

22 private:
23

24 }; // end class SalariedEmployee

25
26 #endif // SALARIED_H

Fig. 20.11 | SalariedEmployee class header.

class SalariedEmployee : public Employee

virtual double earnings() const override; // calculate earnings
virtual void print() const override; // print object

double weeklySalary; // salary per week

20.6 Case Study: Payroll System Using Polymorphism 791

(lines 33–36) overrides pure virtual function earnings in Employee to provide a concrete
implementation that returns the SalariedEmployee’s weekly salary. If we did not define
earnings, class SalariedEmployee would be an abstract class, and any attempt to instan-
tiate a SalariedEmployee object would cause a compilation error. In class SalariedEm-
ployee’s header, we declared member functions earnings and print as virtual (lines
20–21 of Fig. 20.11)—actually, placing the virtual keyword before these member func-
tions is redundant. We defined them as virtual in base class Employee, so they remain
virtual functions throughout the class hierarchy. Explicitly declaring such functions vir-
tual at every level of the hierarchy promotes program clarity. Not declaring earnings as
pure virtual signals our intent to provide an implementation in this concrete class.

1 // Fig. 20.12: SalariedEmployee.cpp
2 // SalariedEmployee class member-function definitions.

3 #include <iostream>
4 #include <stdexcept>
5 #include "SalariedEmployee.h" // SalariedEmployee class definition
6 using namespace std;
7
8 // constructor
9 SalariedEmployee::SalariedEmployee(const string &first,

10 const string &last, const string &ssn, double salary)
11
12 {

13 setWeeklySalary(salary);

14 } // end SalariedEmployee constructor
15
16 // set salary

17 void SalariedEmployee::setWeeklySalary(double salary)
18 {

19 if (salary >= 0.0)
20 weeklySalary = salary;
21 else
22 throw invalid_argument("Weekly salary must be >= 0.0");
23 } // end function setWeeklySalary
24
25 // return salary

26 double SalariedEmployee::getWeeklySalary() const
27 {

28 return weeklySalary;
29 } // end function getWeeklySalary
30
31 // calculate earnings;

32 // override pure virtual function earnings in Employee
33 double SalariedEmployee::earnings() const
34 {

35 return getWeeklySalary();
36 } // end function earnings

37
38 // print SalariedEmployee's information
39 void SalariedEmployee::print() const
40 {

Fig. 20.12 | SalariedEmployee class implementation file. (Part 1 of 2.)

: Employee(first, last, ssn)

792 Chapter 20 Object-Oriented Programming: Polymorphism

Function print of class SalariedEmployee (lines 39–44 of Fig. 20.12) overrides
Employee function print. If class SalariedEmployee did not override print, Salaried-
Employee would inherit the Employee version of print. In that case, SalariedEmployee’s
print function would simply return the employee’s full name and social security number,
which does not adequately represent a SalariedEmployee. To print a SalariedEmployee’s
complete information, the derived class’s print function outputs "salaried employee: "

followed by the base-class Employee-specific information (i.e., first name, last name and
social security number) printed by invoking the base class’s print function using the scope
resolution operator (line 42)—this is a nice example of code reuse. Without the scope res-
olution operator, the print call would cause infinite recursion. The output produced by
SalariedEmployee’s print function also contains the employee’s weekly salary obtained
by invoking the class’s getWeeklySalary function.

20.6.3 Creating Concrete Derived Class CommissionEmployee
Class CommissionEmployee (Figs. 20.13–20.14) derives from Employee (Fig. 20.13, line
9). The member-function implementations (Fig. 20.14) include a constructor (lines 9–
15) that takes a first name, last name, social security number, sales amount and commis-
sion rate; set functions (lines 18–24 and 33–39) to assign new values to data members com-
missionRate and grossSales, respectively; get functions (lines 27–30 and 42–45) that
retrieve their values; function earnings (lines 48–51) to calculate a CommissionEmploy-
ee’s earnings; and function print (lines 54–60) to output the employee’s type, namely,
"commission employee: " and employee-specific information. The constructor passes the
first name, last name and social security number to the Employee constructor (line 11) to
initialize Employee’s private data members. Function print calls base-class function
print (line 57) to display the Employee-specific information.

41

42

43 cout << "\nweekly salary: " << getWeeklySalary();
44 } // end function print

1 // Fig. 20.13: CommissionEmployee.h

2 // CommissionEmployee class derived from Employee.

3 #ifndef COMMISSION_H
4 #define COMMISSION_H
5
6 #include <string> // C++ standard string class
7 #include "Employee.h" // Employee class definition
8
9

10 {

11 public:
12 CommissionEmployee(const std::string &, const std::string &,
13 const std::string &, double = 0.0, double = 0.0);

Fig. 20.13 | CommissionEmployee class header. (Part 1 of 2.)

Fig. 20.12 | SalariedEmployee class implementation file. (Part 2 of 2.)

cout << "salaried employee: ";
Employee::print(); // reuse abstract base-class print function

class CommissionEmployee : public Employee

20.6 Case Study: Payroll System Using Polymorphism 793

14 virtual ~CommissionEmployee() { } // virtual destructor
15
16 void setCommissionRate(double); // set commission rate
17 double getCommissionRate() const; // return commission rate
18
19 void setGrossSales(double); // set gross sales amount
20 double getGrossSales() const; // return gross sales amount
21
22 // keyword virtual signals intent to override
23

24

25 private:
26 double grossSales; // gross weekly sales
27 double commissionRate; // commission percentage
28 }; // end class CommissionEmployee
29
30 #endif // COMMISSION_H

1 // Fig. 20.14: CommissionEmployee.cpp

2 // CommissionEmployee class member-function definitions.

3 #include <iostream>
4 #include <stdexcept>
5 #include "CommissionEmployee.h" // CommissionEmployee class definition
6 using namespace std;
7
8 // constructor

9 CommissionEmployee::CommissionEmployee(const string &first,
10 const string &last, const string &ssn, double sales, double rate)
11

12 {
13 setGrossSales(sales);

14 setCommissionRate(rate);

15 } // end CommissionEmployee constructor
16
17 // set gross sales amount

18 void CommissionEmployee::setGrossSales(double sales)
19 {

20 if (sales >= 0.0)
21 grossSales = sales;
22 else
23 throw invalid_argument("Gross sales must be >= 0.0");
24 } // end function setGrossSales
25
26 // return gross sales amount

27 double CommissionEmployee::getGrossSales() const
28 {

29 return grossSales;
30 } // end function getGrossSales
31

Fig. 20.14 | CommissionEmployee class implementation file. (Part 1 of 2.)

Fig. 20.13 | CommissionEmployee class header. (Part 2 of 2.)

virtual double earnings() const override; // calculate earnings
virtual void print() const override; // print object

: Employee(first, last, ssn)

794 Chapter 20 Object-Oriented Programming: Polymorphism

20.6.4 Creating Indirect Concrete Derived Class
BasePlusCommissionEmployee
Class BasePlusCommissionEmployee (Figs. 20.15–20.16) directly inherits from class
CommissionEmployee (line 9 of Fig. 20.15) and therefore is an indirect derived class of class
Employee. Class BasePlusCommissionEmployee’s member-function implementations in-
clude a constructor (lines 9–15 of Fig. 20.16) that takes as arguments a first name, a last
name, a social security number, a sales amount, a commission rate and a base salary. It then
passes the first name, last name, social security number, sales amount and commission rate
to the CommissionEmployee constructor (line 12) to initialize the inherited members.
BasePlusCommissionEmployee also contains a set function (lines 18–24) to assign a new
value to data member baseSalary and a get function (lines 27–30) to return baseSalary’s
value. Function earnings (lines 34–37) calculates a BasePlusCommissionEmployee’s earn-
ings. Line 36 in function earnings calls base-class CommissionEmployee’s earnings func-
tion to calculate the commission-based portion of the employee’s earnings. This is another
nice example of code reuse. BasePlusCommissionEmployee’s print function (lines 40–45)
outputs "base-salaried", followed by the output of base-class CommissionEmployee’s
print function (another example of code reuse), then the base salary. The resulting output
begins with "base-salaried commission employee: " followed by the rest of the Base-

32 // set commission rate

33 void CommissionEmployee::setCommissionRate(double rate)
34 {
35 if (rate > 0.0 && rate < 1.0)
36 commissionRate = rate;

37 else
38 throw invalid_argument("Commission rate must be > 0.0 and < 1.0");
39 } // end function setCommissionRate

40
41 // return commission rate

42 double CommissionEmployee::getCommissionRate() const
43 {
44 return commissionRate;
45 } // end function getCommissionRate

46
47 // calculate earnings; override pure virtual function earnings in Employee

48 double CommissionEmployee::earnings() const
49 {

50 return getCommissionRate() * getGrossSales();
51 } // end function earnings

52
53 // print CommissionEmployee's information
54 void CommissionEmployee::print() const
55 {

56 cout << "commission employee: ";
57

58 cout << "\ngross sales: " << getGrossSales()
59 << "; commission rate: " << getCommissionRate();
60 } // end function print

Fig. 20.14 | CommissionEmployee class implementation file. (Part 2 of 2.)

Employee::print(); // code reuse

20.6 Case Study: Payroll System Using Polymorphism 795

PlusCommissionEmployee’s information. Recall that CommissionEmployee’s print dis-
plays the employee’s first name, last name and social security number by invoking the
print function of its base class (i.e., Employee)—yet another example of code reuse. Base-
PlusCommissionEmployee’s print initiates a chain of functions calls that spans all three
levels of the Employee hierarchy.

1 // Fig. 20.15: BasePlusCommissionEmployee.h

2 // BasePlusCommissionEmployee class derived from CommissionEmployee.
3 #ifndef BASEPLUS_H
4 #define BASEPLUS_H
5
6 #include <string> // C++ standard string class
7 #include "CommissionEmployee.h" // CommissionEmployee class definition
8
9

10 {

11 public:
12 BasePlusCommissionEmployee(const std::string &, const std::string &,
13 const std::string &, double = 0.0, double = 0.0, double = 0.0);
14 virtual ~CommissionEmployee() { } // virtual destructor
15
16 void setBaseSalary(double); // set base salary
17 double getBaseSalary() const; // return base salary
18
19 // keyword virtual signals intent to override

20

21
22 private:
23 double baseSalary; // base salary per week
24 }; // end class BasePlusCommissionEmployee
25
26 #endif // BASEPLUS_H

Fig. 20.15 | BasePlusCommissionEmployee class header.

1 // Fig. 20.16: BasePlusCommissionEmployee.cpp

2 // BasePlusCommissionEmployee member-function definitions.
3 #include <iostream>
4 #include <stdexcept>
5 #include "BasePlusCommissionEmployee.h"
6 using namespace std;
7
8 // constructor
9 BasePlusCommissionEmployee::BasePlusCommissionEmployee(

10 const string &first, const string &last, const string &ssn,
11 double sales, double rate, double salary)
12

13 {

14 setBaseSalary(salary); // validate and store base salary
15 } // end BasePlusCommissionEmployee constructor

16

Fig. 20.16 | BasePlusCommissionEmployee class implementation file. (Part 1 of 2.)

class BasePlusCommissionEmployee : public CommissionEmployee

virtual double earnings() const override; // calculate earnings
virtual void print() const override; // print object

: CommissionEmployee(first, last, ssn, sales, rate)

796 Chapter 20 Object-Oriented Programming: Polymorphism

20.6.5 Demonstrating Polymorphic Processing
To test our Employee hierarchy, the program in Fig. 20.17 creates an object of each of the
three concrete classes SalariedEmployee, CommissionEmployee and BasePlusCommis-
sionEmployee. The program manipulates these objects, first with static binding, then poly-
morphically, using a vector of Employee pointers. Lines 22–27 create objects of each of
the three concrete Employee derived classes. Lines 32–38 output each Employee’s informa-
tion and earnings. Each member-function invocation in lines 32–37 is an example of static
binding—at compile time, because we are using name handles (not pointers or references that
could be set at execution time), the compiler can identify each object’s type to determine
which print and earnings functions are called.

17 // set base salary

18 void BasePlusCommissionEmployee::setBaseSalary(double salary)
19 {
20 if (salary >= 0.0)
21 baseSalary = salary;

22 else
23 throw invalid_argument("Salary must be >= 0.0");
24 } // end function setBaseSalary

25
26 // return base salary

27 double BasePlusCommissionEmployee::getBaseSalary() const
28 {
29 return baseSalary;
30 } // end function getBaseSalary

31
32 // calculate earnings;

33 // override virtual function earnings in CommissionEmployee

34 double BasePlusCommissionEmployee::earnings() const
35 {
36 return getBaseSalary() + ;

37 } // end function earnings

38
39 // print BasePlusCommissionEmployee's information

40 void BasePlusCommissionEmployee::print() const
41 {
42 cout << "base-salaried ";
43

44 cout << "; base salary: " << getBaseSalary();
45 } // end function print

1 // Fig. 20.17: fig20_17.cpp

2 // Processing Employee derived-class objects individually
3 // and polymorphically using dynamic binding.

4 #include <iostream>
5 #include <iomanip>
6 #include <vector>

Fig. 20.17 | Employee class hierarchy driver program. (Part 1 of 4.)

Fig. 20.16 | BasePlusCommissionEmployee class implementation file. (Part 2 of 2.)

CommissionEmployee::earnings()

CommissionEmployee::print(); // code reuse

20.6 Case Study: Payroll System Using Polymorphism 797

7 #include "Employee.h"
8 #include "SalariedEmployee.h"
9 #include "CommissionEmployee.h"

10 #include "BasePlusCommissionEmployee.h"
11 using namespace std;
12
13 void virtualViaPointer(const Employee * const); // prototype
14 void virtualViaReference(const Employee &); // prototype
15
16 int main()
17 {

18 // set floating-point output formatting
19 cout << fixed << setprecision(2);
20
21 // create derived-class objects
22 SalariedEmployee salariedEmployee(

23 "John", "Smith", "111-11-1111", 800);
24 CommissionEmployee commissionEmployee(

25 "Sue", "Jones", "333-33-3333", 10000, .06);
26 BasePlusCommissionEmployee basePlusCommissionEmployee(

27 "Bob", "Lewis", "444-44-4444", 5000, .04, 300);
28
29 cout << "Employees processed individually using static binding:\n\n";
30
31 // output each Employee’s information and earnings using static binding
32

33 cout << "\nearned $" << << "\n\n";
34
35 cout << "\nearned $" << << "\n\n";
36

37 cout << "\nearned $" <<
38 << "\n\n";
39
40
41

42
43
44

45

46
47
48 cout << "Employees processed polymorphically via dynamic binding:\n\n";
49
50 // call virtualViaPointer to print each Employee's information

51 // and earnings using dynamic binding

52 cout << "Virtual function calls made off base-class pointers:\n\n";
53
54

55
56
57 // call virtualViaReference to print each Employee's information

58 // and earnings using dynamic binding
59 cout << "Virtual function calls made off base-class references:\n\n";

Fig. 20.17 | Employee class hierarchy driver program. (Part 2 of 4.)

salariedEmployee.print();
salariedEmployee.earnings()

commissionEmployee.print();

commissionEmployee.earnings()
basePlusCommissionEmployee.print();

basePlusCommissionEmployee.earnings()

// create vector of three base-class pointers

vector< Employee * > employees(3);

// initialize vector with pointers to Employees

employees[0] = &salariedEmployee;
employees[1] = &commissionEmployee;
employees[2] = &basePlusCommissionEmployee;

for (const Employee *employeePtr : employees)
 virtualViaPointer(employeePtr);

798 Chapter 20 Object-Oriented Programming: Polymorphism

60
61

62
63 } // end main

64
65
66
67
68
69
70
71
72
73
74
75
76
77 ‘

78
79

Employees processed individually using static binding:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00
earned $800.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

Employees processed polymorphically using dynamic binding:

Virtual function calls made off base-class pointers:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00
earned $800.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

Fig. 20.17 | Employee class hierarchy driver program. (Part 3 of 4.)

for (const Employee *employeePtr : employees)
 virtualViaReference(*employeePtr); // note dereferencing

// call Employee virtual functions print and earnings off a

// base-class pointer using dynamic binding
void virtualViaPointer(const Employee * const baseClassPtr)
{

 baseClassPtr->print();
 cout << "\nearned $" << baseClassPtr->earnings() << "\n\n";
} // end function virtualViaPointer

// call Employee virtual functions print and earnings off a

// base-class reference using dynamic binding

void virtualViaReference(const Employee &baseClassRef)
{

 baseClassRef.print();

 cout << "\nearned $" << baseClassRef.earnings() << "\n\n";
} // end function virtualViaReference

20.6 Case Study: Payroll System Using Polymorphism 799

Line 41 creates the vector employees, which contains three Employee pointers. Line
44 aims employees[0] at object salariedEmployee. Line 45 aims employees[1] at object
commissionEmployee. Line 46 aims employee[2] at object basePlusCommissionEm-
ployee. The compiler allows these assignments, because a SalariedEmployee is an
Employee, a CommissionEmployee is an Employee and a BasePlusCommissionEmployee is
an Employee. Therefore, we can assign the addresses of SalariedEmployee, Commission-
Employee and BasePlusCommissionEmployee objects to base-class Employee pointers, even
though Employee is an abstract class.

Lines 54–55 traverse vector employees and invoke function virtualViaPointer
(lines 67–71) for each element in employees. Function virtualViaPointer receives in
parameter baseClassPtr the address stored in an employees element. Each call to virtu-
alViaPointer uses baseClassPtr to invoke virtual functions print (line 69) and earn-
ings (line 70). Function virtualViaPointer does not contain any SalariedEmployee,
CommissionEmployee or BasePlusCommissionEmployee type information. The function
knows only about base-class type Employee. Therefore, the compiler cannot know which
concrete class’s functions to call through baseClassPtr. Yet at execution time, each vir-
tual-function invocation correctly calls the function on the object to which baseClassPtr
currently points. The output illustrates that the appropriate functions for each class are
indeed invoked and that each object’s proper information is displayed. For instance, the
weekly salary is displayed for the SalariedEmployee, and the gross sales are displayed for
the CommissionEmployee and BasePlusCommissionEmployee. Also, obtaining the earn-
ings of each Employee polymorphically in line 70 produces the same results as obtaining
these employees’ earnings via static binding in lines 33, 35 and 37. All virtual function
calls to print and earnings are resolved at runtime with dynamic binding.

Finally, lines 61–62 traverse employees and invoke function virtualViaReference
(lines 75–79) for each vector element. Function virtualViaReference receives in its
parameter baseClassRef (of type const Employee &) a reference to the object obtained by
dereferencing the pointer stored in each employees element (line 62). Each call to virtual-
ViaReference invokes virtual functions print (line 77) and earnings (line 78) via base-
ClassRef to demonstrate that polymorphic processing occurs with base-class references as well.

Virtual function calls made off base-class references:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00
earned $800.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

Fig. 20.17 | Employee class hierarchy driver program. (Part 4 of 4.)

800 Chapter 20 Object-Oriented Programming: Polymorphism

Each virtual-function invocation calls the function on the object to which baseClassRef
refers at runtime. This is another example of dynamic binding. The output produced using
base-class references is identical to the output produced using base-class pointers.

20.7 (Optional) Polymorphism, Virtual Functions and
Dynamic Binding “Under the Hood”
C++ makes polymorphism easy to program. It’s certainly possible to program for polymor-
phism in non-object-oriented languages such as C, but doing so requires complex and po-
tentially dangerous pointer manipulations. This section discusses how C++ can implement
polymorphism, virtual functions and dynamic binding internally. This will give you a
solid understanding of how these capabilities really work. More importantly, it will help
you appreciate the overhead of polymorphism—in terms of additional memory consump-
tion and processor time. This can help you determine when to use polymorphism and when
to avoid it. C++ Standard Library classes like array and vector are implemented without
polymorphism and virtual functions to avoid the associated execution-time overhead
and achieve optimal performance.

First, we’ll explain the data structures that the compiler builds at compile time to sup-
port polymorphism at execution time. You’ll see that polymorphism is accomplished
through three levels of pointers, i.e., triple indirection. Then we’ll show how an executing
program uses these data structures to execute virtual functions and achieve the dynamic
binding associated with polymorphism. Our discussion explains one possible implementa-
tion; this is not a language requirement.

When C++ compiles a class that has one or more virtual functions, it builds a virtual
function table (vtable) for that class. The vtable contains pointers to the class’s virtual
functions. Just as the name of a built-in array contains the address in memory of the array’s
first element, a pointer to a function contains the starting address in memory of the code
that performs the function’s task. An executing program uses the vtable to select the proper
function implementation each time a virtual function of that class is called. The leftmost
column of Fig. 20.18 illustrates the vtables for the classes Employee, SalariedEmployee,
CommissionEmployee and BasePlusCommissionEmployee.

Employee Class vtable
In the Employee class vtable, the first function pointer is set to 0 (i.e., nullptr), because
function earnings is a pure virtual function and therefore lacks an implementation. The
second function pointer points to function print, which displays the employee’s full name
and social security number. [Note: We’ve abbreviated the output of each print function
in this figure to conserve space.] Any class that has one or more null pointers in its vtable
is an abstract class. Classes without any null vtable pointers (such as SalariedEmployee,
CommissionEmployee and BasePlusCommissionEmployee) are concrete classes.

SalariedEmployee Class vtable
Class SalariedEmployee overrides function earnings to return the employee’s weekly sal-
ary, so the function pointer points to the earnings function of class SalariedEmployee.
SalariedEmployee also overrides print, so the corresponding function pointer points to
the SalariedEmployee member function that prints "salaried employee: " followed by
the employee’s name, social security number and weekly salary.

20.7 Dynamic Binding “Under the Hood” 801

CommissionEmployee Class vtable
The earnings function pointer in the vtable for class CommissionEmployee points to Com-
missionEmployee’s earnings function that returns the employee’s gross sales multiplied
by the commission rate. The print function pointer points to the CommissionEmployee
version of the function, which prints the employee’s type, name, social security number,
commission rate and gross sales. As in class HourlyEmployee, both functions override the
functions in class Employee.

Fig. 20.18 | How virtual function calls work.

&basePlus-
Commission-
Employee

&commission-
Employee

&salaried-
Employee

vector < Employee * >
employees(4);

[0]

[2]

[1]

Employee vtable

earnings

print

BasePlusCommissionEmployee
vtable

earnings

print

CommissionEmployee
vtable

earnings

print

SalariedEmployee
vtable

earnings

print

basePlusCommissionEmployee

Bob Lewis
444-44-4444
$5,000.00

.04
$300.00

commissionEmployee

Sue Jones
333-33-3333
$10,000.00

.06

salariedEmployee

John Smith
111-11-1111

$800.00

baseClassPtr

1

2

3

4

5

0

(abstract class)

weeklySalary

grossSales
* commissionRate

baseSalary +
(grossSales
* commissionRate)

base-
salaried
commission
employee: ...

commission
employee: ...

salaried
employee: ...

first last
ssn: ...

4

Flow of Virtual Function Call baseClassPtr->print()
When baseClassPtr Points to Object commissionEmployee

pass &commissionEmployee
 to baseClassPtr

get to commissionEmployee
 object

get to commissionEmployee
 vtable

get to print pointer
 in vtable

execute print for
commissionEmployee

1

2

3 5

(0 indicates pure virtual function)

802 Chapter 20 Object-Oriented Programming: Polymorphism

BasePlusCommissionEmployee Class vtable
The earnings function pointer in the vtable for class BasePlusCommissionEmployee
points to the BasePlusCommissionEmployee’s earnings function, which returns the em-
ployee’s base salary plus gross sales multiplied by commission rate. The print function
pointer points to the BasePlusCommissionEmployee version of the function, which prints
the employee’s base salary plus the type, name, social security number, commission rate
and gross sales. Both functions override the functions in class CommissionEmployee.

Inheriting Concrete virtual Functions
In our Employee case study, each concrete class provides its own implementation for vir-
tual functions earnings and print. You’ve learned that each class which inherits directly
from abstract base class Employee must implement earnings in order to be a concrete class,
because earnings is a pure virtual function. These classes do not need to implement
function print, however, to be considered concrete—print is not a pure virtual function
and derived classes can inherit class Employee’s implementation of print. Furthermore,
class BasePlusCommissionEmployee does not have to implement either function print or
earnings—both function implementations can be inherited from concrete class Commis-
sionEmployee. If a class in our hierarchy were to inherit function implementations in this
manner, the vtable pointers for these functions would simply point to the function imple-
mentation that was being inherited. For example, if BasePlusCommissionEmployee did
not override earnings, the earnings function pointer in the vtable for class BasePlusCom-
missionEmployee would point to the same earnings function as the vtable for class Com-
missionEmployee points to.

Three Levels of Pointers to Implement Polymorphism
Polymorphism is accomplished through an elegant data structure involving three levels of
pointers. We’ve discussed one level—the function pointers in the vtable. These point to the
actual functions that execute when a virtual function is invoked.

Now we consider the second level of pointers. Whenever an object of a class with one or
more virtual functions is instantiated, the compiler attaches to the object a pointer to the
vtable for that class. This pointer is normally at the front of the object, but it isn’t required
to be implemented that way. In Fig. 20.18, these pointers are associated with the objects
created in Fig. 20.17 (one object for each of the types SalariedEmployee, CommissionEm-
ployee and BasePlusCommissionEmployee). The diagram displays each of the object’s
data member values. For example, the salariedEmployee object contains a pointer to the
SalariedEmployee vtable; the object also contains the values John Smith, 111-11-1111
and $800.00.

The third level of pointers simply contains the handles to the objects that receive the
virtual function calls. The handles in this level may also be references. Fig. 20.18 depicts
the vector employees that contains Employee pointers.

Now let’s see how a typical virtual function call executes. Consider the call
baseClassPtr->print() in function virtualViaPointer (line 69 of Fig. 20.17). Assume
that baseClassPtr contains employees[1] (i.e., the address of object commissionEm-
ployee in employees). When the compiler compiles this statement, it determines that the
call is indeed being made via a base-class pointer and that print is a virtual function.

The compiler determines that print is the second entry in each of the vtables. To locate
this entry, the compiler notes that it will need to skip the first entry. Thus, the compiler

20.8 Downcasting, dynamic_cast, typeid and type_info 803

compiles an offset or displacement into the table of machine-language object-code
pointers to find the code that will execute the virtual function call. The size in bytes of
the offset depends on the number of bytes used to represent a function pointer on an indi-
vidual platform. For example, on a 32-bit platform, a pointer is typically stored in four
bytes, whereas on a 64-bit platform, a pointer is typically stored in eight bytes. We assume
four bytes for this discussion.

The compiler generates code that performs the following operations [Note: The num-
bers in the list correspond to the circled numbers in Fig. 20.18]:

1. Select the ith entry of employees (in this case, the address of object commission-
Employee), and pass it as an argument to function virtualViaPointer. This sets
parameter baseClassPtr to point to commissionEmployee.

2. Dereference that pointer to get to the commissionEmployee object—which, as you
recall, begins with a pointer to the CommissionEmployee vtable.

3. Dereference commissionEmployee’s vtable pointer to get to the CommissionEm-
ployee vtable.

4. Skip the offset of four bytes to select the print function pointer.

5. Dereference the print function pointer to form the “name” of the actual function
to execute, and use the function call operator () to execute the appropriate print
function, which in this case prints the employee’s type, name, social security
number, gross sales and commission rate.

Fig. 20.18’s data structures may appear to be complex, but this complexity is managed
by the compiler and hidden from you, making polymorphic programming straightfor-
ward. The pointer dereferencing operations and memory accesses that occur on every vir-
tual function call require some additional execution time. The vtables and the vtable
pointers added to the objects require some additional memory.

20.8 Case Study: Payroll System Using Polymorphism
and Runtime Type Information with Downcasting, dynamic_cast, typeid and type_info
Recall from the problem statement at the beginning of Section 20.6 that, for the current
pay period, our fictitious company has decided to reward BasePlusCommissionEmployees
by adding 10 percent to their base salaries. When processing Employee objects polymor-
phically in Section 20.6.5, we did not need to worry about the “specifics.” Now, however,

Performance Tip 20.1
Polymorphism, as typically implemented with virtual functions and dynamic binding in
C++, is efficient. You can use these capabilities with nominal impact on performance.

Performance Tip 20.2
Virtual functions and dynamic binding enable polymorphic programming as an alterna-
tive to switch logic programming. Optimizing compilers normally generate polymorphic
code that’s nearly as efficient as hand-coded switch-based logic. Polymorphism’s overhead
is acceptable for most applications. In some situations—such as real-time applications
with stringent performance requirements—polymorphism’s overhead may be too high.

804 Chapter 20 Object-Oriented Programming: Polymorphism

to adjust the base salaries of BasePlusCommissionEmployees, we have to determine the spe-
cific type of each Employee object at execution time, then act appropriately. This section
demonstrates the powerful capabilities of runtime type information (RTTI) and dynamic
casting, which enable a program to determine an object’s type at execution time and act
on that object accordingly.1

Figure 20.19 uses the Employee hierarchy developed in Section 20.6 and increases by
10 percent the base salary of each BasePlusCommissionEmployee. Line 21 declares three-
element vector employees that stores pointers to Employee objects. Lines 24–29 populate
the vector with the addresses of dynamically allocated objects of classes SalariedEmployee
(Figs. 20.11–20.12), CommissionEmployee (Figs. 20.13–20.14) and BasePlusCommis-
sionEmployee (Figs. 20.15–20.16). Lines 32–52 iterate through the employees vector
and display each Employee’s information by invoking member function print (line 34).
Recall that because print is declared virtual in base class Employee, the system invokes
the appropriate derived-class object’s print function.

1. Some compilers require that RTTI be enabled before it can be used in a program. The compilers we
used for testing this book’s C++ examples—GNU C++, Visual C++ and Xcode LLVM—each enable
RTTI by default.

1 // Fig. 20.19: fig20_19.cpp
2 // Demonstrating downcasting and runtime type information.

3 // NOTE: You may need to enable RTTI on your compiler

4 // before you can compile this application.
5 #include <iostream>
6 #include <iomanip>
7 #include <vector>
8
9 #include "Employee.h"

10 #include "SalariedEmployee.h"
11 #include "CommissionEmployee.h"
12 #include "BasePlusCommissionEmployee.h"
13 using namespace std;
14
15 int main()
16 {
17 // set floating-point output formatting

18 cout << fixed << setprecision(2);
19
20 // create vector of three base-class pointers

21 vector < Employee * > employees(3);
22
23

24

25
26

27

28
29

30

Fig. 20.19 | Demonstrating downcasting and runtime type information. (Part 1 of 2.)

#include <typeinfo>

// initialize vector with various kinds of Employees
employees[0] = new SalariedEmployee(
 "John", "Smith", "111-11-1111", 800);
employees[1] = new CommissionEmployee(
 "Sue", "Jones", "333-33-3333", 10000, .06);
employees[2] = new BasePlusCommissionEmployee(
 "Bob", "Lewis", "444-44-4444", 5000, .04, 300);

20.8 Downcasting, dynamic_cast, typeid and type_info 805

31 // polymorphically process each element in vector employees

32 for (Employee *employeePtr : employees)
33 {
34 employeePtr->print(); // output employee information

35 cout << endl;

36
37

38

39
40
41 // determine whether element points to a BasePlusCommissionEmployee

42
43 {

44 double oldBaseSalary = ;

45 cout << "old base salary: $" << oldBaseSalary << endl;
46

47 cout << "new base salary with 10% increase is: $"
48 << << endl;

49 } // end if
50

51 cout << "earned $" << employeePtr->earnings() << "\n\n";
52 } // end for
53

54 // release objects pointed to by vector’s elements

55 for (const Employee *employeePtr : employees)
56 {

57

58
59

60
61 delete employeePtr;
62 } // end for

63 } // end main

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00
earned $800.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
old base salary: $300.00
new base salary with 10% increase is: $330.00
earned $530.00

deleting object of class SalariedEmployee
deleting object of class CommissionEmployee
deleting object of class BasePlusCommissionEmployee

Fig. 20.19 | Demonstrating downcasting and runtime type information. (Part 2 of 2.)

// attempt to downcast pointer
BasePlusCommissionEmployee *derivedPtr =

 dynamic_cast < BasePlusCommissionEmployee * >(employeePtr);

if (derivedPtr != nullptr) // true for "is a" relationship

derivedPtr->getBaseSalary()

derivedPtr->setBaseSalary(1.10 * oldBaseSalary);

derivedPtr->getBaseSalary()

// output class name

cout << "deleting object of "
 << typeid(*employeePtr).name() << endl;

806 Chapter 20 Object-Oriented Programming: Polymorphism

Determining an Object’s Type with dynamic_cast
In this example, as we encounter a BasePlusCommissionEmployee object, we wish to in-
crease its base salary by 10 percent. Since we process the Employees polymorphically, we can-
not (with the techniques you’ve learned so far) be certain as to which type of Employee is
being manipulated at any given time. This creates a problem, because BasePlusCommission-
Employee employees must be identified when we encounter them so they can receive the 10
percent salary increase. To accomplish this, we use operator dynamic_cast (line 39) to de-
termine whether the current Employee’s type is BasePlusCommissionEmployee. This is the
downcast operation we referred to in Section 20.3.3. Lines 38–39 dynamically downcast em-
ployeePtr from type Employee * to type BasePlusCommissionEmployee *. If employeePtr
points to an object that is a BasePlusCommissionEmployee object, then that object’s address
is assigned to derived-class pointer derivedPtr; otherwise, nullptr is assigned to derived-
Ptr. Note that dynamic_cast rather than static_cast is required here to perform type
checking on the underlying object—a static_cast would simply cast the Employee * to a
BasePlusCommissionEmployee * regardless of the underlying object’s type. With a
static_cast, the program would attempt to increase every Employee’s base salary, resulting
in undefined behavior for each object that is not a BasePlusCommissionEmployee.

If the value returned by the dynamic_cast operator in lines 38–39 is not nullptr, the
object is the correct type, and the if statement (lines 42–49) performs the special pro-
cessing required for the BasePlusCommissionEmployee object. Lines 44, 46 and 48 invoke
BasePlusCommissionEmployee functions getBaseSalary and setBaseSalary to retrieve
and update the employee’s salary.

Calculating the Current Employee’s Earnings
Line 51 invokes member function earnings on the object to which employeePtr points.
Recall that earnings is declared virtual in the base class, so the program invokes the de-
rived-class object’s earnings function—another example of dynamic binding.

Displaying an Employee’s Type
Lines 55–62 display each employee’s object type and uses the delete operator to deallocate
the dynamic memory to which each vector element points. Operator typeid (line 59) re-
turns a reference to an object of class type_info that contains the information about the
type of its operand, including the name of that type. When invoked, type_info member
function name (line 59) returns a pointer-based string containing the typeid argument’s
type name (e.g., "class BasePlusCommissionEmployee"). To use typeid, the program
must include header <typeinfo> (line 8).

Compilation Errors That We Avoided By Using dynamic_cast
We avoid several compilation errors in this example by downcasting an Employee pointer to
a BasePlusCommissionEmployee pointer (lines 38–39). If we remove the dynamic_cast
from line 39 and attempt to assign the current Employee pointer directly to BasePlusCom-
missionEmployee pointer derivedPtr, we’ll receive a compilation error. C++ does not allow
a program to assign a base-class pointer to a derived-class pointer because the is-a relationship

Portability Tip 20.1
The string returned by type_info member function name may vary by compiler.

20.9 Wrap-Up 807

does not apply—a CommissionEmployee is not a BasePlusCommissionEmployee. The is-a re-
lationship applies only between the derived class and its base classes, not vice versa.

Similarly, if lines 44, 46 and 48 used the current base-class pointer from employees,
rather than derived-class pointer derivedPtr, to invoke derived-class-only functions get-
BaseSalary and setBaseSalary, we would receive a compilation error at each of these
lines. As you learned in Section 20.3.3, attempting to invoke derived-class-only functions
through a base-class pointer is not allowed. Although lines 44, 46 and 48 execute only if
commissionPtr is not nullptr (i.e., if the cast can be performed), we cannot attempt to
invoke derived-class BasePlusCommissionEmployee functions getBaseSalary and
setBaseSalary on the base-class Employee pointer. Recall that, using a base class
Employee pointer, we can invoke only functions found in base class Employee—earnings,
print and Employee’s get and set functions.

20.9 Wrap-Up
In this chapter we discussed polymorphism, which enables us to “program in the general”
rather than “program in the specific,” and we showed how this makes programs more ex-
tensible. We began with an example of how polymorphism would allow a screen manager
to display several “space” objects. We then demonstrated how base-class and derived-class
pointers can be aimed at base-class and derived-class objects. We said that aiming base-
class pointers at base-class objects is natural, as is aiming derived-class pointers at derived-
class objects. Aiming base-class pointers at derived-class objects is also natural because a
derived-class object is an object of its base class. You learned why aiming derived-class
pointers at base-class objects is dangerous and why the compiler disallows such assign-
ments. We introduced virtual functions, which enable the proper functions to be called
when objects at various levels of an inheritance hierarchy are referenced (at execution time)
via base-class pointers or references. This is known as dynamic binding or late binding.
We discussed virtual destructors, and how they ensure that all appropriate destructors in
an inheritance hierarchy run on a derived-class object when that object is deleted via a
base-class pointer or reference. We then discussed pure virtual functions and abstract
classes (classes with one or more pure virtual functions). You learned that abstract classes
cannot be used to instantiate objects, while concrete classes can. We then demonstrated
using abstract classes in an inheritance hierarchy. You learned how polymorphism works
“under the hood” with vtables that are created by the compiler. We used runtime type in-
formation (RTTI) and dynamic casting to determine the type of an object at execution
time and act on that object accordingly. We also used the typeid operator to get a
type_info object containing a given object’s type information.

In the next chapter, we discuss many of C++’s I/O capabilities and demonstrate sev-
eral stream manipulators that perform various formatting tasks.

Summary
Section 20.1 Introduction
• Polymorphism (p. 768) enables us to “program in the general” rather than “program in the specific.”

• Polymorphism enables us to write programs that process objects of classes that are part of the
same class hierarchy as if they were all objects of the hierarchy’s base class.

808 Chapter 20 Object-Oriented Programming: Polymorphism

• With polymorphism, we can design and implement systems that are easily extensible—new class-
es can be added with little or no modification to the general portions of the program. The only
parts of a program that must be altered to accommodate new classes are those that require direct
knowledge of the new classes that you add to the hierarchy.

Section 20.2 Introduction to Polymorphism: Polymorphic Video Game
• With polymorphism, one function call can cause different actions to occur, depending on the

type of the object on which the function is invoked.

• This makes it possible to design and implement more extensible systems. Programs can be writ-
ten to process objects of types that may not exist when the program is under development.

Section 20.3 Relationships Among Objects in an Inheritance Hierarchy
• C++ enables polymorphism—the ability for objects of different classes related by inheritance to

respond differently to the same member-function call.

• Polymorphism is implemented via virtual functions (p. 776) and dynamic binding (p. 777).

• When a base-class pointer or reference is used to call a virtual function, C++ chooses the correct
overridden function in the appropriate derived class associated with the object.

• If a virtual function is called by referencing a specific object by name and using the dot mem-
ber-selection operator, the reference is resolved at compile time (this is called static binding;
p. 777); the virtual function that is called is the one defined for the class of that particular ob-
ject.

• Derived classes can override a base-class virtual function if necessary, but if they do not, the base
class’s implementation is used.

• Declare the base-class destructor virtual (p. 782) if the class contains virtual functions. This
makes all derived-class destructors virtual, even though they do not have the same name as the
base-class destructor. If an object in the hierarchy is destroyed explicitly by applying the delete
operator to a base-class pointer to a derived-class object, the destructor for the appropriate class
is called. After a derived-class destructor runs, the destructors for all of that class’s base classes run
all the way up the hierarchy.

Section 20.4 Type Fields and switch Statements
• Polymorphic programming with virtual functions can eliminate the need for switch logic. You

can use the virtual function mechanism to perform the equivalent logic automatically, thus
avoiding the kinds of errors typically associated with switch logic.

Section 20.5 Abstract Classes and Pure virtual Functions
• Abstract classes (p. 783) are typically used as base classes, so we refer to them as abstract base

classes (p. 783). No objects of an abstract class may be instantiated.

• Classes from which objects can be instantiated are concrete classes (p. 783).

• You create an abstract class by declaring one or more pure virtual functions (p. 784) with pure
specifiers (= 0) in their declarations.

• If a class is derived from a class with a pure virtual function and that derived class does not sup-
ply a definition for that pure virtual function, then that virtual function remains pure in the
derived class. Consequently, the derived class is also an abstract class.

• Although we cannot instantiate objects of abstract base classes, we can declare pointers and ref-
erences to objects of abstract base classes. Such pointers and references can be used to enable poly-
morphic manipulations of derived-class objects instantiated from concrete derived classes.

 Self-Review Exercises 809

Section 20.7 (Optional) Polymorphism, Virtual Functions and Dynamic Binding
“Under the Hood”
• Dynamic binding requires that at runtime, the call to a virtual member function be routed to the

virtual function version appropriate for the class. A virtual function table called the vtable
(p. 800) is implemented as an array containing function pointers. Each class with virtual func-
tions has a vtable. For each virtual function in the class, the vtable has an entry containing a
function pointer to the version of the virtual function to use for an object of that class. The
virtual function to use for a particular class could be the function defined in that class, or it
could be a function inherited either directly or indirectly from a base class higher in the hierarchy.

• When a base class provides a virtual member function, derived classes can override the virtual
function, but they do not have to override it.

• Each object of a class with virtual functions contains a pointer to the vtable for that class. When
a function call is made from a base-class pointer to a derived-class object, the appropriate func-
tion pointer in the vtable is obtained and dereferenced to complete the call at execution time.

• Any class that has one or more nullptr pointers in its vtable is an abstract class. Classes without
any nullptr vtable pointers are concrete classes.

• New kinds of classes are regularly added to systems and accommodated by dynamic binding.

Section 20.8 Case Study: Payroll System Using Polymorphism and Runtime Type In-
formation with Downcasting, dynamic_cast, typeid and type_info
• Operator dynamic_cast (p. 804) checks the type of the object to which a pointer points, then de-

termines whether the type has an is-a relationship with the type to which the pointer is being con-
verted. If so, dynamic_cast returns the object’s address. If not, dynamic_cast returns nullptr.

• Operator typeid (p. 806) returns a reference to a type_info object (p. 806) that contains infor-
mation about the operand’s type, including the type name. To use typeid, the program must
include header <typeinfo> (p. 806).

• When invoked, type_info member function name (p. 806) returns a pointer-based string that
contains the name of the type that the type_info object represents.

• Operators dynamic_cast and typeid are part of C++’s runtime type information (RTTI; p. 804)
feature, which allows a program to determine an object’s type at runtime.

Self-Review Exercises
20.1 Fill in the blanks in each of the following statements:

a) Treating a base-class object as a(n) can cause errors.
b) Polymorphism helps eliminate logic.
c) If a class contains at least one pure virtual function, it’s a(n) class.
d) Classes from which objects can be instantiated are called classes.
e) Operator can be used to downcast base-class pointers safely.
f) Operator typeid returns a reference to a(n) object.
g) involves using a base-class pointer or reference to invoke virtual functions

on base-class and derived-class objects.
h) Overridable functions are declared using keyword .
i) Casting a base-class pointer to a derived-class pointer is called .

20.2 State whether each of the following is true or false. If false, explain why.
a) All virtual functions in an abstract base class must be declared as pure virtual functions.
b) Referring to a derived-class object with a base-class handle is dangerous.
c) A class is made abstract by declaring that class virtual.

810 Chapter 20 Object-Oriented Programming: Polymorphism

d) If a base class declares a pure virtual function, a derived class must implement that
function to become a concrete class.

e) Polymorphic programming can eliminate the need for switch logic.

Answers to Self-Review Exercises
20.1 a) derived-class object. b) switch. c) abstract. d) concrete. e) dynamic_cast. f) type_info.
g) Polymorphism. h) virtual. i) downcasting.

20.2 a) False. An abstract base class can include virtual functions with implementations. b) False.
Referring to a base-class object with a derived-class handle is dangerous. c) False. Classes are never
declared virtual. Rather, a class is made abstract by including at least one pure virtual function in
the class. d) True. e) True.

Exercises
20.3 (Programming in the General) How is it that polymorphism enables you to program “in the
general” rather than “in the specific”? Discuss the key advantages of programming “in the general.”

20.4 (Polymorphism vs. switch logic) Discuss the problems of programming with switch logic.
Explain why polymorphism can be an effective alternative to using switch logic.

20.5 (Inheriting Interface vs. Implementation) Distinguish between inheriting interface and in-
heriting implementation. How do inheritance hierarchies designed for inheriting interface differ
from those designed for inheriting implementation?

20.6 (Virtual Functions) What are virtual functions? Describe a circumstance in which virtu-
al functions would be appropriate.

20.7 (Dynamic Binding vs. Static Binding) Distinguish between static binding and dynamic
binding. Explain the use of virtual functions and the vtable in dynamic binding.

20.8 (Virtual Functions) Distinguish between virtual functions and pure virtual functions.

20.9 (Abstract Base Classes) Suggest one or more levels of abstract base classes for the Shape hi-
erarchy discussed in this chapter and shown in Fig. 19.3. (The first level is Shape, and the second
level consists of the classes TwoDimensionalShape and ThreeDimensionalShape.)

20.10 (Polymorphism and Extensibility) How does polymorphism promote extensibility?

20.11 (Polymorphic Application) You’ve been asked to develop a flight simulator that will have
elaborate graphical outputs. Explain why polymorphic programming could be especially effective
for a problem of this nature.

20.12 (Payroll System Modification) Modify the payroll system of Figs. 20.9–20.17 to include
private data member birthDate in class Employee. Use class Date from Figs. 18.6–18.7 to represent
an employee’s birthday. Assume that payroll is processed once per month. Create a vector of Em-
ployee references to store the various employee objects. In a loop, calculate the payroll for each Em-
ployee (polymorphically), and add a $100.00 bonus to the person’s payroll amount if the current
month is the month in which the Employee’s birthday occurs.

20.13 (Package Inheritance Hierarchy) Use the Package inheritance hierarchy created in
Exercise 19.9 to create a program that displays the address information and calculates the shipping
costs for several Packages. The program should contain a vector of Package pointers to objects of
classes TwoDayPackage and OvernightPackage. Loop through the vector to process the Packages
polymorphically. For each Package, invoke get functions to obtain the address information of the
sender and the recipient, then print the two addresses as they would appear on mailing labels. Also,
call each Package’s calculateCost member function and print the result. Keep track of the total
shipping cost for all Packages in the vector, and display this total when the loop terminates.

 Making a Difference 811

20.14 (Polymorphic Banking Program Using Account Hierarchy) Develop a polymorphic bank-
ing program using the Account hierarchy created in Exercise 19.10. Create a vector of Account
pointers to SavingsAccount and CheckingAccount objects. For each Account in the vector, allow
the user to specify an amount of money to withdraw from the Account using member function deb-
it and an amount of money to deposit into the Account using member function credit. As you
process each Account, determine its type. If an Account is a SavingsAccount, calculate the amount
of interest owed to the Account using member function calculateInterest, then add the interest
to the account balance using member function credit. After processing an Account, print the up-
dated account balance obtained by invoking base-class member function getBalance.

20.15 (Payroll System Modification) Modify the payroll system of Figs. 20.9–20.17 to include
additional Employee subclasses PieceWorker and HourlyWorker. A PieceWorker represents an em-
ployee whose pay is based on the number of pieces of merchandise produced. An HourlyWorker rep-
resents an employee whose pay is based on an hourly wage and the number of hours worked. Hourly
workers receive overtime pay (1.5 times the hourly wage) for all hours worked in excess of 40 hours.

Class PieceWorker should contain private instance variables wage (to store the employee’s
wage per piece) and pieces (to store the number of pieces produced). Class HourlyWorker should
contain private instance variables wage (to store the employee’s wage per hour) and hours (to store
the hours worked). In class PieceWorker, provide a concrete implementation of method earnings
that calculates the employee’s earnings by multiplying the number of pieces produced by the wage
per piece. In class HourlyWorker, provide a concrete implementation of method earnings that cal-
culates the employee’s earnings by multiplying the number of hours worked by the wage per hour.
If the number of hours worked is over 40, be sure to pay the HourlyWorker for the overtime hours.
Add a pointer to an object of each new class into the vector of Employee pointers in main. For each
Employee, display its string representation and earnings.

Making a Difference
20.16 (CarbonFootprint Abstract Class: Polymorphism) Using an abstract class with only pure vir-
tual functions, you can specify similar behaviors for possibly disparate classes. Governments and
companies worldwide are becoming increasingly concerned with carbon footprints (annual releases
of carbon dioxide into the atmosphere) from buildings burning various types of fuels for heat, vehi-
cles burning fuels for power, and the like. Many scientists blame these greenhouse gases for the phe-
nomenon called global warming. Create three small classes unrelated by inheritance—classes
Building, Car and Bicycle. Give each class some unique appropriate attributes and behaviors that
it does not have in common with other classes. Write an abstract class CarbonFootprint with only
a pure virtual getCarbonFootprint method. Have each of your classes inherit from that abstract class
and implement the getCarbonFootprint method to calculate an appropriate carbon footprint for
that class (check out a few websites that explain how to calculate carbon footprints). Write an ap-
plication that creates objects of each of the three classes, places pointers to those objects in a vector
of CarbonFootprint pointers, then iterates through the vector, polymorphically invoking each ob-
ject’s getCarbonFootprint method. For each object, print some identifying information and the ob-
ject’s carbon footprint.

21 Stream Input/Output:
A Deeper Look

O b j e c t i v e s
In this chapter you’ll learn:

■ To use C++ object-oriented
stream input/output.

■ To format input and output.

■ The stream-I/O class
hierarchy.

■ To use stream manipulators.

■ To control justification and
padding.

■ To determine the success or
failure of input/output
operations.

■ To tie output streams to input
streams.

21.1 Introduction 813

21.1 Introduction
This chapter discusses a range of capabilities sufficient for performing most common I/O
operations and overviews the remaining capabilities. We discussed some of these features
earlier in the text; now we provide a more complete treatment. Many of the I/O features
that we’ll discuss are object oriented. This style of I/O makes use of other C++ features,
such as references, function overloading and operator overloading.

C++ uses type-safe I/O. Each I/O operation is executed in a manner sensitive to the
data type. If an I/O function has been defined to handle a particular data type, then that
member function is called to handle that data type. If there is no match between the type
of the actual data and a function for handling that data type, the compiler generates an
error. Thus, improper data cannot “sneak” through the system (as can occur in C, allowing
for some subtle and bizarre errors).

Users can specify how to perform I/O for objects of user-defined types by overloading
the stream insertion operator (<<) and the stream extraction operator (>>). This extensi-
bility is one of C++’s most valuable features.

21.1 Introduction
21.2 Streams

21.2.1 Classic Streams vs. Standard Streams
21.2.2 iostream Library Headers
21.2.3 Stream Input/Output Classes and

Objects
21.3 Stream Output

21.3.1 Output of char * Variables
21.3.2 Character Output Using Member

Function put
21.4 Stream Input

21.4.1 get and getline Member Functions
21.4.2 istream Member Functions peek,

putback and ignore
21.4.3 Type-Safe I/O

21.5 Unformatted I/O Using read, write
and gcount

21.6 Introduction to Stream Manipulators
21.6.1 Integral Stream Base: dec, oct, hex

and setbase
21.6.2 Floating-Point Precision (precision,

setprecision)
21.6.3 Field Width (width, setw)
21.6.4 User-Defined Output Stream

Manipulators

21.7 Stream Format States and Stream
Manipulators

21.7.1 Trailing Zeros and Decimal Points
(showpoint)

21.7.2 Justification (left, right and
internal)

21.7.3 Padding (fill, setfill)
21.7.4 Integral Stream Base (dec, oct, hex,

showbase)
21.7.5 Floating-Point Numbers; Scientific

and Fixed Notation (scientific,
fixed)

21.7.6 Uppercase/Lowercase Control
(uppercase)

21.7.7 Specifying Boolean Format
(boolalpha)

21.7.8 Setting and Resetting the Format State
via Member Function flags

21.8 Stream Error States
21.9 Tying an Output Stream to an Input

Stream
21.10 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Software Engineering Observation 21.1
Use the C++-style I/O exclusively in C++ programs, even though C-style I/O is available
to C++ programmers.

814 Chapter 21 Stream Input/Output: A Deeper Look

21.2 Streams
C++ I/O occurs in streams, which are sequences of bytes. In input operations, the bytes
flow from a device (e.g., a keyboard, a disk drive, a network connection, etc.) to main
memory. In output operations, bytes flow from main memory to a device (e.g., a display
screen, a printer, a disk drive, a network connection, etc.).

An application associates meaning with bytes. The bytes could represent characters,
raw data, graphics images, digital speech, digital video or any other information an appli-
cation may require. The system I/O mechanisms should transfer bytes from devices to
memory (and vice versa) consistently and reliably. Such transfers often involve some
mechanical motion, such as the rotation of a disk or a tape, or the typing of keystrokes at
a keyboard. The time these transfers take typically is far greater than the time the processor
requires to manipulate data internally. Thus, I/O operations require careful planning and
tuning to ensure optimal performance.

C++ provides both “low-level” and “high-level” I/O capabilities. Low-level I/O
capabilities (i.e., unformatted I/O) specify that some number of bytes should be trans-
ferred device-to-memory or memory-to-device. In such transfers, the individual byte is the
item of interest. Such low-level capabilities provide high-speed, high-volume transfers but
are not particularly convenient.

Programmers generally prefer a higher-level view of I/O (i.e., formatted I/O), in
which bytes are grouped into meaningful units, such as integers, floating-point numbers,
characters, strings and user-defined types. These type-oriented capabilities are satisfactory
for most I/O other than high-volume file processing.

21.2.1 Classic Streams vs. Standard Streams
In the past, the C++ classic stream libraries enabled input and output of chars. Because a
char normally occupies one byte, it can represent only a limited set of characters (such as
those in the ASCII character set used by most readers of this book, or other popular char-
acter sets). However, many languages use alphabets that contain more characters than a
single-byte char can represent. The ASCII character set does not provide these characters;
the Unicode® character set does. Unicode is an extensive international character set that

Error-Prevention Tip 21.1
C++ I/O is type safe.

Software Engineering Observation 21.2
C++ enables a common treatment of I/O for predefined types and user-defined types. This
commonality facilitates software development and reuse.

Performance Tip 21.1
Use unformatted I/O for the best performance in high-volume file processing.

Portability Tip 21.1
Unformatted I/O is not portable across all platforms.

21.2 Streams 815

represents the majority of the world’s “commercially viable” languages, mathematical sym-
bols and much more. For more information on Unicode, visit www.unicode.org.

C++ includes the standard stream libraries, which enable developers to build systems
capable of performing I/O operations with Unicode characters. For this purpose, C++
includes the type wchar_t, which among other uses can store Unicode characters. The
C++ standard also redesigned the classic C++ stream classes, which processed only chars,
as class templates with specializations for processing characters of types char and wchar_t,
respectively. We use the char specializations. The size of type wchar_t is not specified by
the standard. C++11’s new char16_t and char32_t types for representing Unicode char-
acters were added to provide character types with explicitly specified sizes.

21.2.2 iostream Library Headers
The C++ iostream library provides hundreds of I/O capabilities. Several headers contain
portions of the library interface.

Most C++ programs include the <iostream> header, which declares basic services
required for all stream-I/O operations. The <iostream> header defines the cin, cout, cerr
and clog objects, which correspond to the standard input stream, the standard output
stream, the unbuffered standard error stream and the buffered standard error stream,
respectively. (cerr and clog are discussed in Section 21.2.3.) Both unformatted- and for-
matted-I/O services are provided.

The <iomanip> header declares services useful for performing formatted I/O with
so-called parameterized stream manipulators, such as setw and setprecision. The
<fstream> header declares services for file processing.

21.2.3 Stream Input/Output Classes and Objects
The iostream library provides many templates for handling common I/O operations. For
example, class template basic_istream supports stream-input operations, class template
basic_ostream supports stream-output operations, and class template basic_iostream
supports both stream-input and stream-output operations. Each template has a predefined
template specialization that enables char I/O. In addition, the iostream library provides
a set of typedefs that provide aliases for these template specializations. The typedef spec-
ifier declares synonyms (aliases) for data types. You’ll sometimes use typedef to create
shorter or more readable type names. For example, the statement

defines an additional type name, CardPtr, as a synonym for type Card *. Creating a name
using typedef does not create a data type; it creates only a new type name. Section 10.6 dis-
cusses typedef in detail. The typedef istream represents a basic_istream<char> that en-
ables char input. Similarly, the typedef ostream represents a basic_ostream<char> that
enables char output. Also, the typedef iostream represents a basic_iostream<char> that
enables both char input and output. We use these typedefs throughout this chapter.

Stream-I/O Template Hierarchy and Operator Overloading
Templates basic_istream and basic_ostream both derive through single inheritance
from base template basic_ios.1 Template basic_iostream derives through multiple in-

typedef Card *CardPtr;

816 Chapter 21 Stream Input/Output: A Deeper Look

heritance from templates basic_istream and basic_ostream. The UML class diagram of
Fig. 21.1 summarizes these inheritance relationships.

Operator overloading provides a convenient notation for performing input/output.
The left-shift operator (<<) is overloaded to designate stream output and is referred to as the
stream insertion operator. The right-shift operator (>>) is overloaded to designate stream
input and is referred to as the stream extraction operator. These operators are used with the
standard stream objects cin, cout, cerr and clog and, commonly, with stream objects you
create in your own code.

Standard Stream Objects cin, cout, cerr and clog
Predefined object cin is an istream instance and is said to be “connected to” (or attached
to) the standard input device, which usually is the keyboard. The stream extraction operator
(>>) as used in the following statement causes a value for integer variable grade (assuming
that grade has been declared as an int variable) to be input from cin to memory:

The compiler determines the data type of grade and selects the appropriate overloaded
stream extraction operator. Assuming that grade has been declared properly, the stream
extraction operator does not require additional type information (as is the case, for exam-
ple, in C-style I/O). The >> operator is overloaded to input data items of fundamental
types, strings and pointer values.

The predefined object cout is an ostream instance and is said to be “connected to”
the standard output device, which usually is the display screen. The stream insertion oper-
ator (<<), as used in the following statement, causes the value of variable grade to be
output from memory to the standard output device:

The compiler determines the data type of grade (assuming grade has been declared prop-
erly) and selects the appropriate stream insertion operator. The << operator is overloaded
to output data items of fundamental types, strings and pointer values.

1. This chapter discusses templates only in the context of the template specializations for char I/O.

Fig. 21.1 | Stream-I/O template hierarchy portion.

cin >> grade; // data "flows" in the direction of the arrows

cout << grade; // data "flows" in the direction of the arrows

basic_ios

basic_ostreambasic_istream

basic_iostream

21.3 Stream Output 817

The predefined object cerr is an ostream instance and is said to be “connected to”
the standard error device, normally the screen. Outputs to object cerr are unbuffered,
implying that each stream insertion to cerr causes its output to appear immediately—this
is appropriate for notifying a user promptly about errors.

The predefined object clog is an instance of the ostream class and is said to be “con-
nected to” the standard error device. Outputs to clog are buffered. This means that each
insertion to clog could cause its output to be held in a buffer (that is, an area in memory)
until the buffer is filled or until the buffer is flushed. Buffering is an I/O performance-
enhancement technique discussed in operating-systems courses.

File-Processing Templates
C++ file processing uses class templates basic_ifstream (for file input), basic_ofstream
(for file output) and basic_fstream (for file input and output). As with the standard
streams, C++ provides typedefs for working with these class templates. For example, the
typedef ifstream represents a basic_ifstream<char> that enables char input from a
file. Similarly, typedef ofstream represents a basic_ofstream<char> that enables char
output to a file. Also, typedef fstream represents a basic_fstream<char> that enables
char input from, and output to, a file. Template basic_ifstream inherits from
basic_istream, basic_ofstream inherits from basic_ostream and basic_fstream in-
herits from basic_iostream. The UML class diagram of Fig. 21.2 summarizes the various
inheritance relationships of the I/O-related classes. The full stream-I/O class hierarchy
provides most of the capabilities that you need. Consult the class-library reference for your
C++ system for additional file-processing information.

21.3 Stream Output
Formatted and unformatted output capabilities are provided by ostream. Capabilities in-
clude output of standard data types with the stream insertion operator (<<); output of
characters via the put member function; unformatted output via the write member func-

Fig. 21.2 | Stream-I/O template hierarchy portion showing the main file-processing templates.

basic_ios

basic_ostreambasic_istream

basic_iostream basic_ofstreambasic_ifstream

basic_fstream

818 Chapter 21 Stream Input/Output: A Deeper Look

tion; output of integers in decimal, octal and hexadecimal formats; output of floating-
point values with various precision, with forced decimal points, in scientific notation and
in fixed notation; output of data justified in fields of designated widths; output of data in
fields padded with specified characters; and output of uppercase letters in scientific nota-
tion and hexadecimal notation.

21.3.1 Output of char * Variables
C++ determines data types automatically—an improvement over C, but this feature some-
times “gets in the way.” For example, suppose we want to print the address stored in a
char * pointer. The << operator has been overloaded to output a char * as a null-termi-
nated C-style string. To output the address, you can cast the char * to a void * (this can be
done to any pointer variable). Figure 21.3 demonstrates printing a char * variable in both
string and address formats. The address prints here as a hexadecimal (base-16) number—
in general, the way addresses print is implementation dependent. To learn more about hexa-
decimal numbers, see Appendix C. We say more about controlling the bases of numbers
in Section 21.6.1 and Section 21.7.4.

21.3.2 Character Output Using Member Function put
We can use the put member function to output characters. For example, the statement

displays a single character A. Calls to put may be cascaded, as in the statement

which outputs the letter A followed by a newline character. As with <<, the preceding state-
ment executes in this manner, because the dot operator (.) associates from left to right,

1 // Fig. 21.3: fig21_03.cpp

2 // Printing the address stored in a char * variable.

3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {

8

9
10 // display value of char *, then display value of char *

11 // after a static_cast to void *

12 cout << "Value of word is: " << << endl
13 << "Value of static_cast< const void * >(word) is: "
14 << << endl;

15 } // end main

Value of word is: again
Value of static_cast< const void * >(word) is: 0135CC70

Fig. 21.3 | Printing the address stored in a char * variable.

cout.put('A');

cout.put('A').put('\n');

const char *const word = "again";

word

static_cast< const void * >(word)

21.4 Stream Input 819

and the put member function returns a reference to the ostream object (cout) that re-
ceived the put call. The put function also may be called with a numeric expression that
represents an ASCII value, as in the following statement, which also outputs A:

21.4 Stream Input
Now let’s consider stream input. Formatted and unformatted input capabilities are provid-
ed by istream. The stream extraction operator (>>) normally skips white-space characters
(such as blanks, tabs and newlines) in the input stream; later we’ll see how to change this
behavior. After each input, the stream extraction operator returns a reference to the stream
object that received the extraction message (e.g., cin in the expression cin >> grade). If that
reference is used as a condition (e.g., in a while statement’s loop-continuation condition),
the stream’s overloaded void * cast operator function is implicitly invoked to convert the
reference into a non-null pointer value or the null pointer based on the success or failure,
respectively, of the last input operation. A non-null pointer converts to the bool value true
to indicate success and the null pointer converts to the bool value false to indicate failure.
When an attempt is made to read past the end of a stream, the stream’s overloaded void *

cast operator returns the null pointer to indicate end-of-file.
Each stream object contains a set of state bits used to control the stream’s state (i.e.,

formatting, setting error states, etc.). These bits are used by the stream’s overloaded void *

cast operator to determine whether to return a non-null pointer or the null pointer. Stream
extraction causes the stream’s failbit to be set if data of the wrong type is input and
causes the stream’s badbit to be set if the operation fails. Section 21.7 and Section 21.8
discuss stream state bits in detail, then show how to test these bits after an I/O operation.

21.4.1 get and getline Member Functions
The get member function with no arguments inputs one character from the designated
stream (including white-space characters and other nongraphic characters, such as the key
sequence that represents end-of-file) and returns it as the value of the function call. This
version of get returns EOF when end-of-file is encountered on the stream.

Using Member Functions eof, get and put
Figure 21.4 demonstrates the use of member functions eof and get on input stream cin
and member function put on output stream cout. Recall from Chapter 4 that EOF is rep-
resented as an int. This program reads characters into the int variable character, so that
we can test each character entered to see if it’s EOF. The program first prints the value of
cin.eof()—i.e., false (0 on the output)—to show that end-of-file has not occurred on
cin. The user enters a line of text and presses Enter followed by end-of-file (<Ctrl> z on
Microsoft Windows systems, <Ctrl> d on Linux and Mac systems). Line 15 reads each
character, which line 16 outputs to cout using member function put. When end-of-file is
encountered, the while statement ends, and line 20 displays the value of cin.eof(),
which is now true (1 on the output), to show that end-of-file has been set on cin. This
program uses the version of istream member function get that takes no arguments and
returns the character being input (line 15). Function eof returns true only after the pro-
gram attempts to read past the last character in the stream.

cout.put(65);

820 Chapter 21 Stream Input/Output: A Deeper Look

The get member function with a character-reference argument inputs the next char-
acter from the input stream (even if this is a white-space character) and stores it in the char-
acter argument. This version of get returns a reference to the istream object for which
the get member function is being invoked.

A third version of get takes three arguments—a built-in array of chars, a size limit
and a delimiter (with default value '\n'). This version reads characters from the input
stream. It either reads one fewer than the specified maximum number of characters and
terminates or terminates as soon as the delimiter is read. A null character is inserted to ter-
minate the input string in the character array used as a buffer by the program. The delim-
iter is not placed in the character array but does remain in the input stream (the delimiter
will be the next character read). Thus, the result of a second consecutive get is an empty
line, unless the delimiter character is removed from the input stream (possibly with
cin.ignore()).

Comparing cin and cin.get
Figure 21.5 compares input using stream extraction with cin (which reads characters until
a white-space character is encountered) and input using cin.get. The call to cin.get (line
22) does not specify a delimiter, so the default '\n' character is used.

1 // Fig. 21.4: fig21_04.cpp

2 // get, put and eof member functions.

3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {

8 int character; // use int, because char cannot represent EOF
9

10 // prompt user to enter line of text

11 cout << "Before input, cin.eof() is " << << endl

12 << "Enter a sentence followed by end-of-file:" << endl;
13
14 // use get to read each character; use put to display it

15 while ()
16

17
18 // display end-of-file character

19 cout << "\nEOF in this system is: " << character << endl;
20 cout << "After input of EOF, cin.eof() is " << << endl;

21 } // end main

Before input, cin.eof() is 0
Enter a sentence followed by end-of-file:
Testing the get and put member functions
Testing the get and put member functions
^Z
EOF in this system is: -1
After input of EOF, cin.eof() is 1

Fig. 21.4 | get, put and eof member functions.

cin.eof()

(character = cin.get()) != EOF
cout.put(character);

cin.eof()

21.4 Stream Input 821

Using Member Function getline
Member function getline operates similarly to the third version of the get member func-
tion and inserts a null character after the line in the built-in array of chars. The getline
function removes the delimiter from the stream (i.e., reads the character and discards it),
but does not store it in the character array. The program of Fig. 21.6 demonstrates the use
of the getline member function to input a line of text (line 13).

1 // Fig. 21.5: fig21_05.cpp

2 // Contrasting input of a string via cin and cin.get.

3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {

8 // create two char arrays, each with 80 elements

9 const int SIZE = 80;
10 char buffer1[SIZE];
11 char buffer2[SIZE];
12
13 // use cin to input characters into buffer1

14 cout << "Enter a sentence:" << endl;
15
16
17 // display buffer1 contents

18 cout << "\nThe string read with cin was:" << endl
19 << buffer1 << endl << endl;
20

21

22
23
24 // display buffer2 contents

25 cout << "The string read with cin.get was:" << endl
26 << buffer2 << endl;

27 } // end main

Enter a sentence:
Contrasting string input with cin and cin.get
The string read with cin was:
Contrasting

The string read with cin.get was:
 string input with cin and cin.get

Fig. 21.5 | Contrasting input of a string via cin and cin.get.

1 // Fig. 21.6: fig21_06.cpp
2 // Inputting characters using cin member function getline.

3 #include <iostream>
4 using namespace std;

Fig. 21.6 | Inputting characters using cin member function getline. (Part 1 of 2.)

cin >> buffer1;

// use cin.get to input characters into buffer2

cin.get(buffer2, SIZE);

822 Chapter 21 Stream Input/Output: A Deeper Look

21.4.2 istream Member Functions peek, putback and ignore
The ignore member function of istream reads and discards a designated number of char-
acters (the default is one) or terminates upon encountering a designated delimiter (the de-
fault is EOF, which causes ignore to skip to the end of the file when reading from a file).

The putback member function places the previous character obtained by a get from
an input stream back into that stream. This function is useful for applications that scan an
input stream looking for a field beginning with a specific character. When that character
is input, the application returns the character to the stream, so the character can be
included in the input data.

The peek member function returns the next character from an input stream but does
not remove the character from the stream.

21.4.3 Type-Safe I/O
C++ offers type-safe I/O. The << and >> operators are overloaded to accept data items of
specific types. If unexpected data is processed, various error bits are set, which the user may
test to determine whether an I/O operation succeeded or failed. If operators << and >>
have not been overloaded for a user-defined type and you attempt to input into or output
the contents of an object of that user-defined type, the compiler reports an error. This en-
ables the program to “stay in control.” We discuss these error states in Section 21.8.

21.5 Unformatted I/O Using read, write and gcount
Unformatted input/output is performed using the read and write member functions of
istream and ostream, respectively. Member function read inputs bytes to a built-in array
of chars in memory; member function write outputs bytes from a built-in array of chars.
These bytes are not formatted in any way. They’re input or output as raw bytes. For exam-
ple, the call

5
6 int main()
7 {
8 const int SIZE = 80;
9

10
11 // input characters in buffer via cin function getline

12 cout << "Enter a sentence:" << endl;
13
14
15 // display buffer contents

16 cout << "\nThe sentence entered is:" << endl << buffer << endl;
17 } // end main

Enter a sentence:
Using the getline member function
The sentence entered is:
Using the getline member function

Fig. 21.6 | Inputting characters using cin member function getline. (Part 2 of 2.)

char buffer[SIZE]; // create array of 80 characters

cin.getline(buffer, SIZE);

21.6 Introduction to Stream Manipulators 823

outputs the first 10 bytes of buffer (including null characters, if any, that would cause
output with cout and << to terminate). The call

displays the first 10 characters of the alphabet.
The read member function inputs a designated number of characters into a built-in

array of chars. If fewer than the designated number of characters are read, failbit is set.
Section 21.8 shows how to determine whether failbit has been set. Member function
gcount reports the number of characters read by the last input operation.

Figure 21.7 demonstrates istream member functions read and gcount, and ostream
member function write. The program inputs 20 characters (from a longer input
sequence) into the array buffer with read (line 13), determines the number of characters
input with gcount (line 17) and outputs the characters in buffer with write (line 17).

21.6 Introduction to Stream Manipulators
C++ provides various stream manipulators that perform formatting tasks. The stream ma-
nipulators provide capabilities such as setting field widths, setting precision, setting and
unsetting format state, setting the fill character in fields, flushing streams, inserting a new-
line into the output stream (and flushing the stream), inserting a null character into the
output stream and skipping white space in the input stream. These features are described
in the following sections.

char buffer[] = "HAPPY BIRTHDAY";
cout.write(buffer, 10);

cout.write("ABCDEFGHIJKLMNOPQRSTUVWXYZ", 10);

1 // Fig. 21.7: fig21_07.cpp
2 // Unformatted I/O using read, gcount and write.

3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 const int SIZE = 80;
9

10
11 // use function read to input characters into buffer

12 cout << "Enter a sentence:" << endl;
13
14
15 // use functions write and gcount to display buffer characters

16 cout << endl << "The sentence entered was:" << endl;
17

18 cout << endl;

19 } // end main

Enter a sentence:
Using the read, write, and gcount member functions
The sentence entered was:
Using the read, writ

Fig. 21.7 | Unformatted I/O using read, gcount and write.

char buffer[SIZE]; // create array of 80 characters

cin.read(buffer, 20);

cout.write(buffer, cin.gcount());

824 Chapter 21 Stream Input/Output: A Deeper Look

21.6.1 Integral Stream Base: dec, oct, hex and setbase
Integers are interpreted normally as decimal (base-10) values. To change the base in which
integers are interpreted on a stream, insert the hex manipulator to set the base to hexadec-
imal (base 16) or insert the oct manipulator to set the base to octal (base 8). Insert the dec
manipulator to reset the stream base to decimal. These are all sticky manipulators.

A stream’s base also may be changed by the setbase stream manipulator, which takes
an int argument of 10, 8, or 16 to set the base to decimal, octal or hexadecimal, respec-
tively. Because setbase takes an argument, it’s called a parameterized stream manipulator.
Parameterized stream manipulators like setbase require the header <iomanip>. The
stream base value remains the same until changed explicitly; setbase settings are sticky.
Figure 21.8 demonstrates stream manipulators hex, oct, dec and setbase. For more
information on decimal, octal and hexadecimal numbers, see Appendix C.

21.6.2 Floating-Point Precision (precision, setprecision)
We can control the precision of floating-point numbers (i.e., the number of digits to the
right of the decimal point) by using either the setprecision stream manipulator or the
precision member function of ios_base. A call to either of these sets the precision for all

1 // Fig. 21.8: fig21_08.cpp

2 // Using stream manipulators hex, oct, dec and setbase.

3 #include <iostream>
4
5 using namespace std;
6
7 int main()
8 {

9 int number;
10
11 cout << "Enter a decimal number: ";
12 cin >> number; // input number
13
14 // use hex stream manipulator to show hexadecimal number

15 cout << number << " in hexadecimal is: " <<
16 << number << endl;

17
18 // use oct stream manipulator to show octal number
19 cout << << number << " in octal is: "
20 << << number << endl;

21
22 // use setbase stream manipulator to show decimal number

23 cout << << number << " in decimal is: "
24 << number << endl;
25 } // end main

Enter a decimal number: 20
20 in hexadecimal is: 14
20 in octal is: 24
20 in decimal is: 20

Fig. 21.8 | Using stream manipulators hex, oct, dec and setbase.

#include <iomanip>

hex

dec
oct

setbase(10)

21.6 Introduction to Stream Manipulators 825

subsequent output operations until the next precision-setting call. A call to member func-
tion precision with no argument returns the current precision setting (this is what you
need to use so that you can restore the original precision eventually after a sticky setting is
no longer needed). The program of Fig. 21.9 uses both member function precision (line
22) and the setprecision manipulator (line 31) to print a table that shows the square root
of 2, with precision varying from 0 to 9.

1 // Fig. 21.9: fig21_09.cpp
2 // Controlling precision of floating-point values.

3 #include <iostream>
4
5 #include <cmath>
6 using namespace std;
7
8 int main()
9 {

10 double root2 = sqrt(2.0); // calculate square root of 2
11 int places; // precision, vary from 0-9
12
13 cout << "Square root of 2 with precisions 0-9." << endl
14 << "Precision set by ios_base member function "
15 << "precision:" << endl;
16
17
18
19 // display square root using ios_base function precision

20 for (places = 0; places <= 9; ++places)
21 {

22

23 cout << root2 << endl;
24 } // end for

25
26 cout << "\nPrecision set by stream manipulator "
27 << "setprecision:" << endl;
28
29 // set precision for each digit, then display square root
30 for (places = 0; places <= 9; ++places)
31 cout << << root2 << endl;

32 } // end main

Square root of 2 with precisions 0-9.
Precision set by ios_base member function precision:
1
1.4
1.41
1.414
1.4142
1.41421
1.414214
1.4142136
1.41421356
1.414213562

Fig. 21.9 | Controlling precision of floating-point values. (Part 1 of 2.)

#include <iomanip>

cout << fixed; // use fixed-point notation

cout.precision(places);

setprecision(places)

826 Chapter 21 Stream Input/Output: A Deeper Look

21.6.3 Field Width (width, setw)
The width member function (of base class ios_base) sets the field width (i.e., the number
of character positions in which a value should be output or the maximum number of char-
acters that should be input) and returns the previous width. If values output are narrower
than the field width, fill characters are inserted as padding. A value wider than the desig-
nated width will not be truncated—the full number will be printed. The width function
with no argument returns the current setting.

Figure 21.10 demonstrates the use of the width member function on both input and
output. On input into a char array, a maximum of one fewer characters than the width will
be read, because provision is made for the null character to be placed in the input string.
Remember that stream extraction terminates when nonleading white space is encountered.
The setw stream manipulator also may be used to set the field width. [Note: When
prompted for input in Fig. 21.10, the user should enter a line of text and press Enter fol-
lowed by end-of-file (<Ctrl> z on Microsoft Windows systems and <Ctrl> d on Linux and
OS X systems).]

Precision set by stream manipulator setprecision:
1
1.4
1.41
1.414
1.4142
1.41421
1.414214
1.4142136
1.41421356
1.414213562

Common Programming Error 21.1
The width setting applies only for the next insertion or extraction (i.e., the width setting
is not sticky); afterward, the width is set implicitly to 0 (that is, input and output will be
performed with default settings). Assuming that the width setting applies to all subse-
quent outputs is a logic error.

Common Programming Error 21.2
When a field is not sufficiently wide to handle outputs, the outputs print as wide as nec-
essary, which can yield confusing outputs.

1 // Fig. 21.10: fig21_10.cpp

2 // width member function of class ios_base.
3 #include <iostream>
4 using namespace std;
5

Fig. 21.10 | width member function of class ios_base. (Part 1 of 2.)

Fig. 21.9 | Controlling precision of floating-point values. (Part 2 of 2.)

21.6 Introduction to Stream Manipulators 827

21.6.4 User-Defined Output Stream Manipulators
You can create your own stream manipulators. Figure 21.11 shows how to create and use
new nonparameterized stream manipulators bell (lines 8–11), carriageReturn (lines 14–
17), tab (lines 20–23) and endLine (lines 27–30). For output stream manipulators, the re-
turn type and parameter must be of type ostream &. When line 35 inserts the endLine ma-
nipulator in the output stream, function endLine is called and line 29 outputs the escape
sequence \n and the flush manipulator (which flushes the output buffer) to the standard
output stream cout. Similarly, when lines 35–44 insert the manipulators tab, bell and car-
riageReturn in the output stream, their corresponding functions—tab (line 20), bell (line
8) and carriageReturn (line 14) are called, which in turn output various escape sequences.

6 int main()
7 {

8 int widthValue = 4;
9 char sentence[10];

10
11 cout << "Enter a sentence:" << endl;
12

13
14 // set field width, then display characters based on that width
15 while (cin >> sentence)
16 {

17
18 cout << sentence << endl;

19

20 } // end while
21 } // end main

Enter a sentence:
This is a test of the width member function
This
 is
 a
 test
 of
 the
 widt
 h
 memb
 er
 func
 tion

1 // Fig. 21.11: fig21_11.cpp
2 // Creating and testing user-defined, nonparameterized

3 // stream manipulators.

4 #include <iostream>
5 using namespace std;

Fig. 21.11 | User-defined, nonparameterized stream manipulators. (Part 1 of 2.)

Fig. 21.10 | width member function of class ios_base. (Part 2 of 2.)

cin.width(5); // input only 5 characters from sentence

cout.width(widthValue++);

cin.width(5); // input 5 more characters from sentence

828 Chapter 21 Stream Input/Output: A Deeper Look

21.7 Stream Format States and Stream Manipulators
Various stream manipulators can be used to specify the kinds of formatting to be per-
formed during stream-I/O operations. Stream manipulators control the output’s format
settings. Figure 21.12 lists each stream manipulator that controls a given stream’s format

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 int main()
33 {
34 // use tab and endLine manipulators

35 cout << "Testing the tab manipulator:" <<
36 << 'a' << << 'b' << << 'c' << ;
37
38 cout << "Testing the carriageReturn and bell manipulators:"
39 << << "..........";
40
41 cout << ; // use bell manipulator

42
43 // use carriageReturn and endLine manipulators

44 cout << << "-----" << ;

45 } // end main

Testing the tab manipulator:
a b c
Testing the carriageReturn and bell manipulators:
-----.....

Fig. 21.11 | User-defined, nonparameterized stream manipulators. (Part 2 of 2.)

// bell manipulator (using escape sequence \a)

ostream& bell(ostream& output)

{
 return output << '\a'; // issue system beep
} // end bell manipulator

// carriageReturn manipulator (using escape sequence \r)

ostream& carriageReturn(ostream& output)

{
 return output << '\r'; // issue carriage return
} // end carriageReturn manipulator

// tab manipulator (using escape sequence \t)

ostream& tab(ostream& output)

{
 return output << '\t'; // issue tab
} // end tab manipulator

// endLine manipulator (using escape sequence \n and flush stream

// manipulator to simulate endl)

ostream& endLine(ostream& output)

{
 return output << '\n' << flush; // issue endl-like end of line
} // end endLine manipulator

endLine

tab tab endLine

endLine

bell

carriageReturn endLine

21.7 Stream Format States and Stream Manipulators 829

state. All these manipulators belong to class ios_base. We show examples of most of these
stream manipulators in the next several sections.

21.7.1 Trailing Zeros and Decimal Points (showpoint)
Stream manipulator showpoint is a sticky setting that forces a floating-point number to
be output with its decimal point and trailing zeros. For example, the floating-point value
79.0 prints as 79 without using showpoint and prints as 79.000000 (or as many trailing
zeros as are specified by the current precision) using showpoint. To reset the showpoint
setting, output the stream manipulator noshowpoint. The program in Fig. 21.13 shows
how to use stream manipulator showpoint to control the printing of trailing zeros and dec-
imal points for floating-point values. Recall that the default precision of a floating-point

Manipulator Description

skipws Skip white-space characters on an input stream. This setting is reset with stream
manipulator noskipws.

left Left justify output in a field. Padding characters appear to the right if necessary.
right Right justify output in a field. Padding characters appear to the left if necessary.
internal Indicate that a number’s sign should be left justified in a field and a number’s

magnitude should be right justified in that same field (i.e., padding characters
appear between the sign and the number).

boolalpha Specify that bool values should be displayed as the word true or false. The
manipulator noboolalpha sets the stream back to displaying bool values as 1
(true) and 0 (false).

dec Specify that integers should be treated as decimal (base 10) values.
oct Specify that integers should be treated as octal (base 8) values.
hex Specify that integers should be treated as hexadecimal (base 16) values.
showbase Specify that the base of a number is to be output ahead of the number (a lead-

ing 0 for octals; a leading 0x or 0X for hexadecimals). This setting is reset with
stream manipulator noshowbase.

showpoint Specify that floating-point numbers should be output with a decimal point.
This is used normally with fixed to guarantee a certain number of digits to the
right of the decimal point, even if they’re zeros. This setting is reset with
stream manipulator noshowpoint.

uppercase Specify that uppercase letters (i.e., X and A through F) should be used in a hexa-
decimal integer and that uppercase E should be used when representing a float-
ing-point value in scientific notation. This setting is reset with stream
manipulator nouppercase.

showpos Specify that positive numbers should be preceded by a plus sign (+). This set-
ting is reset with stream manipulator noshowpos.

scientific Specify output of a floating-point value in scientific notation.
fixed Specify output of a floating-point value in fixed-point notation with a specific

number of digits to the right of the decimal point.

Fig. 21.12 | Format state stream manipulators from <iostream>.

830 Chapter 21 Stream Input/Output: A Deeper Look

number is 6. When neither the fixed nor the scientific stream manipulator is used, the
precision represents the number of significant digits to display (i.e., the total number of
digits to display), not the number of digits to display after decimal point.

21.7.2 Justification (left, right and internal)
Stream manipulators left and right enable fields to be left justified with padding charac-
ters to the right or right justified with padding characters to the left, respectively. The pad-
ding character is specified by the fill member function or the setfill parameterized
stream manipulator (which we discuss in Section 21.7.3). Figure 21.14 uses the setw,
left and right manipulators to left justify and right justify integer data in a field.

1 // Fig. 21.13: fig21_13.cpp

2 // Controlling the printing of trailing zeros and

3 // decimal points in floating-point values.
4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {

9 // display double values with default stream format
10 cout << "Before using showpoint" << endl
11 << "9.9900 prints as: " << 9.9900 << endl
12 << "9.9000 prints as: " << 9.9000 << endl
13 << "9.0000 prints as: " << 9.0000 << endl << endl;
14
15 // display double value after showpoint

16 cout <<
17 << "After using showpoint" << endl
18 << "9.9900 prints as: " << 9.9900 << endl
19 << "9.9000 prints as: " << 9.9000 << endl
20 << "9.0000 prints as: " << 9.0000 << endl;
21 } // end main

Before using showpoint
9.9900 prints as: 9.99
9.9000 prints as: 9.9
9.0000 prints as: 9

After using showpoint
9.9900 prints as: 9.99000
9.9000 prints as: 9.90000
9.0000 prints as: 9.00000

Fig. 21.13 | Controlling the printing of trailing zeros and decimal points in floating-point values.

1 // Fig. 21.14: fig21_14.cpp
2 // Left and right justification with stream manipulators left and right.

3 #include <iostream>

Fig. 21.14 | Left and right justification with stream manipulators left and right. (Part 1 of 2.)

showpoint

21.7 Stream Format States and Stream Manipulators 831

Stream manipulator internal indicates that a number’s sign (or base when using
stream manipulator showbase) should be left justified within a field, that the number’s
magnitude should be right justified and that intervening spaces should be padded with the
fill character. Figure 21.15 shows the internal stream manipulator specifying internal
spacing (line 10). Note that showpos forces the plus sign to print (line 10). To reset the
showpos setting, output the stream manipulator noshowpos.

4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {

9 int x = 12345;
10
11 // display x right justified (default)

12 cout << "Default is right justified:" << endl
13 << << x;

14
15 // use left manipulator to display x left justified
16 cout << "\n\nUse std::left to left justify x:\n"
17 << << << x;

18
19 // use right manipulator to display x right justified

20 cout << "\n\nUse std::right to right justify x:\n"
21 << << << x << endl;

22 } // end main

Default is right justified:
 12345

Use std::left to left justify x:
12345

Use std::right to right justify x:
 12345

1 // Fig. 21.15: fig21_15.cpp

2 // Printing an integer with internal spacing and plus sign.

3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main()
8 {

9 // display value with internal spacing and plus sign
10 cout << << << setw(10) << 123 << endl;
11 } // end main

Fig. 21.15 | Printing an integer with internal spacing and plus sign. (Part 1 of 2.)

Fig. 21.14 | Left and right justification with stream manipulators left and right. (Part 2 of 2.)

setw(10)

left setw(10)

right setw(10)

internal showpos

832 Chapter 21 Stream Input/Output: A Deeper Look

21.7.3 Padding (fill, setfill)
The fill member function specifies the fill character to be used with justified fields; spaces
are used for padding by default. The function returns the prior padding character. The
setfill manipulator also sets the padding character. Figure 21.16 demonstrates function
fill (line 30) and stream manipulator setfill (lines 34 and 37) to set the fill character.

+ 123

1 // Fig. 21.16: fig21_16.cpp

2 // Using member function fill and stream manipulator setfill to change

3 // the padding character for fields larger than the printed value.
4 #include <iostream>
5 #include <iomanip>
6 using namespace std;
7
8 int main()
9 {

10 int x = 10000;
11
12 // display x

13 cout << x << " printed as int right and left justified\n"
14 << "and as hex with internal justification.\n"
15 << "Using the default pad character (space):" << endl;
16
17 // display x with base

18 cout << showbase << setw(10) << x << endl;
19
20 // display x with left justification

21 cout << left << setw(10) << x << endl;
22
23 // display x as hex with internal justification

24 cout << << setw(10) << hex << x << endl << endl;
25
26 cout << "Using various padding characters:" << endl;
27
28 // display x using padded characters (right justification)
29 cout << right;

30

31 cout << setw(10) << dec << x << endl;
32
33 // display x using padded characters (left justification)

34 cout << left << setw(10) << << x << endl;
35
36 // display x using padded characters (internal justification)

37 cout << << setw(10) << << hex
38 << x << endl;

39 } // end main

Fig. 21.16 | Using member function fill and stream manipulator setfill to change the
padding character for fields larger than the printed values. (Part 1 of 2.)

Fig. 21.15 | Printing an integer with internal spacing and plus sign. (Part 2 of 2.)

internal

cout.fill('*');

setfill('%')

internal setfill('^')

21.7 Stream Format States and Stream Manipulators 833

21.7.4 Integral Stream Base (dec, oct, hex, showbase)
C++ provides stream manipulators dec, hex and oct to specify that integers are to be dis-
played as decimal, hexadecimal and octal values, respectively. Stream insertions default to
decimal if none of these manipulators is used. With stream extraction, integers prefixed
with 0 (zero) are treated as octal values, integers prefixed with 0x or 0X are treated as hexa-
decimal values, and all other integers are treated as decimal values. Once a particular base
is specified for a stream, all integers on that stream are processed using that base until a
different base is specified or until the program terminates.

Stream manipulator showbase forces the base of an integral value to be output. Dec-
imal numbers are output by default, octal numbers are output with a leading 0, and hexa-
decimal numbers are output with either a leading 0x or a leading 0X (as we discuss in
Section 21.7.6, stream manipulator uppercase determines which option is chosen).
Figure 21.17 demonstrates the use of stream manipulator showbase to force an integer to
print in decimal, octal and hexadecimal formats. To reset the showbase setting, output the
stream manipulator noshowbase.

10000 printed as int right and left justified
and as hex with internal justification.
Using the default pad character (space):
 10000
10000
0x 2710

Using various padding characters:
*****10000
10000%%%%%
0x^^^^2710

1 // Fig. 21.17: fig21_17.cpp

2 // Stream manipulator showbase.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {

8 int x = 100;
9

10 // use showbase to show number base

11 cout << "Printing integers preceded by their base:" << endl
12 << ;

13
14 cout << x << endl; // print decimal value
15 cout << oct << x << endl; // print octal value

16 cout << hex << x << endl; // print hexadecimal value

17 } // end main

Fig. 21.17 | Stream manipulator showbase. (Part 1 of 2.)

Fig. 21.16 | Using member function fill and stream manipulator setfill to change the
padding character for fields larger than the printed values. (Part 2 of 2.)

showbase

834 Chapter 21 Stream Input/Output: A Deeper Look

21.7.5 Floating-Point Numbers; Scientific and Fixed Notation
(scientific, fixed)
The sticky stream manipulators scientific and fixed control the output format of float-
ing-point numbers. Stream manipulator scientific forces the output of a floating-point
number to display in scientific format. Stream manipulator fixed forces a floating-point
number to display a specific number of digits (as specified by member function precision
or stream manipulator setprecision) to the right of the decimal point. Without using
another manipulator, the floating-point-number value determines the output format.

Figure 21.18 demonstrates displaying floating-point numbers in fixed and scientific for-
mats using stream manipulators scientific (line 18) and fixed (line 22). The exponent
format in scientific notation might differ across different compilers.

Printing integers preceded by their base:
100
0144
0x64

1 // Fig. 21.18: fig21_18.cpp
2 // Floating-point values displayed in system default,

3 // scientific and fixed formats.

4 #include <iostream>
5 using namespace std;
6
7 int main()
8 {

9 double x = 0.001234567;
10 double y = 1.946e9;
11
12 // display x and y in default format

13 cout << "Displayed in default format:" << endl
14 << x << '\t' << y << endl;
15
16 // display x and y in scientific format
17 cout << "\nDisplayed in scientific format:" << endl
18 << << x << '\t' << y << endl;
19
20 // display x and y in fixed format

21 cout << "\nDisplayed in fixed format:" << endl
22 << << x << '\t' << y << endl;
23 } // end main

Displayed in default format:
0.00123457 1.946e+009

Displayed in scientific format:
1.234567e-003 1.946000e+009

Fig. 21.18 | Floating-point values displayed in default, scientific and fixed formats. (Part 1 of 2.)

Fig. 21.17 | Stream manipulator showbase. (Part 2 of 2.)

scientific

fixed

21.7 Stream Format States and Stream Manipulators 835

21.7.6 Uppercase/Lowercase Control (uppercase)
Stream manipulator uppercase outputs an uppercase X or E with hexadecimal-integer val-
ues or with scientific notation floating-point values, respectively (Fig. 21.19). Using
stream manipulator uppercase also causes all letters in a hexadecimal value to be upper-
case. By default, the letters for hexadecimal values and the exponents in scientific notation
floating-point values appear in lowercase. To reset the uppercase setting, output the
stream manipulator nouppercase.

21.7.7 Specifying Boolean Format (boolalpha)
C++ provides data type bool, whose values may be false or true, as a preferred alternative
to the old style of using 0 to indicate false and nonzero to indicate true. A bool variable
outputs as 0 or 1 by default. However, we can use stream manipulator boolalpha to set the
output stream to display bool values as the strings "true" and "false". Use stream ma-
nipulator noboolalpha to set the output stream to display bool values as integers (i.e., the
default setting). The program of Fig. 21.20 demonstrates these stream manipulators. Line
11 displays the bool value, which line 8 sets to true, as an integer. Line 15 uses manipu-
lator boolalpha to display the bool value as a string. Lines 18–19 then change the bool’s
value and use manipulator noboolalpha, so line 22 can display the bool value as an inte-
ger. Line 26 uses manipulator boolalpha to display the bool value as a string. Both boo-
lalpha and noboolalpha are sticky settings.

Displayed in fixed format:
0.001235 1946000000.000000

1 // Fig. 21.19: fig21_19.cpp

2 // Stream manipulator uppercase.

3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {

8 cout << "Printing uppercase letters in scientific" << endl
9 << "notation exponents and hexadecimal values:" << endl;

10
11 // use std:uppercase to display uppercase letters; use std::hex and

12 // std::showbase to display hexadecimal value and its base
13 cout << uppercase << 4.345e10 << endl
14 << hex << showbase << 123456789 << endl;
15 } // end main

Printing uppercase letters in scientific
notation exponents and hexadecimal values:
4.345E+010
0X75BCD15

Fig. 21.19 | Stream manipulator uppercase.

Fig. 21.18 | Floating-point values displayed in default, scientific and fixed formats. (Part 2 of 2.)

836 Chapter 21 Stream Input/Output: A Deeper Look

21.7.8 Setting and Resetting the Format State via Member Function
flags
Throughout Section 21.7, we’ve been using stream manipulators to change output format
characteristics. We now discuss how to return an output stream’s format to its default state
after having applied several manipulations. Member function flags without an argument
returns the current format settings as an fmtflags data type (of class ios_base), which
represents the format state. Member function flags with an fmtflags argument sets the
format state as specified by the argument and returns the prior state settings. The initial
settings of the value that flags returns might differ across several systems. The program

Good Programming Practice 21.1
Displaying bool values as true or false, rather than nonzero or 0, respectively, makes
program outputs clearer.

1 // Fig. 21.20: fig21_20.cpp

2 // Stream manipulators boolalpha and noboolalpha.

3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {

8 bool booleanValue = true;
9

10 // display default true booleanValue

11 cout << "booleanValue is " << booleanValue << endl;
12
13 // display booleanValue after using boolalpha

14 cout << "booleanValue (after using boolalpha) is "
15 << << booleanValue << endl << endl;

16
17 cout << "switch booleanValue and use noboolalpha" << endl;
18 booleanValue = false; // change booleanValue
19 cout << << endl; // use noboolalpha
20
21 // display default false booleanValue after using noboolalpha

22 cout << "booleanValue is " << booleanValue << endl;
23
24 // display booleanValue after using boolalpha again

25 cout << "booleanValue (after using boolalpha) is "
26 << << booleanValue << endl;

27 } // end main

booleanValue is 1
booleanValue (after using boolalpha) is true

switch booleanValue and use noboolalpha

booleanValue is 0
booleanValue (after using boolalpha) is false

Fig. 21.20 | Stream manipulators boolalpha and noboolalpha.

boolalpha

noboolalpha

boolalpha

21.8 Stream Error States 837

of Fig. 21.21 uses member function flags to save the stream’s original format state (line
17), then restore the original format settings (line 25).

21.8 Stream Error States
The state of a stream may be tested through bits in class ios_base. Earlier in the book, we
indicated that you can test, for example, whether an input was successful. Figure 21.22

1 // Fig. 21.21: fig21_21.cpp

2 // flags member function.

3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {

8 int integerValue = 1000;
9 double doubleValue = 0.0947628;

10
11 // display flags value, int and double values (original format)

12 cout << "The value of the flags variable is: " << cout.flags()
13 << "\nPrint int and double in original format:\n"
14 << integerValue << '\t' << doubleValue << endl << endl;
15
16
17

18

19
20 // display flags value, int and double values (new format)

21 cout << "The value of the flags variable is: " <<
22 << "\nPrint int and double in a new format:\n"
23 << integerValue << '\t' << doubleValue << endl << endl;
24
25
26
27 // display flags value, int and double values (original format)

28 cout << "The restored value of the flags variable is: "
29 <<

30 << "\nPrint values in original format again:\n"
31 << integerValue << '\t' << doubleValue << endl;
32 } // end main

The value of the flags variable is: 513
Print int and double in original format:
1000 0.0947628

The value of the flags variable is: 012011
Print int and double in a new format:
01750 9.476280e-002

The restored value of the flags variable is: 513
Print values in original format again:
1000 0.0947628

Fig. 21.21 | flags member function.

// use cout flags function to save original format
ios_base::fmtflags originalFormat = cout.flags();

cout << showbase << oct << scientific; // change format

cout.flags()

cout.flags(originalFormat); // restore format

cout.flags()

838 Chapter 21 Stream Input/Output: A Deeper Look

shows how to test these state bits. In industrial-strength code, you’ll want to perform sim-
ilar tests on your I/O operations.

1 // Fig. 21.22: fig21_22.cpp

2 // Testing error states.

3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {

8 int integerValue;
9

10 // display results of cin functions

11 cout << "Before a bad input operation:"
12 << "\ncin.rdstate(): " <<
13 << "\n cin.eof(): " <<
14 << "\n cin.fail(): " <<
15 << "\n cin.bad(): " <<
16 << "\n cin.good(): " <<
17 << "\n\nExpects an integer, but enter a character: ";
18
19
20 cout << endl;

21
22 // display results of cin functions after bad input
23 cout << "After a bad input operation:"
24 << "\ncin.rdstate(): " <<
25 << "\n cin.eof(): " <<
26 << "\n cin.fail(): " <<
27 << "\n cin.bad(): " <<
28 << "\n cin.good(): " << << endl << endl;
29
30

31
32 // display results of cin functions after clearing cin

33 cout << "After cin.clear()" << "\ncin.fail(): " <<
34 << "\ncin.good(): " << << endl;
35 } // end main

Before a bad input operation:
cin.rdstate(): 0
 cin.eof(): 0
 cin.fail(): 0
 cin.bad(): 0
 cin.good(): 1

Expects an integer, but enter a character: A
After a bad input operation:
cin.rdstate(): 2
 cin.eof(): 0
 cin.fail(): 1

Fig. 21.22 | Testing error states. (Part 1 of 2.)

cin.rdstate()

cin.eof()
cin.fail()

cin.bad()

cin.good()

cin >> integerValue; // enter character value

cin.rdstate()

cin.eof()

cin.fail()
cin.bad()

cin.good()

cin.clear(); // clear stream

cin.fail()

cin.good()

21.8 Stream Error States 839

The eofbit is set for an input stream after end-of-file is encountered. A program can
use member function eof to determine whether end-of-file has been encountered on a
stream after an attempt to extract data beyond the end of the stream. The call

returns true if end-of-file has been encountered on cin and false otherwise.
The failbit is set for a stream when a format error occurs on the stream and no char-

acters are input (e.g., when you attempt to read a number and the user enters a string).
When such an error occurs, the characters are not lost. The fail member function reports
whether a stream operation has failed. Usually, recovering from such errors is possible.

The badbit is set for a stream when an error occurs that results in the loss of data. The
bad member function reports whether a stream operation failed. Generally, such serious
failures are nonrecoverable.

The goodbit is set for a stream if none of the bits eofbit, failbit or badbit is set for
the stream.

The good member function returns true if the bad, fail and eof functions would all
return false. I/O operations should be performed only on “good” streams.

The rdstate member function returns the stream’s error state. Calling cout.rdstate,
for example, would return the stream’s state, which then could be tested by a switch state-
ment that examines eofbit, badbit, failbit and goodbit. The preferred means of testing
the state of a stream is to use member functions eof, bad, fail and good—using these
functions does not require you to be familiar with particular status bits.

The clear member function is used to restore a stream’s state to “good,” so that I/O
may proceed on that stream. The default argument for clear is goodbit, so the statement

clears cin and sets goodbit for the stream. The statement

sets the failbit. You might want to do this when performing input on cin with a user-
defined type and encountering a problem. The name clear might seem inappropriate in
this context, but it’s correct.

The program of Fig. 21.22 demonstrates member functions rdstate, eof, fail, bad,
good and clear. The actual values output may differ across different compilers.

The operator! member function of basic_ios returns true if the badbit is set, the
failbit is set or both are set. The operator void * member function returns false (0) if
the badbit is set, the failbit is set or both are set. These functions are useful in file pro-
cessing when a true/false condition is being tested under the control of a selection state-
ment or repetition statement.

 cin.bad(): 0
 cin.good(): 0

After cin.clear()
cin.fail(): 0
cin.good(): 1

cin.eof()

cin.clear();

cin.clear(ios::failbit)

Fig. 21.22 | Testing error states. (Part 2 of 2.)

840 Chapter 21 Stream Input/Output: A Deeper Look

21.9 Tying an Output Stream to an Input Stream
Interactive applications generally involve an istream for input and an ostream for output.
When a prompting message appears on the screen, the user responds by entering the ap-
propriate data. Obviously, the prompt needs to appear before the input operation pro-
ceeds. With output buffering, outputs appear only when the buffer fills, when outputs are
flushed explicitly by the program or automatically at the end of the program. C++ provides
member function tie to synchronize (i.e., “tie together”) the operation of an istream and
an ostream to ensure that outputs appear before their subsequent inputs. The call

ties cout (an ostream) to cin (an istream). Actually, this particular call is redundant, be-
cause C++ performs this operation automatically to create a user’s standard input/output
environment. However, the user would tie other istream/ostream pairs explicitly. To un-
tie an input stream, inputStream, from an output stream, use the call

21.10 Wrap-Up
This chapter summarized how C++ performs input/output using streams. You learned
about the stream-I/O classes and objects, as well as the stream I/O template class hierarchy.
We discussed ostream’s formatted and unformatted output capabilities performed by the
put and write functions. You learned about istream’s formatted and unformatted input
capabilities performed by the eof, get, getline, peek, putback, ignore and read func-
tions. We discussed stream manipulators and member functions that perform formatting
tasks—dec, oct, hex and setbase for displaying integers; precision and setprecision
for controlling floating-point precision; and width and setw for setting field width. You
also learned additional formatting iostream manipulators and member functions—show-

point for displaying decimal point and trailing zeros; left, right and internal for jus-
tification; fill and setfill for padding; scientific and fixed for displaying floating-
point numbers in scientific and fixed notation; uppercase for uppercase/lowercase con-
trol; boolalpha for specifying boolean format; and flags and fmtflags for resetting the
format state. In the next chapter, we take a deeper look at C++’s rich set of exception han-
dling capabilities.

cin.tie(&cout);

inputStream.tie(0);

Summary
Section 21.1 Introduction
• I/O operations are performed in a manner sensitive to the type of the data.

Section 21.2 Streams
• C++ I/O occurs in streams (p. 814). A stream is a sequence of bytes.

• Low-level I/O-capabilities specify that bytes should be transferred device-to-memory or mem-
ory-to-device. High-level I/O is performed with bytes grouped into meaningful units such as in-
tegers, strings and user-defined types.

 Summary 841

• C++ provides both unformatted-I/O and formatted-I/O operations. Unformatted-I/O (p. 814)
transfers are fast, but process raw data that is difficult for people to use. Formatted I/O processes
data in meaningful units, but requires extra processing time that can degrade the performance.

• The <iostream> header declares all stream-I/O operations (p. 815).

• The <iomanip> header declares the parameterized stream manipulators (p. 815).

• The <fstream> header declares file-processing operations (p. 817).

• The basic_istream template (p. 815) supports stream-input operations.

• The basic_ostream template (p. 815) supports stream-output operations.

• The basic_iostream template supports both stream-input and stream-output operations.

• Templates basic_istream and the basic_ostream each derive from the basic_ios (p. 815) tem-
plate.

• Template basic_iostream derives from both the basic_istream and basic_ostream templates.

• The istream object cin is tied to the standard input device, normally the keyboard.

• The ostream object cout is tied to the standard output device, normally the screen.

• The ostream object cerr is tied to the standard error device, normally the screen. Outputs to
cerr are unbuffered (p. 817)—each insertion to cerr appears immediately.

• The ostream object clog is tied to the standard error device, normally the screen. Outputs to
clog are buffered (p. 817).

• The C++ compiler determines data types automatically for input and output.

Section 21.3 Stream Output
• Addresses are displayed in hexadecimal format by default.

• To print the address in a pointer variable, cast the pointer to void *.

• Member function put outputs one character. Calls to put may be cascaded.

Section 21.4 Stream Input
• Stream input is performed with the stream extraction operator >>, which automatically skips white-

space characters (p. 819) in the input stream and returns false after end-of-file is encountered.

• Stream extraction causes failbit (p. 819) to be set for improper input and badbit (p. 819) to
be set if the operation fails.

• A series of values can be input using the stream extraction operation in a while loop header. The
extraction returns 0 when end-of-file is encountered or an error occurs.

• The get member function (p. 819) with no arguments inputs one character and returns the
character; EOF is returned if end-of-file is encountered on the stream.

• Member function get with a character-reference argument inputs the next character from the in-
put stream and stores it in the character argument. This version of get returns a reference to the
istream object (p. 819) for which the get member function is being invoked.

• Member function get with three arguments—a character array, a size limit and a delimiter (with
default value newline)—reads characters from the input stream up to a maximum of limit – 1
characters, or until the delimiter is read. The input string is terminated with a null character. The
delimiter is not placed in the character array but remains in the input stream.

• Member function getline (p. 821) operates like the three-argument get member function. The
getline function removes the delimiter from the input stream but does not store it in the string.

• Member function ignore (p. 822) skips the specified number of characters (the default is 1) in the
input stream; it terminates if the specified delimiter is encountered (the default delimiter is EOF).

842 Chapter 21 Stream Input/Output: A Deeper Look

• The putback member function (p. 822) places the previous character obtained by a get on a
stream back into that stream.

• The peek member function (p. 822) returns the next character from an input stream but does
not extract (remove) the character from the stream.

• C++ offers type-safe I/O (p. 822). If unexpected data is processed by the << and >> operators, var-
ious error bits are set, which can be tested to determine whether an I/O operation succeeded or
failed. If operator << has not been overloaded for a user-defined type, a compiler error is reported.

Section 21.5 Unformatted I/O Using read, write and gcount
• Unformatted I/O is performed with member functions read and write (p. 822). These input or

output bytes to or from memory, beginning at a designated memory address.

• The gcount member function (p. 823) returns the number of characters input by the previous
read operation on that stream.

• Member function read inputs a specified number of characters into a character array. failbit is
set if fewer than the specified number of characters are read.

Section 21.6 Introduction to Stream Manipulators
• To change the base in which integers output, use the manipulator hex (p. 824) to set the base to

hexadecimal (base 16) or oct (p. 824) to set the base to octal (base 8). Use manipulator dec
(p. 824) to reset the base to decimal. The base remains the same until changed explicitly.

• The parameterized stream manipulator setbase (p. 824) also sets the base for integer output.
setbase takes one integer argument of 10, 8 or 16 to set the base.

• Floating-point precision can be controlled with the setprecision stream manipulator or the
precision member function (p. 824). Both set the precision for all subsequent output opera-
tions until the next precision-setting call. The precision member function with no argument
returns the current precision value.

• Parameterized manipulators require the inclusion of the <iomanip> header.

• Member function width (p. 826) sets the field width and returns the previous width. Values nar-
rower than the field are padded with fill characters (p. 826). The field-width setting applies only
for the next insertion or extraction, then input is performed using the default settings. Values
wider than a field are printed in their entirety. Function width with no argument returns the cur-
rent width setting. Manipulator setw also sets the width.

• For input, the setw stream manipulator establishes a maximum string size; if a larger string is en-
tered, the larger line is broken into pieces no larger than the designated size.

• You can create your own stream manipulators.

Section 21.7 Stream Format States and Stream Manipulators
• Stream manipulator showpoint (p. 829) forces a floating-point number to be output with a deci-

mal point and with the number of significant digits specified by the precision.

• Stream manipulators left and right (p. 830) cause fields to be left justified with padding char-
acters to the right or right justified with padding characters to the left.

• Stream manipulator internal (p. 831) indicates that a number’s sign (or base when using stream
manipulator showbase; p. 833) should be left justified within a field, its magnitude should be
right justified and intervening spaces should be padded with the fill character.

• Member function fill (p. 832) specifies the fill character to be used with stream manipulators
left, right and internal (space is the default); the prior padding character is returned. Stream
manipulator setfill (p. 832) also sets the fill character.

 Self-Review Exercises 843

• Stream manipulators oct, hex and dec specify that integers are to be treated as octal, hexadecimal
or decimal values, respectively. Integer output defaults to decimal if none of these is set; stream
extractions process the data in the form the data is supplied.

• Stream manipulator showbase forces the base of an integral value to be output.

• Stream manipulator scientific (p. 834) is used to output a floating-point number in scientific
format. Stream manipulator fixed (p. 834) is used to output a floating-point number with the
precision specified by the precision member function.

• Stream manipulator uppercase (p. 829) outputs an uppercase X or E for hexadecimal integers and
scientific notation floating-point values, respectively. Hexadecimal values appear in all uppercase.

• Member function flags (p. 836) with no argument returns the current format state (p. 836) as a
long value. Function flags with a long argument sets the format state specified by the argument.

Section 21.8 Stream Error States
• The state of a stream may be tested through bits in class ios_base.

• The eofbit (p. 839) is set for an input stream after end-of-file is encountered during an input
operation. The eof member function (p. 839) reports whether the eofbit has been set.

• A stream’s failbit is set when a format error occurs. The fail member function (p. 839) re-
ports whether a stream operation has failed; it’s normally possible to recover from such errors.

• A stream’s badbit is set when an error occurs that results in data loss. Member function bad re-
ports whether a stream operation failed. Such serious failures are normally nonrecoverable.

• The good member function (p. 839) returns true if the bad, fail and eof functions would all
return false. I/O operations should be performed only on “good” streams.

• The rdstate member function (p. 839) returns the error state of the stream.

• Member function clear (p. 839) restores a stream’s state to “good,” so that I/O may proceed.

Section 21.9 Tying an Output Stream to an Input Stream
• C++ provides the tie member function (p. 840) to synchronize istream and ostream operations

to ensure that outputs appear before subsequent inputs.

Self-Review Exercises
21.1 (Fill in the Blanks) Answer each of the following:

a) Input/output in C++ occurs as of bytes.
b) The stream manipulators for justification are , and .
c) Member function can be used to set and reset format state.
d) Most C++ programs that do I/O should include the header that contains the

declarations required for all stream-I/O operations.
e) When using parameterized manipulators, the header must be included.
f) Header contains the declarations required for file processing.
g) The ostream member function is used to perform unformatted output.
h) Input operations are supported by class .
i) Standard error stream outputs are directed to the stream objects or .
j) Output operations are supported by class .
k) The symbol for the stream insertion operator is .
l) The four objects that correspond to the standard devices on the system include

, , and .
m) The symbol for the stream extraction operator is .

844 Chapter 21 Stream Input/Output: A Deeper Look

n) The stream manipulators , and specify that integers should
be displayed in octal, hexadecimal and decimal formats, respectively.

o) The stream manipulator causes positive numbers to display with a plus sign.

21.2 (True or False) State whether the following are true or false. If the answer is false, explain
why.

a) The stream member function flags with a long argument sets the flags state variable
to its argument and returns its previous value.

b) The stream insertion operator << and the stream extraction operator >> are overloaded
to handle all standard data types—including strings and memory addresses (stream in-
sertion only)—and all user-defined data types.

c) The stream member function flags with no arguments resets the stream’s format state.
d) The stream extraction operator >> can be overloaded with an operator function that

takes an istream reference and a reference to a user-defined type as arguments and re-
turns an istream reference.

e) The stream insertion operator << can be overloaded with an operator function that takes
an istream reference and a reference to a user-defined type as arguments and returns an
istream reference.

f) Input with the stream extraction operator >> always skips leading white-space characters
in the input stream, by default.

g) The stream member function rdstate returns the current state of the stream.
h) The cout stream normally is connected to the display screen.
i) The stream member function good returns true if the bad, fail and eof member func-

tions all return false.
j) The cin stream normally is connected to the display screen.
k) If a nonrecoverable error occurs during a stream operation, the bad member function

will return true.
l) Output to cerr is unbuffered and output to clog is buffered.
m) Stream manipulator showpoint forces floating-point values to print with the default six

digits of precision unless the precision value has been changed, in which case floating-
point values print with the specified precision.

n) The ostream member function put outputs the specified number of characters.
o) The stream manipulators dec, oct and hex affect only the next integer output operation.

21.3 (Write a C++ Statement) For each of the following, write a single statement that performs
the indicated task.

a) Output the string "Enter your name: ".
b) Use a stream manipulator that causes the exponent in scientific notation and the letters

in hexadecimal values to print in capital letters.
c) Output the address of the variable myString of type char *.
d) Use a stream manipulator to ensure that floating-point values print in scientific notation.
e) Output the address in variable integerPtr of type int *.
f) Use a stream manipulator such that, when integer values are output, the integer base for

octal and hexadecimal values is displayed.
g) Output the value pointed to by floatPtr of type float *.
h) Use a stream member function to set the fill character to '*' for printing in field widths

larger than the values being output. Repeat this statement with a stream manipulator.
i) Output the characters 'O' and 'K' in one statement with ostream function put.
j) Get the value of the next character to input without extracting it from the stream.
k) Input a single character into variable charValue of type char, using the istream member

function get in two different ways.
l) Input and discard the next six characters in the input stream.

 Answers to Self-Review Exercises 845

m) Use istream member function read to input 50 characters into char array line.
n) Read 10 characters into character array name. Stop reading characters if the '.' delimiter

is encountered. Do not remove the delimiter from the input stream. Write another
statement that performs this task and removes the delimiter from the input.

o) Use the istream member function gcount to determine the number of characters input
into character array line by the last call to istream member function read, and output
that number of characters, using ostream member function write.

p) Output 124, 18.376, 'Z', 1000000 and "String", separated by spaces.
q) Display cout’s current precision setting.
r) Input an integer value into int variable months and a floating-point value into float

variable percentageRate.
s) Print 1.92, 1.925 and 1.9258 separated by tabs and with 3 digits of precision, using a

stream manipulator.
t) Print integer 100 in octal, hexadecimal and decimal, using stream manipulators and sep-

arated by tabs.
u) Print integer 100 in decimal, octal and hexadecimal separated by tabs, using a stream

manipulator to change the base.
v) Print 1234 right justified in a 10-digit field.
w) Read characters into character array line until the character 'z' is encountered, up to

a limit of 20 characters (including a terminating null character). Do not extract the de-
limiter character from the stream.

x) Use integer variables x and y to specify the field width and precision used to display the
double value 87.4573, and display the value.

21.4 (Find and Correct Code Errors) Identify the error in each of the following statements and
explain how to correct it.

a) cout << "Value of x <= y is: " << x <= y;
b) The following statement should print the integer value of 'c'.

cout << 'c';
c) cout << ""A string in quotes"";

21.5 (Show Outputs) For each of the following, show the output.
a) cout << "12345" << endl;

cout.width(5);
cout.fill('*');
cout << 123 << endl << 123;

b) cout << setw(10) << setfill('$') << 10000;
c) cout << setw(8) << setprecision(3) << 1024.987654;
d) cout << showbase << oct << 99 << endl << hex << 99;
e) cout << 100000 << endl << showpos << 100000;
f) cout << setw(10) << setprecision(2) << scientific << 444.93738;

Answers to Self-Review Exercises
21.1 a) streams. b) left, right and internal. c) flags. d) <iostream>. e) <iomanip>.
f) <fstream>. g) write. h) istream. i) cerr or clog. j) ostream. k) <<. l) cin, cout, cerr and clog.
m) >>. n) oct, hex and dec. o) showpos.

21.2 a) False. The stream member function flags with a fmtflags argument sets the flags state
variable to its argument and returns the prior state settings. b) False. The stream insertion and
stream extraction operators are not overloaded for all user-defined types. You must specifically pro-
vide the overloaded operator functions to overload the stream operators for use with each user-de-
fined type you create. c) False. The stream member function flags with no arguments returns the

846 Chapter 21 Stream Input/Output: A Deeper Look

current format settings as a fmtflags data type, which represents the format state. d) True. e) False.
To overload the stream insertion operator <<, the overloaded operator function must take an
ostream reference and a reference to a user-defined type as arguments and return an ostream refer-
ence. f) True. g) True. h) True. i) True. j) False. The cin stream is connected to the standard input
of the computer, which normally is the keyboard. k) True. l) True. m) True. n) False. The ostream
member function put outputs its single-character argument. o) False. The stream manipulators dec,
oct and hex set the output format state for integers to the specified base until the base is changed
again or the program terminates.

21.3 a) cout << "Enter your name: ";
b) cout << uppercase;
c) cout << static_cast< void * >(myString);
d) cout << scientific;
e) cout << integerPtr;
f) cout << showbase;
g) cout << *floatPtr;
h) cout.fill('*');

cout << setfill('*');
i) cout.put('O').put('K');
j) cin.peek();
k) charValue = cin.get();

cin.get(charValue);
l) cin.ignore(6);
m) cin.read(line, 50);
n) cin.get(name, 10, '.');

cin.getline(name, 10, '.');
o) cout.write(line, cin.gcount());
p) cout << 124 << ' ' << 18.376 << ' ' << "Z " << 1000000 << " String";
q) cout << cout.precision();
r) cin >> months >> percentageRate;
s) cout << setprecision(3) << 1.92 << '\t' << 1.925 << '\t' << 1.9258;
t) cout << oct << 100 << '\t' << hex << 100 << '\t' << dec << 100;
u) cout << 100 << '\t' << setbase(8) << 100 << '\t' << setbase(16) << 100;
v) cout << setw(10) << 1234;
w) cin.get(line, 20, 'z');
x) cout << setw(x) << setprecision(y) << 87.4573;

21.4 a) Error: The precedence of the << operator is higher than that of <=, which causes the
statement to be evaluated improperly and also causes a compiler error.
Correction: Place parentheses around the expression x <= y.

b) Error: In C++, characters are not treated as small integers, as they are in C.
Correction: To print the numerical value for a character in the computer’s character set,
the character must be cast to an integer value, as in the following:
 cout << static_cast< int >('c');

c) Error: Quote characters cannot be printed in a string unless an escape sequence is used.
Correction: Print the string:
 cout << "\"A string in quotes\"";

21.5 a) 12345

**123

123

b) $$$$$10000
c) 1024.988

 Exercises 847

d) 0143

0x63
e) 100000

+100000
f) 4.45e+002

Exercises
21.6 (Write C++ Statements) Write a statement for each of the following:

a) Print integer 40000 left justified in a 15-digit field.
b) Read a string into character array variable state.
c) Print 200 with and without a sign.
d) Print the decimal value 100 in hexadecimal form preceded by 0x.
e) Read characters into array charArray until the character 'p' is encountered, up to a lim-

it of 10 characters (including the terminating null character). Extract the delimiter from
the input stream, and discard it.

f) Print 1.234 in a 9-digit field with preceding zeros.

21.7 (Inputting Decimal, Octal and Hexadecimal Values) Write a program to test the inputting
of integer values in decimal, octal and hexadecimal formats. Output each integer read by the pro-
gram in all three formats. Test the program with the following input data: 10, 010, 0x10.

21.8 (Printing Pointer Values as Integers) Write a program that prints pointer values, using casts
to all the integer data types. Which ones print strange values? Which ones cause errors?

21.9 (Printing with Field Widths) Write a program to test the results of printing the integer val-
ue 12345 and the floating-point value 1.2345 in various-sized fields. What happens when the values
are printed in fields containing fewer digits than the values?

21.10 (Rounding) Write a program that prints the value 100.453627 rounded to the nearest digit,
tenth, hundredth, thousandth and ten-thousandth.

21.11 (Length of a String) Write a program that inputs a string from the keyboard and determines
the length of the string. Print the string in a field width that is twice the length of the string.

21.12 (Converting Fahrenheit to Celsius) Write a program that converts integer Fahrenheit tem-
peratures from 0 to 212 degrees to floating-point Celsius temperatures with 3 digits of precision. Use
the formula

celsius = 5.0 / 9.0 * (fahrenheit - 32);
to perform the calculation. The output should be printed in two right-justified columns and the
Celsius temperatures should be preceded by a sign for both positive and negative values.

21.13 In some programming languages, strings are entered surrounded by either single or double
quotation marks. Write a program that reads the three strings suzy, "suzy" and 'suzy'. Are the sin-
gle and double quotes ignored or read as part of the string?

21.14 (Reading Phone Numbers with and Overloaded Stream Extraction Operator) In Fig. 18.5,
the stream extraction and stream insertion operators were overloaded for input and output of objects
of the PhoneNumber class. Rewrite the stream extraction operator to perform the following error
checking on input. The operator>> function will need to be reimplemented.

a) Input the entire phone number into an array. Test that the proper number of characters
has been entered. There should be a total of 14 characters read for a phone number of
the form (800) 555-1212. Use ios_base-member-function clear to set failbit for im-
proper input.

848 Chapter 21 Stream Input/Output: A Deeper Look

b) The area code and exchange do not begin with 0 or 1. Test the first digit of the area-
code and exchange portions of the phone number to be sure that neither begins with 0
or 1. Use ios_base-member-function clear to set failbit for improper input.

c) The middle digit of an area code used to be limited to 0 or 1 (though this has changed).
Test the middle digit for a value of 0 or 1. Use the ios_base-member-function clear to
set failbit for improper input. If none of the above operations results in failbit being
set for improper input, copy the parts of the telephone number into the PhoneNumber
object’s areaCode, exchange and line members. If failbit has been set on the input,
have the program print an error message and end, rather than print the phone number.

21.15 (Point Class) Write a program that accomplishes each of the following:
a) Create a user-defined class Point that contains the private integer data members

xCoordinate and yCoordinate and declares stream insertion and stream extraction over-
loaded operator functions as friends of the class.

b) Define the stream insertion and stream extraction operator functions. The stream ex-
traction operator function should determine whether the data entered is valid, and, if
not, it should set the failbit to indicate improper input. The stream insertion operator
should not be able to display the point after an input error occurred.

c) Write a main function that tests input and output of user-defined class Point, using the
overloaded stream extraction and stream insertion operators.

21.16 (Complex Class) Write a program that accomplishes each of the following:
a) Create a user-defined class Complex that contains the private integer data members real

and imaginary and declares stream insertion and stream extraction overloaded operator
functions as friends of the class.

b) Define the stream insertion and stream extraction operator functions. The stream ex-
traction operator function should determine whether the data entered is valid, and, if
not, it should set failbit to indicate improper input. The input should be of the form

3 + 8i

c) The values can be negative or positive, and it’s possible that one of the two values is not
provided, in which case the appropriate data member should be set to 0. The stream
insertion operator should not be able to display the point if an input error occurred. For
negative imaginary values, a minus sign should be printed rather than a plus sign.

d) Write a main function that tests input and output of user-defined class Complex, using
the overloaded stream extraction and stream insertion operators.

21.17 (Printing a Table of ASCII Values) Write a program that uses a for statement to print a
table of ASCII values for the characters in the ASCII character set from 33 to 126. The program
should print the decimal value, octal value, hexadecimal value and character value for each character.
Use the stream manipulators dec, oct and hex to print the integer values.

21.18 (String-Terminating Null Character) Write a program to show that the getline and three-
argument get istream member functions both end the input string with a string-terminating null
character. Also, show that get leaves the delimiter character on the input stream, whereas getline
extracts the delimiter character and discards it. What happens to the unread characters in the
stream?

22Exception Handling: A
Deeper Look

O b j e c t i v e s
In this chapter you’ll learn:

■ To use try, catch and
throw to detect, handle and
indicate exceptions,
respectively.

■ To declare new exception
classes.

■ How stack unwinding
enables exceptions not
caught in one scope to be
caught in another.

■ To handle new failures.

■ To use unique_ptr to
prevent memory leaks.

■ To understand the standard
exception hierarchy.

850 Chapter 22 Exception Handling: A Deeper Look

22.1 Introduction
An exception is an indication of a problem that occurs during a program’s execution. Ex-
ception handling enables you to create applications that can resolve (or handle) excep-
tions. In many cases, this allows a program to continue executing as if no problem had
been encountered. The features presented in this chapter enable you to write robust and
fault-tolerant programs that can deal with problems and continue executing or terminate
gracefully.

We begin with a review of exception-handling concepts via an example that demon-
strates handling an exception that occurs when a function attempts to divide by zero. We
show how to handle exceptions that occur in a constructor or destructor and exceptions
that occur if operator new fails to allocate memory for an object. We introduce several C++
Standard Library exception handling classes and show you how to create your own.

22.2 Example: Handling an Attempt to Divide by Zero
Let’s consider a simple example of exception handling (Figs. 22.1–22.2). We show how to
deal with a common arithmetic problem—division by zero. Division by zero using integer
arithmetic typically causes a program to terminate prematurely. In floating-point arithme-
tic, many C++ implementations allow division by zero, in which case a result of positive
or negative infinity is displayed as INF or -INF, respectively.

22.1 Introduction
22.2 Example: Handling an Attempt to

Divide by Zero
22.3 Rethrowing an Exception
22.4 Stack Unwinding
22.5 When to Use Exception Handling
22.6 Constructors, Destructors and

Exception Handling

22.7 Exceptions and Inheritance
22.8 Processing new Failures
22.9 Class unique_ptr and Dynamic

Memory Allocation
22.10 Standard Library Exception Hierarchy
22.11 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Software Engineering Observation 22.1
Exception handling provides a standard mechanism for processing errors. This is especially
important when working on a project with a large team of programmers.

Software Engineering Observation 22.2
Incorporate your exception-handling strategy into your system from its inception. Including
effective exception handling after a system has been implemented can be difficult.

Error-Prevention Tip 22.1
Without exception handling, it’s common for a function to calculate and return a value
on success or return an error indicator on failure. A common problem with this achitec-
ture is using the return value in a subsequent calculation without first checking whether
the value is the error indicator. Exception handling eliminates this problem.

22.2 Example: Handling an Attempt to Divide by Zero 851

In this example, we define a function named quotient that receives two integers input
by the user and divides its first int parameter by its second int parameter. Before per-
forming the division, the function casts the first int parameter’s value to type double.
Then, the second int parameter’s value is (implicitly) promoted to type double for the
calculation. So function quotient actually performs the division using two double values
and returns a double result.

Although division by zero is often allowed in floating-point arithmetic, for the pur-
pose of this example we treat any attempt to divide by zero as an error. Thus, function
quotient tests its second parameter to ensure that it isn’t zero before allowing the division
to proceed. If the second parameter is zero, the function throws an exception to indicate to
the caller that a problem occurred. The caller (main in this example) can then process the
exception and allow the user to type two new values before calling function quotient
again. In this way, the program can continue executing even after an improper value is
entered, thus making the program more robust.

The example consists of two files. DivideByZeroException.h (Fig. 22.1) defines an
exception class that represents the type of the problem that might occur in the example, and
fig22_02.cpp (Fig. 22.2) defines the quotient function and the main function that calls
it. Function main contains the code that demonstrates exception handling.

Defining an Exception Class to Represent the Type of Problem That Might Occur
Figure 22.1 defines class DivideByZeroException as a derived class of Standard Library class
runtime_error (from header <stdexcept>). Class runtime_error—a derived class of ex-
ception (from header <exception>)—is the C++ standard base class for representing run-
time errors. Class exception is the standard C++ base class for exception in the C++
Standard Library. (Section 22.10 discusses class exception and its derived classes in detail.)
A typical exception class that derives from the runtime_error class defines only a construc-
tor (e.g., lines 11–12) that passes an error-message string to the base-class runtime_error
constructor. Every exception class that derives directly or indirectly from exception contains
the virtual function what, which returns an exception object’s error message. You’re not
required to derive a custom exception class, such as DivideByZeroException, from the stan-
dard exception classes provided by C++. However, doing so allows you to use the virtual
function what to obtain an appropriate error message. We use an object of this DivideBy-
ZeroException class in Fig. 22.2 to indicate when an attempt is made to divide by zero.

1 // Fig. 22.1: DivideByZeroException.h

2 // Class DivideByZeroException definition.
3
4
5 // DivideByZeroException objects should be thrown by functions
6 // upon detecting division-by-zero exceptions

7 class DivideByZeroException :

8 {
9 public:

10 // constructor specifies default error message

11 DivideByZeroException()
12 : {}

13 }; // end class DivideByZeroException

Fig. 22.1 | Class DivideByZeroException definition.

#include <stdexcept> // stdexcept header contains runtime_error

public std::runtime_error

std::runtime_error("attempted to divide by zero")

852 Chapter 22 Exception Handling: A Deeper Look

Demonstrating Exception Handling
Figure 22.2 uses exception handling to wrap code that might throw a DivideByZeroExcep-
tion and to handle that exception, should one occur. The user enters two integers, which are
passed as arguments to function quotient (lines 10–18). This function divides its first pa-
rameter (numerator) by its second parameter (denominator). Assuming that the user does
not specify 0 as the denominator for the division, function quotient returns the division re-
sult. If the user inputs 0 for the denominator, quotient throws an exception. In the sample
output, the first two lines show a successful calculation, and the next two show a failure due
to an attempt to divide by zero. When the exception occurs, the program informs the user
of the mistake and prompts the user to input two new integers. After we discuss the code,
we’ll consider the user inputs and flow of program control that yield these outputs.

1 // Fig. 22.2: fig22_02.cpp

2 // Example that throws exceptions on

3 // attempts to divide by zero.

4 #include <iostream>
5

6 using namespace std;
7
8 // perform division and throw DivideByZeroException object if

9 // divide-by-zero exception occurs

10 double quotient(int numerator, int denominator)
11 {

12 // throw DivideByZeroException if trying to divide by zero

13 if (denominator == 0)
14

15
16 // return division result
17 return static_cast< double >(numerator) / denominator;
18 } // end function quotient

19
20 int main()
21 {

22 int number1; // user-specified numerator
23 int number2; // user-specified denominator
24
25 cout << "Enter two integers (end-of-file to end): ";
26
27 // enable user to enter two integers to divide

28 while (cin >> number1 >> number2)
29 {

30

31
32

33

34
35

36

37
38

Fig. 22.2 | Example that throws exceptions on attempts to divide by zero. (Part 1 of 2.)

#include "DivideByZeroException.h" // DivideByZeroException class

throw DivideByZeroException(); // terminate function

// try block contains code that might throw exception

// and code that will not execute if an exception occurs

try
{

 double result = quotient(number1, number2);
 cout << "The quotient is: " << result << endl;
} // end try

catch (DivideByZeroException ÷ByZeroException)
{

22.2 Example: Handling an Attempt to Divide by Zero 853

Enclosing Code in a try Block
The program begins by prompting the user to enter two integers. The integers are input in
the condition of the while loop (line 28). Line 34 passes the values to function quotient
(lines 10–18), which either divides the integers and returns a result, or throws an exception
(i.e., indicates that an error occurred) on an attempt to divide by zero. Exception handling
is geared to situations in which the function that detects an error is unable to handle it.

As you learned in Chapter 15, try blocks enable exception handling, enclosing state-
ments that might cause exceptions and statements that should be skipped if an exception
occurs. The try block in lines 32–36 encloses the invocation of function quotient and the
statement that displays the division result. In this example, because the invocation of func-
tion quotient (line 34) can throw an exception, we enclose this function invocation in a
try block. Enclosing the output statement (line 35) in the try block ensures that the
output will occur only if function quotient returns a result.

Defining a catch Handler to Process a DivideByZeroException
You saw in Chapter 15 that exceptions are processed by catch handlers. At least one catch
handler (lines 37–41) must immediately follow each try block. An exception parameter
should always be declared as a reference to the type of exception the catch handler can pro-
cess (DivideByZeroException in this case)—this prevents copying the exception object
when it’s caught and allows a catch handler to properly catch derived-class exceptions as
well. When an exception occurs in a try block, the catch handler that executes is the first
one whose type matches the type of the exception that occurred (i.e., the type in the catch
block matches the thrown exception type exactly or is a direct or indirect base class of it).
If an exception parameter includes an optional parameter name, the catch handler can use
that parameter name to interact with the caught exception in the body of the catch han-
dler, which is delimited by braces ({ and }). A catch handler typically reports the error to

39

40

41
42
43 cout << "\nEnter two integers (end-of-file to end): ";
44 } // end while
45
46 cout << endl;

47 } // end main

Enter two integers (end-of-file to end): 100 7
The quotient is: 14.2857

Enter two integers (end-of-file to end): 100 0
Exception occurred: attempted to divide by zero

Enter two integers (end-of-file to end): ^Z

Software Engineering Observation 22.3
Exceptions may surface through explicitly mentioned code in a try block, through calls to
other functions and through deeply nested function calls initiated by code in a try block.

Fig. 22.2 | Example that throws exceptions on attempts to divide by zero. (Part 2 of 2.)

 cout << "Exception occurred: "
 << divideByZeroException.what() << endl;

} // end catch

854 Chapter 22 Exception Handling: A Deeper Look

the user, logs it to a file, terminates the program gracefully or tries an alternate strategy to
accomplish the failed task. In this example, the catch handler simply reports that the user
attempted to divide by zero. Then the program prompts the user to enter two new integer
values.

Termination Model of Exception Handling
If an exception occurs as the result of a statement in a try block, the try block expires (i.e.,
terminates immediately). Next, the program searches for the first catch handler that can
process the type of exception that occurred. The program locates the matching catch by
comparing the thrown exception’s type to each catch’s exception-parameter type until the
program finds a match. A match occurs if the types are identical or if the thrown excep-
tion’s type is a derived class of the exception-parameter type. When a match occurs, the
code in the matching catch handler executes. When a catch handler finishes processing
by reaching its closing right brace (}), the exception is considered handled and the local
variables defined within the catch handler (including the catch parameter) go out of
scope. Program control does not return to the point at which the exception occurred
(known as the throw point), because the try block has expired. Rather, control resumes
with the first statement (line 43) after the last catch handler following the try block. This
is known as the termination model of exception handling. Some languages use the re-
sumption model of exception handling, in which, after an exception is handled, control
resumes just after the throw point. As with any other block of code, when a try block ter-
minates, local variables defined in the block go out of scope.

If the try block completes its execution successfully (i.e., no exceptions occur in the
try block), then the program ignores the catch handlers and program control continues
with the first statement after the last catch following that try block.

Common Programming Error 22.1
It’s a syntax error to place code between a try block and its corresponding catch handlers
or between its catch handlers.

Common Programming Error 22.2
Each catch handler can have only a single parameter—specifying a comma-separated list
of exception parameters is a syntax error.

Common Programming Error 22.3
It’s a compilation error to catch the same type in multiple catch handlers following a sin-
gle try block.

Common Programming Error 22.4
Logic errors can occur if you assume that after an exception is handled, control will return
to the first statement after the throw point.

Error-Prevention Tip 22.2
With exception handling, a program can continue executing (rather than terminating)
after dealing with a problem. This helps ensure the kind of robust applications that con-
tribute to what’s called mission-critical computing or business-critical computing.

22.2 Example: Handling an Attempt to Divide by Zero 855

If an exception that occurs in a try block has no matching catch handler, or if an excep-
tion occurs in a statement that is not in a try block, the function that contains the statement
terminates immediately, and the program attempts to locate an enclosing try block in the
calling function. This process is called stack unwinding and is discussed in Section 22.4.

Flow of Program Control When the User Enters a Nonzero Denominator
Consider the flow of control when the user inputs the numerator 100 and the denominator
7. In line 13, function quotient determines that the denominator is not zero, so line 17
performs the division and returns the result (14.2857) to line 34 as a double. Program
control then continues sequentially from line 34, so line 35 displays the division result—
line 36 ends the try block. Because the try block completed successfully and did not
throw an exception, the program does not execute the statements contained in the catch
handler (lines 37–41), and control continues to line 43 (the first line of code after the
catch handler), which prompts the user to enter two more integers.

Flow of Program Control When the User Enters a Denominator of Zero
Now consider the case in which the user inputs the numerator 100 and the denominator
0. In line 13, quotient determines that the denominator is zero, which indicates an at-
tempt to divide by zero. Line 14 throws an exception, which we represent as an object of
class DivideByZeroException (Fig. 22.1).

To throw an exception, line 14 in Fig. 22.2 uses keyword throw followed by an
operand of the type of exception to throw. Normally, a throw statement specifies one
operand. (In Section 22.3, we discuss how to use a throw statement with no operand.) The
operand of a throw can be of any type (but it must be copy constructable). If the operand
is an object, we call it an exception object—in this example, the exception object is of type
DivideByZeroException. However, a throw operand also can assume other values, such
as the value of an expression that does not result in an object of a class (e.g., throw x > 5)
or the value of an int (e.g., throw 5). The examples in this chapter focus exclusively on
throwing objects of exception classes.

As part of throwing an exception, the throw operand is created and used to initialize
the parameter in the catch handler, which we discuss momentarily. The throw statement
in line 14 creates a DivideByZeroException object. When line 14 throws the exception,
function quotient exits immediately. So, line 14 throws the exception before function
quotient can perform the division in line 17. This is a central characteristic of exception
handling: If your program explicitly throws an exception, it should do so before the error has an
opportunity to occur.

Because we enclosed the call to quotient (line 34) in a try block, program control
enters the catch handler (lines 37–41) that immediately follows the try block. This catch
handler serves as the exception handler for the divide-by-zero exception. In general, when
an exception is thrown within a try block, the exception is caught by a catch handler that
specifies the type matching the thrown exception. In this program, the catch handler spec-
ifies that it catches DivideByZeroException objects—this type matches the object type
thrown in function quotient. Actually, the catch handler catches a reference to the

Error-Prevention Tip 22.3
In general, you should throw only objects of exception class types.

856 Chapter 22 Exception Handling: A Deeper Look

DivideByZeroException object created by function quotient’s throw statement (line 14),
so that the catch handler does not make a copy of the exception object.

The catch’s body (lines 39–40) prints the error message returned by function what of
base-class runtime_error—i.e., the string that the DivideByZeroException constructor
(lines 11–12 in Fig. 22.1) passed to the runtime_error base-class constructor.

22.3 Rethrowing an Exception
A function might use a resource—like a file—and might want to release the resource (i.e.,
close the file) if an exception occurs. An exception handler, upon receiving an exception,
can release the resource then notify its caller than an exception occurred by rethrowing the
exception via the statement

Regardless of whether a handler can process an exception, the handler can rethrow the
exception for further processing outside the handler. The next enclosing try block detects
the rethrown exception, which a catch handler listed after that enclosing try block
attempts to handle.

The program of Fig. 22.3 demonstrates rethrowing an exception. In main’s try block
(lines 29–34), line 32 calls function throwException (lines 8–24). The throwException
function also contains a try block (lines 11–15), from which the throw statement in line
14 throws an instance of standard-library-class exception. Function throwException’s
catch handler (lines 16–21) catches this exception, prints an error message (lines 18–19)
and rethrows the exception (line 20). This terminates function throwException and
returns control to line 32 in the try…catch block in main. The try block terminates (so
line 33 does not execute), and the catch handler in main (lines 35–38) catches this excep-
tion and prints an error message (line 37). Since we do not use the exception parameters
in the catch handlers of this example, we omit the exception parameter names and specify
only the type of exception to catch (lines 16 and 35).

Good Programming Practice 22.1
Associating each type of runtime error with an appropriately named exception type im-
proves program clarity.

throw;

Common Programming Error 22.5
Executing an empty throw statement outside a catch handler abandons exception process-
ing and terminates the program immediately.

1 // Fig. 22.3: fig22_03.cpp

2 // Rethrowing an exception.

3 #include <iostream>
4 #include <exception>
5 using namespace std;
6

Fig. 22.3 | Rethrowing an exception. (Part 1 of 2.)

22.4 Stack Unwinding 857

22.4 Stack Unwinding
When an exception is thrown but not caught in a particular scope, the function call stack
is “unwound,” and an attempt is made to catch the exception in the next outer try…catch

block. Unwinding the function call stack means that the function in which the exception
was not caught terminates, all local variables that have completed intitialization in that

7 // throw, catch and rethrow exception

8 void throwException()
9 {

10 // throw exception and catch it immediately

11 try
12 {
13 cout << " Function throwException throws an exception\n";
14

15 } // end try
16

17 {

18 cout << " Exception handled in function throwException"
19 << "\n Function throwException rethrows exception";
20

21 } // end catch
22
23 cout << "This also should not print\n";
24 } // end function throwException

25
26 int main()
27 {

28 // throw exception
29 try
30 {

31 cout << "\nmain invokes function throwException\n";
32 throwException();

33 cout << "This should not print\n";
34 } // end try
35 catch (exception &) // handle exception
36 {

37 cout << "\n\nException handled in main\n";
38 } // end catch

39
40 cout << "Program control continues after catch in main\n";
41 } // end main

main invokes function throwException
 Function throwException throws an exception
 Exception handled in function throwException
 Function throwException rethrows exception

Exception handled in main
Program control continues after catch in main

Fig. 22.3 | Rethrowing an exception. (Part 2 of 2.)

throw exception(); // generate exception

catch (exception &) // handle exception

throw; // rethrow exception for further processing

858 Chapter 22 Exception Handling: A Deeper Look

function are destroyed and control returns to the statement that originally invoked that
function. If a try block encloses that statement, an attempt is made to catch the exception.
If a try block does not enclose that statement, stack unwinding occurs again. If no catch
handler ever catches this exception, the program terminates. The program of Fig. 22.4
demonstrates stack unwinding.

1 // Fig. 22.4: fig22_04.cpp

2 // Demonstrating stack unwinding.

3 #include <iostream>
4 #include <stdexcept>
5 using namespace std;
6
7 // function3 throws runtime error

8 void function3()
9 {

10 cout << "In function 3" << endl;
11
12 // no try block, stack unwinding occurs, return control to function2

13 throw runtime_error("runtime_error in function3"); // no print
14 } // end function3

15
16 // function2 invokes function3
17 void function2()
18 {

19 cout << "function3 is called inside function2" << endl;
20 function3(); // stack unwinding occurs, return control to function1

21 } // end function2

22
23 // function1 invokes function2

24 void function1()
25 {
26 cout << "function2 is called inside function1" << endl;
27 function2(); // stack unwinding occurs, return control to main

28 } // end function1
29
30 // demonstrate stack unwinding

31 int main()
32 {

33 // invoke function1

34 try
35 {

36 cout << "function1 is called inside main" << endl;
37 function1(); // call function1 which throws runtime_error
38 } // end try

39 catch (runtime_error &error) // handle runtime error
40 {
41 cout << "Exception occurred: " << << endl;

42 cout << "Exception handled in main" << endl;
43 } // end catch
44 } // end main

Fig. 22.4 | Stack unwinding. (Part 1 of 2.)

error.what()

22.5 When to Use Exception Handling 859

In main, the try block (lines 34–38) calls function1 (lines 24–28). Next, function1
calls function2 (lines 17–21), which in turn calls function3 (lines 8–14). Line 13 of
function3 throws a runtime_error object. However, because no try block encloses the
throw statement in line 13, stack unwinding occurs—function3 terminates at line 13,
then returns control to the statement in function2 that invoked function3 (i.e., line 20).
Because no try block encloses line 20, stack unwinding occurs again—function2 termi-
nates at line 20 and returns control to the statement in function1 that invoked function2
(i.e., line 27). Because no try block encloses line 27, stack unwinding occurs one more
time—function1 terminates at line 27 and returns control to the statement in main that
invoked function1 (i.e., line 37). The try block of lines 34–38 encloses this statement,
so the first matching catch handler located after this try block (line 39–43) catches and
processes the exception. Line 41 uses function what to display the exception message.

22.5 When to Use Exception Handling
Exception handling is designed to process synchronous errors, which occur when a state-
ment executes, such as out-of-range array subscripts, arithmetic overflow (i.e., a value outside
the representable range of values), division by zero, invalid function parameters and unsuc-
cessful memory allocation (due to lack of memory). Exception handling is not designed to
process errors associated with asynchronous events (e.g., disk I/O completions, network
message arrivals, mouse clicks and keystrokes), which occur in parallel with, and indepen-
dent of, the program’s flow of control.

Exception handling also is useful for processing problems that occur when a program
interacts with software elements, such as member functions, constructors, destructors and
classes. Such software elements often use exceptions to notify programs when problems
occur. This enables you to implement customized error handling for each application.

function1 is called inside main
function2 is called inside function1
function3 is called inside function2
In function 3
Exception occurred: runtime_error in function3
Exception handled in main

Software Engineering Observation 22.4
Exception handling provides a single, uniform technique for processing problems. This
helps programmers on large projects understand each other’s error-processing code.

Software Engineering Observation 22.5
Exception handling enables predefined software components to communicate problems to
application-specific components, which can then process the problems in an application-
specific manner.

Fig. 22.4 | Stack unwinding. (Part 2 of 2.)

860 Chapter 22 Exception Handling: A Deeper Look

Complex applications normally consist of predefined software components and appli-
cation-specific components that use the predefined components. When a predefined com-
ponent encounters a problem, that component needs a mechanism to communicate the
problem to the application-specific component—the predefined component cannot know in
advance how each application processes a problem that occurs.

C++11: Declaring Functions That Do Not Throw Exceptions
As of C++11, if a function does not throw any exceptions and does not call any functions
that throw exceptions, you should explicitly state that a function does not throw excep-
tions. This indicates to client-code programmers that there’s no need to place calls to the
function in a try block. Simply add noexcept to the right of the function’s parameter list
in both the prototype and the definition. For a const member function, place noexcept
after const. If a function that’s declared noexcept calls another function that throws an
exception or executes a throw statement, the program terminates. We say more about no-
except in Chapter 24 of our book C++ How to Program, 9/e.

22.6 Constructors, Destructors and Exception Handling
First, let’s discuss an issue that we’ve mentioned but not yet resolved satisfactorily: What
happens when an error is detected in a constructor? For example, how should an object’s
constructor respond when it receives invalid data? Because the constructor cannot return a
value to indicate an error, we must choose an alternative means of indicating that the ob-
ject has not been constructed properly. One scheme is to return the improperly construct-
ed object and hope that anyone using it would make appropriate tests to determine that
it’s in an inconsistent state. Another scheme is to set some variable outside the constructor.
The preferred alternative is to require the constructor to throw an exception that contains
the error information, thus offering an opportunity for the program to handle the failure.

Before an exception is thrown by a constructor, destructors are called for any member
objects whose constructors have run to completion as part of the object being constructed.
Destructors are called for every automatic object constructed in a try block before the
exception is caught. Stack unwinding is guaranteed to have been completed at the point
that an exception handler begins executing. If a destructor invoked as a result of stack
unwinding throws an exception, the program terminates. This has been linked to various
security attacks.

Software Engineering Observation 22.6
Functions with common error conditions should return nullptr, 0 or other appropriate
values, such as bools, rather than throw exceptions. A program calling such a function can
check the return value to determine success or failure of the function call.

Error-Prevention Tip 22.4
Destructors should catch exceptions to prevent program termination.

Error-Prevention Tip 22.5
Do not throw exceptions from the constructor of an object with static storage duration.
Such exceptions cannot be caught.

22.7 Exceptions and Inheritance 861

If an object has member objects, and if an exception is thrown before the outer object
is fully constructed, then destructors will be executed for the member objects that have
been constructed prior to the occurrence of the exception. If an array of objects has been
partially constructed when an exception occurs, only the destructors for the constructed
objects in the array will be called.

Initializing Local Objects to Acquire Resources
An exception could preclude the operation of code that would normally release a resource
(such as memory or a file), thus causing a resource leak that prevents other programs from
acquiring the resource. One technique to resolve this problem is to initialize a local object
to acquire the resource. When an exception occurs, the destructor for that object will be
invoked and can free the resource.

22.7 Exceptions and Inheritance
Various exception classes can be derived from a common base class, as we discussed in
Section 22.2, when we created class DivideByZeroException as a derived class of class
exception. If a catch handler catches a reference to an exception object of a base-class
type, it also can catch a reference to all objects of classes publicly derived from that base
class—this allows for polymorphic processing of related exceptions.

22.8 Processing new Failures
When operator new fails, it throws a bad_alloc exception (defined in header <new>).In
this section, we present two examples of new failing. The first uses the version of new that
throws a bad_alloc exception when new fails. The second uses function set_new_handler
to handle new failures. [Note: The examples in Figs. 22.5–22.6 allocate large amounts of
dynamic memory, which could cause your computer to become sluggish.]

new Throwing bad_alloc on Failure
Figure 22.5 demonstrates new implicitly throwing bad_alloc on failure to allocate the re-
quested memory. The for statement (lines 16–20) inside the try block should loop 50

Error-Prevention Tip 22.6
When an exception is thrown from the constructor for an object that’s created in a new
expression, the dynamically allocated memory for that object is released.

Error-Prevention Tip 22.7
A constructor should throw an exception if a problem occurs while initializing an object.
Before doing so, the constructor should release any memory that it dynamically allocated.

Error-Prevention Tip 22.8
Using inheritance with exceptions enables an exception handler to catch related errors
with concise notation. One approach is to catch each type of reference to a derived-class
exception object individually, but a more concise approach is to catch pointers or refer-
ences to base-class exception objects instead. Also, catching pointers or references to de-
rived-class exception objects individually is error prone, especially if you forget to test
explicitly for one or more of the derived-class reference types.

862 Chapter 22 Exception Handling: A Deeper Look

times and, on each pass, allocate an array of 50,000,000 double values. If new fails and
throws a bad_alloc exception, the loop terminates, and the program continues in line 22,
where the catch handler catches and processes the exception. Lines 24–25 print the mes-
sage "Exception occurred:" followed by the message returned from the base-class-ex-
ception version of function what (i.e., an implementation-defined exception-specific
message, such as "bad allocation" in Microsoft Visual C++). The output shows that the
program performed only four iterations of the loop before new failed and threw the
bad_alloc exception. Your output might differ based on the physical memory, disk space
available for virtual memory on your system and the compiler you’re using.

new Returning nullptr on Failure
The C++ standard specifies that programmers can use an older version of new that returns
nullptr upon failure. For this purpose, header <new> defines object nothrow (of type
nothrow_t), which is used as follows:

1 // Fig. 22.5: fig22_05.cpp

2 // Demonstrating standard new throwing bad_alloc when memory

3 // cannot be allocated.
4 #include <iostream>
5
6 using namespace std;
7
8 int main()
9 {

10 double *ptr[50];
11

12 // aim each ptr[i] at a big block of memory

13 try
14 {

15 // allocate memory for ptr[i]; new throws bad_alloc on failure

16 for (size_t i = 0; i < 50; ++i)
17 {

18

19 cout << "ptr[" << i << "] points to 50,000,000 new doubles\n";
20 } // end for

21 } // end try

22 catch ()
23 {

24 cerr << "Exception occurred: "
25 << << endl;
26 } // end catch

27 } // end main

ptr[0] points to 50,000,000 new doubles
ptr[1] points to 50,000,000 new doubles
ptr[2] points to 50,000,000 new doubles
ptr[3] points to 50,000,000 new doubles
Exception occurred: bad allocation

Fig. 22.5 | new throwing bad_alloc on failure.

double *ptr = new(nothrow) double[50000000];

#include <new> // bad_alloc class is defined here

ptr[i] = new double[50000000]; // may throw exception

bad_alloc &memoryAllocationException

memoryAllocationException.what()

22.8 Processing new Failures 863

The preceding statement uses the version of new that does not throw bad_alloc exceptions
(i.e., nothrow) to allocate an array of 50,000,000 doubles.

Handling new Failures Using Function set_new_handler
An additional feature for handling new failures is function set_new_handler (prototyped
in standard header <new>). This function takes as its argument a pointer to a function that
takes no arguments and returns void. This pointer points to the function that will be
called if new fails. This provides you with a uniform approach to handling all new failures,
regardless of where a failure occurs in the program. Once set_new_handler registers a new
handler in the program, operator new does not throw bad_alloc on failure; rather, it defers
the error handling to the new-handler function.

If new allocates memory successfully, it returns a pointer to that memory. If new fails
to allocate memory and set_new_handler did not register a new-handler function, new
throws a bad_alloc exception. If new fails to allocate memory and a new-handler function
has been registered, the new-handler function is called. The new-handler function should
perform one of the following tasks:

1. Make more memory available by deleting other dynamically allocated memory
(or telling the user to close other applications) and return to operator new to at-
tempt to allocate memory again.

2. Throw an exception of type bad_alloc.

3. Call function abort or exit (both found in header <cstdlib>) to terminate the
program. These were introduced in Section 17.7.

Figure 22.6 demonstrates set_new_handler. Function customNewHandler (lines 9–
13) prints an error message (line 11), then calls abort (line 12) to terminate the program.
The output shows that the loop iterated four times before new failed and invoked function
customNewHandler. Your output might differ based on the physical memory, disk space
available for virtual memory on your system and your compiler.

Software Engineering Observation 22.7
To make programs more robust, use the version of new that throws bad_alloc exceptions
on failure.

1 // Fig. 22.6: fig22_06.cpp

2 // Demonstrating set_new_handler.
3 #include <iostream>
4
5 #include <cstdlib> // abort function prototype
6 using namespace std;
7
8
9

10
11
12
13

Fig. 22.6 | set_new_handler specifying the function to call when new fails. (Part 1 of 2.)

#include <new> // set_new_handler function prototype

// handle memory allocation failure

void customNewHandler()
{

 cerr << "customNewHandler was called";
 abort();
} // end function customNewHandler

864 Chapter 22 Exception Handling: A Deeper Look

22.9 Class unique_ptr and Dynamic Memory
Allocation
A common programming practice is to allocate dynamic memory, assign the address of
that memory to a pointer, use the pointer to manipulate the memory and deallocate the
memory with delete when the memory is no longer needed. If an exception occurs after
successful memory allocation but before the delete statement executes, a memory leak
could occur. C++11 provides class template unique_ptr in header <memory> to deal with
this situation.

An object of class unique_ptr maintains a pointer to dynamically allocated memory.
When a unique_ptr object destructor is called (for example, when a unique_ptr object
goes out of scope), it performs a delete operation on its pointer data member. Class tem-
plate unique_ptr provides overloaded operators * and -> so that a unique_ptr object can
be used just as a regular pointer variable is. Figure 22.9 demonstrates a unique_ptr object
that points to a dynamically allocated object of class Integer (Figs. 22.7–22.8).

14
15 // using set_new_handler to handle failed memory allocation

16 int main()
17 {

18 double *ptr[50];
19
20

21

22
23
24 // aim each ptr[i] at a big block of memory; customNewHandler will be

25 // called on failed memory allocation
26 for (size_t i = 0; i < 50; ++i)
27 {

28 ptr[i] = new double[50000000]; // may throw exception
29 cout << "ptr[" << i << "] points to 50,000,000 new doubles\n";
30 } // end for

31 } // end main

ptr[0] points to 50,000,000 new doubles
ptr[1] points to 50,000,000 new doubles
ptr[2] points to 50,000,000 new doubles
ptr[3] points to 50,000,000 new doubles
customNewHandler was called

1 // Fig. 22.7: Integer.h

2 // Integer class definition.

3
4 class Integer
5 {

Fig. 22.7 | Integer class definition. (Part 1 of 2.)

Fig. 22.6 | set_new_handler specifying the function to call when new fails. (Part 2 of 2.)

// specify that customNewHandler should be called on
// memory allocation failure

set_new_handler(customNewHandler);

22.9 Class unique_ptr and Dynamic Memory Allocation 865

Line 15 of Fig. 22.9 creates unique_ptr object ptrToInteger and initializes it with a
pointer to a dynamically allocated Integer object that contains the value 7. Line 18 uses
the unique_ptr overloaded -> operator to invoke function setInteger on the Integer
object that ptrToInteger manages. Line 21 uses the unique_ptr overloaded * operator to
dereference ptrToInteger, then uses the dot (.) operator to invoke function getInteger
on the Integer object. Like a regular pointer, a unique_ptr’s -> and * overloaded opera-
tors can be used to access the object to which the unique_ptr points.

6 public:
7 Integer(int i = 0); // Integer default constructor
8 ~Integer(); // Integer destructor
9 void setInteger(int i); // set Integer value

10 int getInteger() const; // return Integer value
11 private:
12 int value;
13 }; // end class Integer

1 // Fig. 22.8: Integer.cpp

2 // Integer member function definitions.
3 #include <iostream>
4 #include "Integer.h"
5 using namespace std;
6
7 // Integer default constructor

8 Integer::Integer(int i)
9 : value(i)

10 {

11 cout << "Constructor for Integer " << value << endl;
12 } // end Integer constructor
13
14 // Integer destructor

15 Integer::~Integer()
16 {

17 cout << "Destructor for Integer " << value << endl;
18 } // end Integer destructor
19
20 // set Integer value

21 void Integer::setInteger(int i)
22 {

23 value = i;

24 } // end function setInteger
25
26 // return Integer value

27 int Integer::getInteger() const
28 {

29 return value;
30 } // end function getInteger

Fig. 22.8 | Member function definitions of class Integer.

Fig. 22.7 | Integer class definition. (Part 2 of 2.)

866 Chapter 22 Exception Handling: A Deeper Look

Because ptrToInteger is a local automatic variable in main, ptrToInteger is
destroyed when main terminates. The unique_ptr destructor forces a delete of the
Integer object pointed to by ptrToInteger, which in turn calls the Integer class
destructor. The memory that Integer occupies is released, regardless of how control leaves
the block (e.g., by a return statement or by an exception). Most importantly, using this
technique can prevent memory leaks. For example, suppose a function returns a pointer
aimed at some object. Unfortunately, the function caller that receives this pointer might
not delete the object, thus resulting in a memory leak. However, if the function returns a
unique_ptr to the object, the object will be deleted automatically when the unique_ptr
object’s destructor gets called.

unique_ptr Notes
The class is called unique_ptr because only one unique_ptr at a time can own a dynami-
cally allocated object. By using its overloaded assignment operator or copy constructor, a
unique_ptr can transfer ownership of the dynamic memory it manages. The last
unique_ptr object that maintains the pointer to the dynamic memory will delete the

1 // Fig. 22.9: fig22_09.cpp

2 // Demonstrating unique_ptr.

3 #include <iostream>
4
5 using namespace std;
6
7 #include "Integer.h"
8
9 // use unique_ptr to manipulate Integer object

10 int main()
11 {

12 cout << "Creating a unique_ptr object that points to an Integer\n";
13
14

15
16
17 cout << "\nUsing the unique_ptr to manipulate the Integer\n";
18

19
20 // use unique_ptr to get Integer value

21 cout << "Integer after setInteger: " <<
22 << "\n\nTerminating program" << endl;
23 } // end main

Creating a unique_ptr object that points to an Integer
Constructor for Integer 7

Using the unique_ptr to manipulate the Integer
Integer after setInteger: 99

Terminating program
Destructor for Integer 99

Fig. 22.9 | unique_ptr object manages dynamically allocated memory.

#include <memory>

// "aim" unique_ptr at Integer object

unique_ptr< Integer > ptrToInteger(new Integer(7));

ptrToInteger->setInteger(99); // use unique_ptr to set Integer value

(*ptrToInteger).getInteger()

22.10 Standard Library Exception Hierarchy 867

memory. This makes unique_ptr an ideal mechanism for returning dynamically allocated
memory to client code. When the unique_ptr goes out of scope in the client code, the
unique_ptr’s destructor destroys the dynamically allocated object and deletes its memory.

unique_ptr to a Built-In Array
You can also use a unique_ptr to manage a dynamically allocated built-in array. For ex-
ample, consider the statement

which dynamically allocates an array of 10 strings managed by ptr. The type string[]
indicates that the managed memory is a built-in array containing strings. When a
unique_ptr that manages an array goes out of scope it deletes the memory with delete []

so that every element of the array receives a destructor call.
A unique_ptr that manages an array provides an overloaded [] operator for accessing

the array’s elements. For example, the statement

assigns "hello" to the string at ptr[2] and the statement

displays that string.

22.10 Standard Library Exception Hierarchy
Experience has shown that exceptions fall nicely into a number of categories. The C++
Standard Library includes a hierarchy of exception classes, some of which are shown in
Fig. 22.10. As we first discussed in Section 22.2, this hierarchy is headed by base-class ex-
ception (defined in header <exception>), which contains virtual function what that de-
rived classes can override to issue appropriate error messages.

Immediate derived classes of base-class exception include runtime_error and
logic_error (both defined in header <stdexcept>), each of which has several derived
classes. Also derived from exception are the exceptions thrown by C++ operators—for
example, bad_alloc is thrown by new (Section 22.8), bad_cast is thrown by dynamic_cast
(Chapter 20) and bad_typeid is thrown by typeid (Chapter 20).

Class logic_error is the base class of several standard exception classes that indicate
errors in program logic. For example, class invalid_argument indicates that a function
received an invalid argument. (Proper coding can, of course, prevent invalid arguments from
reaching a function.) Class length_error indicates that a length larger than the maximum
size allowed for the object being manipulated was used for that object. Class out_of_range
indicates that a value, such as a subscript into an array, exceeded its allowed range of values.

Class runtime_error, which we used briefly in Section 22.4, is the base class of several
other standard exception classes that indicate execution-time errors. For example, class

unique_ptr< string[] > ptr(new string[10]);

ptr[2] = "hello";

cout << ptr[2] << endl;

Common Programming Error 22.6
Placing a catch handler that catches a base-class object before a catch that catches an object
of a class derived from that base class is a logic error. The base-class catch catches all objects
of classes derived from that base class, so the derived-class catch will never execute.

868 Chapter 22 Exception Handling: A Deeper Look

overflow_error describes an arithmetic overflow error (i.e., the result of an arithmetic
operation is larger than the largest number that can be stored in the computer) and class
underflow_error describes an arithmetic underflow error (i.e., the result of an arithmetic
operation is smaller than the smallest number that can be stored in the computer).

22.11 Wrap-Up
In this chapter, you learned how to use exception handling to deal with errors in a pro-
gram. You learned that exception handling enables you to remove error-handling code
from the “main line” of the program’s execution. We demonstrated exception handling in

Fig. 22.10 | Some of the Standard Library exception classes.

Common Programming Error 22.7
Exception classes need not be derived from class exception, so catching type exception is
not guaranteed to catch all exceptions a program could encounter.

Error-Prevention Tip 22.9
To catch all exceptions potentially thrown in a try block, use catch(...). One weak-
ness with catching exceptions in this way is that the type of the caught exception is un-
known. Another weakness is that, without a named parameter, there’s no way to refer to
the exception object inside the exception handler.

Software Engineering Observation 22.8
The standard exception hierarchy is a good starting point for creating exceptions. You can
build programs that can throw standard exceptions, throw exceptions derived from the
standard exceptions or throw your own exceptions not derived from the standard exceptions.

Software Engineering Observation 22.9
Use catch(...) to perform recovery that does not depend on the exception type (e.g.,
releasing common resources). The exception can be rethrown to alert more specific
enclosing catch handlers.

exception

logic_errorruntime_error

bad_type_idbad_alloc bad_cast bad_exception

underflow_erroroverflow_error invalid_argument length_error out_of_range

 Summary 869

the context of a divide-by-zero example. We reviewed how to use try blocks to enclose
code that may throw an exception, and how to use catch handlers to deal with exceptions
that may arise. You learned how to throw and rethrow exceptions, and how to handle the
exceptions that occur in constructors. The chapter continued with discussions of process-
ing new failures, dynamic memory allocation with class unique_ptr and the standard li-
brary exception hierarchy. In the next chapter, you’ll learn how to build your own custom
class templates.

Summary
Section 22.1 Introduction
• An exception (p. 850) is an indication of a problem that occurs during a program’s execution.

• Exception handling (p. 850) enables you to create programs that can resolve problems that occur
at execution time—often allowing programs to continue executing as if no problems had been
encountered. More severe problems may require a program to notify the user of the problem be-
fore terminating in a controlled manner.

Section 22.2 Example: Handling an Attempt to Divide by Zero
• Class exception is the standard base class for exceptions classes (p. 851). It provides virtual function

what (p. 851) that returns an appropriate error message and can be overridden in derived classes.

• Class runtime_error (p. 851), which is defined in header <stdexcept> (p. 851), is the C++ stan-
dard base class for representing runtime errors.

• C++ uses the termination model (p. 854) of exception handling.

• A try block consists of keyword try followed by braces ({}) that define a block of code in which
exceptions might occur. The try block encloses statements that might cause exceptions and state-
ments that should not execute if exceptions occur.

• At least one catch handler must immediately follow a try block. Each catch handler specifies an
exception parameter that represents the type of exception the catch handler can process.

• If an exception parameter includes an optional parameter name, the catch handler can use that
parameter name to interact with a caught exception object (p. 855).

• The point in the program at which an exception occurs is called the throw point (p. 854).

• If an exception occurs in a try block, the try block expires and program control transfers to the
first catch in which the exception parameter’s type matches that of the thrown exception.

• When a try block terminates, local variables defined in the block go out of scope.

• When a try block terminates due to an exception, the program searches for the first catch han-
dler that matches the type of exception that occurred. A match occurs if the types are identical
or if the thrown exception’s type is a derived class of the exception-parameter type. When a
match occurs, the code contained within the matching catch handler executes.

• When a catch handler finishes processing, the catch parameter and local variables defined within
the catch handler go out of scope. Any remaining catch handlers that correspond to the try
block are ignored, and execution resumes at the first line of code after the try…catch sequence.

870 Chapter 22 Exception Handling: A Deeper Look

• If no exceptions occur in a try block, the program ignores the catch handler(s) for that block.
Program execution resumes with the next statement after the try…catch sequence.

• If an exception that occurs in a try block has no matching catch handler, or if an exception oc-
curs in a statement that is not in a try block, the function that contains the statement terminates
immediately, and the program attempts to locate an enclosing try block in the calling function.
This process is called stack unwinding (p. 855).

• To throw an exception, use keyword throw followed by an operand that represents the type of
exception to throw. The operand of a throw can be of any type.

Section 22.3 Rethrowing an Exception
• The exception handler can defer the exception handling (or perhaps a portion of it) to another

exception handler. In either case, the handler achieves this by rethrowing the exception (p. 856).

• Common examples of exceptions are out-of-range array subscripts, arithmetic overflow, division
by zero, invalid function parameters and unsuccessful memory allocations.

Section 22.4 Stack Unwinding
• Unwinding the function call stack means that the function in which the exception was not

caught terminates, all local variables in that function are destroyed and control returns to the
statement that originally invoked that function.

Section 22.5 When to Use Exception Handling
• Exception handling is for synchronous errors (p. 859), which occur when a statement executes.

• Exception handling is not designed to process errors associated with asynchronous events
(p. 859), which occur in parallel with, and independent of, the program’s flow of control.

• As of C++11, if a function does not throw any exceptions and does not call any functions that
throw exceptions, you should explicitly declare the function noexcept (p. 860).

Section 22.6 Constructors, Destructors and Exception Handling
• Exceptions thrown by a constructor cause destructors to be called for any objects built as part of

the object being constructed before the exception is thrown.

• Each automatic object constructed in a try block is destructed before an exception is thrown.

• Stack unwinding completes before an exception handler begins executing.

• If a destructor invoked as a result of stack unwinding throws an exception, the program terminates.

• If an object has member objects, and if an exception is thrown before the outer object is fully
constructed, then destructors will be executed for the member objects that have been constructed
before the exception occurs.

• If an array of objects has been partially constructed when an exception occurs, only the destruc-
tors for the constructed array element objects will be called.

• When an exception is thrown from the constructor for an object that is created in a new expres-
sion, the dynamically allocated memory for that object is released.

Section 22.7 Exceptions and Inheritance
• If a catch handler catches a reference to an exception object of a base-class type, it also can catch

a reference to all objects of classes derived publicly from that base class—this allows for polymor-
phic processing of related errors.

Section 22.8 Processing new Failures
• The C++ standard document specifies that, when operator new fails, it throws a bad_alloc excep-

tion (p. 861), which is defined in header <new>.

 Self-Review Exercises 871

• Function set_new_handler (p. 861) takes as its argument a pointer to a function that takes no
arguments and returns void. This pointer points to the function that will be called if new fails.

• Once set_new_handler registers a new handler (p. 863) in the program, operator new does not
throw bad_alloc on failure; rather, it defers the error handling to the new-handler function.

• If new allocates memory successfully, it returns a pointer to that memory.

Section 22.9 Class unique_ptr and Dynamic Memory Allocation
• If an exception occurs after successful memory allocation but before the delete statement exe-

cutes, a memory leak could occur.

• The C++ Standard Library provides class template unique_ptr (p. 864) to deal with memory leaks.

• An object of class unique_ptr maintains a pointer to dynamically allocated memory. A
unique_ptr’s destructor performs a delete operation on the unique_ptr’s pointer data member.

• Class template unique_ptr provides overloaded operators * and -> so that a unique_ptr object
can be used just as a regular pointer variable is. A unique_ptr also transfers ownership of the dy-
namic memory it manages via its copy constructor and overloaded assignment operator.

Section 22.10 Standard Library Exception Hierarchy
• The C++ Standard Library includes a hierarchy of exception classes. This hierarchy is headed by

base-class exception.

• Immediate derived classes of base class exception include runtime_error and logic_error (both
defined in header <stdexcept>), each of which has several derived classes.

• Several operators throw standard exceptions—operator new throws bad_alloc, operator
dynamic_cast throws bad_cast (p. 867) and operator typeid throws bad_typeid (p. 867).

Self-Review Exercises
22.1 List five common examples of exceptions.

22.2 Give several reasons why exception-handling techniques should not be used for conven-
tional program control.

22.3 Why are exceptions appropriate for dealing with errors produced by library functions?

22.4 What’s a “resource leak”?

22.5 If no exceptions are thrown in a try block, where does control proceed to after the try block
completes execution?

22.6 What happens if an exception is thrown outside a try block?

22.7 Give a key advantage and a key disadvantage of using catch(...).

22.8 What happens if no catch handler matches the type of a thrown object?

22.9 What happens if several handlers match the type of the thrown object?

22.10 Why would you specify a base-class type as the type of a catch handler, then throw objects
of derived-class types?

22.11 Suppose a catch handler with a precise match to an exception object type is available. Un-
der what circumstances might a different handler be executed for exception objects of that type?

22.12 Must throwing an exception cause program termination?

22.13 What happens when a catch handler throws an exception?

22.14 What does the statement throw; do?

872 Chapter 22 Exception Handling: A Deeper Look

Answers to Self-Review Exercises
22.1 Insufficient memory to satisfy a new request, array subscript out of bounds, arithmetic over-
flow, division by zero, invalid function parameters.

22.2 (a) Exception handling is designed to handle infrequently occurring situations that often
result in program termination, so compiler writers are not required to implement exception han-
dling to perform optimally. (b) Flow of control with conventional control structures generally is
clearer and more efficient than with exceptions. (c) Problems can occur because the stack is un-
wound when an exception occurs and resources allocated prior to the exception might not be freed.
(d) The “additional” exceptions make it more difficult for you to handle the larger number of ex-
ception cases.

22.3 It’s unlikely that a library function will perform error processing that will meet the unique
needs of all users.

22.4 A program that terminates abruptly could leave a resource in a state in which other pro-
grams would not be able to acquire the resource, or the program itself might not be able to reacquire
a “leaked” resource.

22.5 The exception handlers (in the catch handlers) for that try block are skipped, and the pro-
gram resumes execution after the last catch handler.

22.6 An exception thrown outside a try block causes a call to terminate.

22.7 The form catch(...) catches any type of exception thrown in a try block. An advantage
is that all possible exceptions will be caught. A disadvantage is that the catch has no parameter, so
it cannot reference information in the thrown object and cannot know the cause of the exception.

22.8 This causes the search for a match to continue in the next enclosing try block if there is
one. As this process continues, it might eventually be determined that there is no handler in the pro-
gram that matches the type of the thrown object; in this case, the program terminates.

22.9 The first matching exception handler after the try block is executed.

22.10 This is a nice way to catch related types of exceptions.

22.11 A base-class handler would catch objects of all derived-class types.

22.12 No, but it does terminate the block in which the exception is thrown.

22.13 The exception will be processed by a catch handler (if one exists) associated with the try
block (if one exists) enclosing the catch handler that caused the exception.

22.14 It rethrows the exception if it appears in a catch handler; otherwise, the program terminates.

Exercises
22.15 (Exceptional Conditions) List various exceptional conditions that have occurred through-
out this text. List as many additional exceptional conditions as you can. For each of these exceptions,
describe briefly how a program typically would handle the exception, using the exception-handling
techniques discussed in this chapter. Some typical exceptions are division by zero, arithmetic over-
flow, array subscript out of bounds, exhaustion of the free store, etc.

22.16 (Catch Parameter) Under what circumstances would you not provide a parameter name
when defining the type of the object that will be caught by a handler?

22.17 (throw Statement) A program contains the statement

throw;
Where would you normally expect to find such a statement? What if that statement appeared in a
different part of the program?

 Exercises 873

22.18 (Exception Handling vs. Other Schemes) Compare and contrast exception handling with
the various other error-processing schemes discussed in the text.

22.19 (Exception Handling and Program Control) Why should exceptions not be used as an al-
ternate form of program control?

22.20 (Handling Related Exceptions) Describe a technique for handling related exceptions.

22.21 (Throwing Exceptions from a catch) Suppose a program throws an exception and the ap-
propriate exception handler begins executing. Now suppose that the exception handler itself throws
the same exception. Does this create infinite recursion? Write a program to check your observation.

22.22 (Catching Derived-Class Exceptions) Use inheritance to create various derived classes of
runtime_error. Then show that a catch handler specifying the base class can catch derived-class
exceptions.

22.23 (Throwing the Result of a Conditional Expression) Throw the result of a conditional ex-
pression that returns either a double or an int. Provide an int catch handler and a double catch
handler. Show that only the double catch handler executes, regardless of whether the int or the
double is returned.

22.24 (Local Variable Destructors) Write a program illustrating that all destructors for objects
constructed in a block are called before an exception is thrown from that block.

22.25 (Member Object Destructors) Write a program illustrating that member object destructors
are called for only those member objects that were constructed before an exception occurred.

22.26 (Catching All Exceptions) Write a program that demonstrates several exception types being
caught with the catch(...) exception handler.

22.27 (Order of Exception Handlers) Write a program illustrating that the order of exception han-
dlers is important. The first matching handler is the one that executes. Attempt to compile and run
your program two different ways to show that two different handlers execute with two different ef-
fects.

22.28 (Constructors Throwing Exceptions) Write a program that shows a constructor passing in-
formation about constructor failure to an exception handler after a try block.

22.29 (Rethrowing Exceptions) Write a program that illustrates rethrowing an exception.

22.30 (Uncaught Exceptions) Write a program that illustrates that a function with its own try
block does not have to catch every possible error generated within the try. Some exceptions can slip
through to, and be handled in, outer scopes.

22.31 (Stack Unwinding) Write a program that throws an exception from a deeply nested func-
tion and still has the catch handler following the try block enclosing the initial call in main catch
the exception.

23 Introduction to Custom
Templates

O b j e c t i v e s
In this chapter you’ll:

■ Use class templates to create
groups of related classes.

■ Distinguish between class
templates and class-template
specializations.

■ Learn about nontype
template parameters.

■ Learn about default template
arguments.

■ Learn about overloading
function templates.

23.1 Introduction 875

23.1 Introduction
The C++ Standard Library contains many prepackaged templatized data structures and al-
gorithms. Function templates (which were introduced in Chapter 15) and class templates
enable you to conveniently specify a variety of related (overloaded) functions—called
function-template specializations—or a variety of related classes—called class-template
specializations, respectively. This is called generic programming. Function templates and
class templates are like stencils out of which we trace shapes; function-template specializa-
tions and class-template specializations are like the separate tracings that all have the same
shape, but could, for example, be drawn in different colors and textures. In this chapter,
we demonstrate how to create a custom class template and a function template that ma-
nipulates objects of our class-template specializations.

23.2 Class Templates
It’s possible to understand the concept of a stack (a data structure into which we insert
items only at the top and retrieve those items only from the top in last-in, first-out order)
independent of the type of the items being placed in the stack. However, to instantiate a
stack, a data type must be specified. This creates a nice opportunity for software reus-
ability. Here, we define a stack generically then use type-specific versions of this generic
stack class.

Class templates are called parameterized types, because they require one or more type
parameters to specify how to customize a generic class template to form a class-template spe-
cialization. To produce many specializations you write only one class-template definition
(as we’ll do shortly). When a particular specialization is needed, you use a concise, simple
notation, and the compiler writes the specialization source code. One Stack class tem-
plate, for example, could thus become the basis for creating many Stack class-template
specializations (such as “Stack of doubles,” “Stack of ints,” “Stack of Employees,”
“Stack of Bills,” etc.) used in a program.

23.1 Introduction
23.2 Class Templates
23.3 Function Template to Manipulate a

Class-Template Specialization Object
23.4 Nontype Parameters

23.5 Default Arguments for Template
Type Parameters

23.6 Overloading Function Templates
23.7 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Software Engineering Observation 23.1
Class templates encourage software reusability by enabling a variety of type-specific class-
template specializations to be instantiated from a single class template.

876 Chapter 23 Introduction to Custom Templates

Creating Class Template Stack<T>
The Stack class-template definition in Fig. 23.1 looks like a conventional class definition,
with a few key differences. First, it’s preceded by line 7

All class templates begin with keyword template followed by a list of template parameters
enclosed in angle brackets (< and >); each template parameter that represents a type must
be preceded by either of the interchangeable keywords typename or class. The type pa-
rameter T acts as a placeholder for the Stack’s element type. The names of type parameters
must be unique inside a template definition. You need not specifically use identifier T—
any valid identifier can be used. The element type is mentioned generically throughout the
Stack class-template definition as T (lines 12, 18 and 42). The type parameter becomes
associated with a specific type when you create an object using the class template—at that
point, the compiler generates a copy of the class template in which all occurrences of the
type parameter are replaced with the specified type. Another key difference is that we did
not separate the class template’s interface from its implementation.

Common Programming Error 23.1
To create a template specialization with a user-defined type, the user-defined type must
meet the template’s requirements. For example, the template might compare objects of the
user-defined type with < to determine sorting order, or the template might call a specific
member function on an object of the user-defined type. If the user-defined type does not
overload the required operator or provide the required functions, compilation errors occur.

template< typename T >

Software Engineering Observation 23.2
Templates are typically defined in headers, which are then #included in the appropriate
client source-code files. For class templates, this means that the member functions are also
defined in the header—typically inside the class definition’s body, as we do in Fig. 23.1.

1 // Fig. 23.1: Stack.h

2 // Stack class template.
3 #ifndef STACK_H
4 #define STACK_H
5 #include <deque>
6
7
8 class Stack
9 {

10 public:
11 // return the top element of the Stack
12 T& top()

13 {

14 return stack.front();
15 } // end function template top

Fig. 23.1 | Stack class template. (Part 1 of 2.)

template< typename T >

23.2 Class Templates 877

Class Template Stack<T>’s Data Representation
The C++ Standard Library’s prepackaged stack adapter class can use various containers to
store its elements. Of course, a stack requires insertions and deletions only at its top. So,
for example, a vector or a deque could be used to store the stack’s elements. A vector
supports fast insertions and deletions at its back. A deque supports fast insertions and de-
letions at its front and its back. A deque is the default representation for the Standard Li-
brary’s stack adapter because a deque grows more efficiently than a vector. A vector is
maintained as a contiguous block of memory—when that block is full and a new element
is added, the vector allocates a larger contiguous block of memory and copies the old ele-
ments into that new block. A deque, on the other hand, is typically implemented as list of
fixed-size, built-in arrays—new fixed-size built-in arrays are added as necessary and none
of the existing elements are copied when new items are added to the front or back. For
these reasons, we use a deque (line 42) as the underlying container for our Stack class.

Class Template Stack<T>’s Member Functions
The member-function definitions of a class template are function templates, but are not
preceded with the template keyword and template parameters in angle brackets (< and >)
when they’re defined within the class template’s body. As you can see, however, they do

16
17 // push an element onto the Stack

18
19 {

20 stack.push_front(pushValue);

21 } // end function template push
22
23 // pop an element from the stack

24
25 {

26 stack.pop_front();

27 } // end function template pop
28
29 // determine whether Stack is empty

30
31 {

32 return stack.empty();
33 } // end function template isEmpty

34
35 // return size of Stack

36

37 {
38 return stack.size();
39 } // end function template size

40
41 private:
42

43 }; // end class template Stack
44
45 #endif

Fig. 23.1 | Stack class template. (Part 2 of 2.)

void push(const T &pushValue)

void pop()

bool isEmpty() const

size_t size() const

std::deque< T > stack; // internal representation of the Stack

878 Chapter 23 Introduction to Custom Templates

use the class template’s template parameter T to represent the element type. Our Stack
class template does not define it’s own constructors—the default constructor provided by
the compiler will invoke the deque’s default constructor. We also provide the following
member functions in Fig. 23.1:

• top (lines 12–15) returns a reference to the Stack’s top element.

• push (lines 18–21) places a new element on the top of the Stack.

• pop (lines 24–27) removes the Stack’s top element.

• isEmpty (lines 30–33) returns a bool value—true if the Stack is empty and
false otherwise.

• size (lines 36–39) returns the number if elements in the Stack.

Each of these member functions delegates its responsibility to the appropriate member
function of class template deque.

Declaring a Class Template’s Member Functions Outside the Class Template Definition
Though we did not do so in our Stack class template, member-function definitions can
appear outside a class template definition. If you do this, each must begin with the tem-
plate keyword followed by the same set of template parameters as the class template. In
addition, the member functions must be qualified with the class name and scope resolu-
tion operator. For example, you can define the pop function outside the class-template def-
inition as follows:

Stack<T>:: indicates that pop is in the scope of class Stack<T>. The Standard Library’s
container classes tend to define all their member functions inside their class definitions.

Testing Class Template Stack<T>
Now, let’s consider the driver (Fig. 23.2) that exercises the Stack class template. The driv-
er begins by instantiating object doubleStack (line 9). This object is declared as a
Stack<double> (pronounced “Stack of double”). The compiler associates type double
with type parameter T in the class template to produce the source code for a Stack class
with elements of type double that actually stores its elements in a deque<double>.

Lines 16–21 invoke push (line 18) to place the double values 1.1, 2.2, 3.3, 4.4 and
5.5 onto doubleStack. Next, lines 26–30 invoke top and pop in a while loop to remove
the five values from the stack. Notice in the output of Fig. 23.2, that the values do pop off
in last-in, first-out order. When doubleStack is empty, the pop loop terminates.

template< typename T >
inline void Stack<T>::pop()
{

 stack.pop_front();

} // end function template pop

1 // Fig. 23.2: fig23_02.cpp
2 // Stack class template test program.

3 #include <iostream>
4 #include "Stack.h" // Stack class template definition

Fig. 23.2 | Stack class template test program. (Part 1 of 3.)

23.2 Class Templates 879

5 using namespace std;
6
7 int main()
8 {

9 // create a Stack of double

10 const size_t doubleStackSize = 5; // stack size
11 double doubleValue = 1.1; // first value to push
12
13 cout << "Pushing elements onto doubleStack\n";
14
15 // push 5 doubles onto doubleStack

16 for (size_t i = 0; i < doubleStackSize; ++i)
17 {

18 doubleStack.push(doubleValue);

19 cout << doubleValue << ' ';
20 doubleValue += 1.1;
21 } // end while

22
23 cout << "\n\nPopping elements from doubleStack\n";
24
25 // pop elements from doubleStack

26 while (!doubleStack.isEmpty()) // loop while Stack is not empty
27 {

28 cout << doubleStack.top() << ' '; // display top element
29 doubleStack.pop(); // remove top element
30 } // end while

31
32 cout << "\nStack is empty, cannot pop.\n";
33
34 // create a Stack of int

35 const size_t intStackSize = 10; // stack size
36 int intValue = 1; // first value to push
37
38 cout << "\nPushing elements onto intStack\n";
39
40 // push 10 integers onto intStack

41 for (size_t i = 0; i < intStackSize; ++i)
42 {

43 intStack.push(intValue);

44 cout << intValue++ << ' ';
45 } // end while

46
47 cout << "\n\nPopping elements from intStack\n";
48
49 // pop elements from intStack

50 while (!intStack.isEmpty()) // loop while Stack is not empty
51 {

52 cout << intStack.top() << ' '; // display top element
53 intStack.pop(); // remove top element
54 } // end while

55
56 cout << "\nStack is empty, cannot pop." << endl;
57 } // end main

Fig. 23.2 | Stack class template test program. (Part 2 of 3.)

Stack< double > doubleStack;

Stack< int > intStack;

880 Chapter 23 Introduction to Custom Templates

Line 34 instantiates int stack intStack with the declaration

(pronounced “intStack is a Stack of int”). Lines 41–45 repeatedly invoke push (line 43)
to place values onto intStack, then lines 50–54 repeatedly invoke top and pop to remove
values from intStack until it’s empty. Once again, notice in the output that the values
pop off in last-in, first-out order.

23.3 Function Template to Manipulate a Class-Template
Specialization Object
Notice that the code in function main of Fig. 23.2 is almost identical for both the double-
Stack manipulations in lines 9–32 and the intStack manipulations in lines 34–56. This
presents another opportunity to use a function template. Figure 23.3 defines function
template testStack (lines 10–39) to perform the same tasks as main in Fig. 23.2—push a
series of values onto a Stack<T> and pop the values off a Stack<T>.

Pushing elements onto doubleStack
1.1 2.2 3.3 4.4 5.5

Popping elements from doubleStack
5.5 4.4 3.3 2.2 1.1
Stack is empty, cannot pop

Pushing elements onto intStack
1 2 3 4 5 6 7 8 9 10

Popping elements from intStack
10 9 8 7 6 5 4 3 2 1
Stack is empty, cannot pop

Stack< int > intStack;

1 // Fig. 23.3: fig23_03.cpp
2 // Passing a Stack template object

3 // to a function template.

4 #include <iostream>
5 #include <string>
6 #include "Stack.h" // Stack class template definition
7 using namespace std;
8
9

10
11
12
13
14
15
16
17 {

Fig. 23.3 | Passing a Stack template object to a function template. (Part 1 of 2.)

Fig. 23.2 | Stack class template test program. (Part 3 of 3.)

// function template to manipulate Stack< T >

template< typename T >
void testStack(
 Stack< T > &theStack, // reference to Stack< T >

 const T &value, // initial value to push
 const T &increment, // increment for subsequent values
 size_t size, // number of items to push

 const string &stackName) // name of the Stack< T > object

23.3 Function Template to Manipulate a Class-Template Specialization Object 881

Function template testStack uses T (specified at line 10) to represent the data type
stored in the Stack<T>. The function template takes five arguments (lines 12–16):

• the Stack<T> to manipulate

18 cout << "\nPushing elements onto " << stackName << '\n';
19 T pushValue = value;

20
21 // push element onto Stack

22 for (size_t i = 0; i < size; ++i)
23 {
24

25 cout << pushValue << ' ';
26 pushValue += increment;
27 } // end while

28

29 cout << "\n\nPopping elements from " << stackName << '\n';
30

31 // pop elements from Stack

32 while (!theStack.isEmpty()) // loop while Stack is not empty
33 {

34 cout << << ' ';
35

36 } // end while
37

38 cout << "\nStack is empty. Cannot pop." << endl;
39 } // end function template testStack
40
41 int main()
42 {
43 Stack< double > doubleStack;
44 const size_t doubleStackSize = 5;
45
46
47 Stack< int > intStack;
48 const size_t intStackSize = 10;
49

50 } // end main

Pushing elements onto doubleStack
1.1 2.2 3.3 4.4 5.5

Popping elements from doubleStack
5.5 4.4 3.3 2.2 1.1
Stack is empty, cannot pop

Pushing elements onto intStack
1 2 3 4 5 6 7 8 9 10

Popping elements from intStack
10 9 8 7 6 5 4 3 2 1
Stack is empty, cannot pop

Fig. 23.3 | Passing a Stack template object to a function template. (Part 2 of 2.)

theStack.push(pushValue); // push element onto Stack

theStack.top()

theStack.pop(); // remove top element

testStack(doubleStack, 1.1, 1.1, doubleStackSize, "doubleStack");

testStack(intStack, 1, 1, intStackSize, "intStack");

882 Chapter 23 Introduction to Custom Templates

• a value of type T that will be the first value pushed onto the Stack<T>

• a value of type T used to increment the values pushed onto the Stack<T>

• the number of elements to push onto the Stack<T>

• a string that represents the name of the Stack<T> object for output purposes

Function main (lines 41–50) instantiates an object of type Stack<double> called dou-
bleStack (line 43) and an object of type Stack<int> called intStack (line 47) and uses
these objects in lines 45 and 49. The compiler infers the type of T for testStack from the
type used to instantiate the function’s first argument (i.e., the type used to instantiate
doubleStack or intStack).

23.4 Nontype Parameters
Class template Stack of Section 23.2 used only a type parameter (Fig. 23.1, line 7) in its
template declaration. It’s also possible to use nontype template parameters, which can
have default arguments and are treated as constants. For example, the C++ standard’s ar-
ray class template begins with the template declaration:

(Recall that keywords class and typename are interchangeable in template declarations.)
So, a declaration such as

creates a 100-element array of doubles class-template specialization, then uses it to in-
stantiate the object salesFigures. The array class template encapsulates a built-in array.
When you create an array class-template specialization, the array’s built-in array data
member has the type and size specified in the declaration—in the preceding example, it
would be a built-in array of double values with 100 elements.

23.5 Default Arguments for Template Type Parameters
In addition, a type parameter can specify a default type argument. For example, the C++
standard’s stack container adapter class template begins with:

which specifies that a stack uses a deque by default to store the stack’s elements of type
T. The declaration

creates a stack of ints class-template specialization (behind the scenes) and uses it to in-
stantiate the object named values. The stack’s elements are stored in a deque<int>.

Default type parameters must be the rightmost (trailing) parameters in a template’s
type-parameter list. When you instantiate a template with two or more default arguments,
if an omitted argument is not the rightmost, then all type parameters to the right of it also
must be omitted. As of C++11, you can now use default type arguments for template type
parameters in function templates.

template < class T, size_t N >

array< double, 100 > salesFigures;

template < class T, class Container = deque< T > >

stack< int > values;

23.6 Overloading Function Templates 883

23.6 Overloading Function Templates
Function templates and overloading are intimately related. In Chapter 15, you learned
that when overloaded functions perform identical operations on different types of data,
they can be expressed more compactly and conveniently using function templates. You can
then write function calls with different types of arguments and let the compiler generate
separate function-template specializations to handle each function call appropriately. The
function-template specializations generated from a given function template all have the
same name, so the compiler uses overload resolution to invoke the proper function.

You may also overload function templates. For example, you can provide other func-
tion templates that specify the same function name but different function parameters. A
function template also can be overloaded by providing nontemplate functions with the
same function name but different function parameters.

Matching Process for Overloaded Functions
The compiler performs a matching process to determine what function to call when a
function is invoked. It looks at both existing functions and function templates to locate a
function or generate a function-template specialization whose function name and argu-
ment types are consistent with those of the function call. If there are no matches, the com-
piler issues an error message. If there are multiple matches for the function call, the
compiler attempts to determine the best match. If there’s more than one best match, the call
is ambiguous and the compiler issues an error message.1

23.7 Wrap-Up
This chapter discussed class templates and class-template specializations. We used a class
template to create a group of related class-template specializations that each perform iden-
tical processing on different data types. We discussed nontype template parameters. We also
discussed how to overload a function template to create a customized version that handles
a particular data type’s processing in a manner that differs from the other function-template
specializations.

1. The compiler’s process for resolving function calls is complex. The complete details are discussed in
Section 13.3.3 of the C++ standard.

Summary
Section 23.1 Introduction
• Templates enable us to specify a range of related (overloaded) functions—called function-tem-

plate specializations (p. 875)—or a range of related classes—called class-template specializations
(p. 875).

Section 23.2 Class Templates
• Class templates provide the means for describing a class generically and for instantiating classes

that are type-specific versions of this generic class.

884 Chapter 23 Introduction to Custom Templates

• Class templates are called parameterized types (p. 875); they require type parameters to specify
how to customize a generic class template to form a specific class-template specialization.

• To use class-template specializations you write one class template. When you need a new type-
specific class, the compiler writes the source code for the class-template specialization.

• A class-template definition (p. 875) looks like a conventional class definition, but it’s preceded by
template<typename T> (or template<class T>) to indicate this is a class-template definition. T is a
type parameter that acts as a placeholder for the type of the class to create. The type T is mentioned
throughout the class definition and member-function definitions as a generic type name.

• The names of template parameters must be unique inside a template definition.

• Member-function definitions outside a class template each begin with the same template decla-
ration as their class. Then, each function definition resembles a conventional function definition,
except that the generic data in the class always is listed generically as type parameter T. The binary
scope-resolution operator is used with the class-template name to tie each member-function def-
inition to the class template’s scope.

Section 23.4 Nontype Parameters
• It’s possible to use nontype parameters (p. 882) in a class or function template declaration.

Section 23.5 Default Arguments for Template Type Parameters
• You can specify a default type argument (p. 882) for a type parameter in the type-parameter list.

Section 23.6 Overloading Function Templates
• A function template may be overloaded in several ways. We can provide other function templates

that specify the same function name but different function parameters. A function template can
also be overloaded by providing other nontemplate functions with the same function name, but
different function parameters. If both the template and non-template versions match a call, the
non-template version will be used.

Self-Review Exercises
23.1 State which of the following are true and which are false. If false, explain why.

a) Keywords typename and class as used with a template type parameter specifically mean
“any user-defined class type.”

b) A function template can be overloaded by another function template with the same
function name.

c) Template parameter names among template definitions must be unique.
d) Each member-function definition outside its corresponding class template definition

must begin with template and the same template parameters as its class template.

23.2 Fill in the blanks in each of the following:
a) Templates enable us to specify, with a single code segment, an entire range of related

functions called , or an entire range of related classes called .
b) All template definitions begin with the keyword , followed by a list of template

parameters enclosed in .
c) The related functions generated from a function template all have the same name, so

the compiler uses resolution to invoke the proper function.
d) Class templates also are called types.
e) The operator is used with a class-template name to tie each member-function

definition to the class template’s scope.

 Answers to Self-Review Exercises 885

Answers to Self-Review Exercises
23.1 a) False. Keywords typename and class in this context also allow for a type parameter of a
fundamental type. b) True. c) False. Template parameter names among function templates need
not be unique. d) True.

23.2 a) function-template specializations, class-template specializations. b) template, angle
brackets (< and >). c) overload. d) parameterized. e) scope resolution.

Exercises
23.3 (Operator Overloads in Templates) Write a simple function template for predicate function
isEqualTo that compares its two arguments of the same type with the equality operator (==) and
returns true if they are equal and false otherwise. Use this function template in a program that
calls isEqualTo only with a variety of fundamental types. Now write a separate version of the pro-
gram that calls isEqualTo with a user-defined class type, but does not overload the equality operator.
What happens when you attempt to run this program? Now overload the equality operator (with
the operator function) operator==. Now what happens when you attempt to run this program?

23.4 (Array Class Template) Reimplement class Array from Figs. 18.10–18.11 as a class tem-
plate. Demonstrate the new Array class template in a program.

23.5 Distinguish between the terms “function template” and “function-template specialization.”

23.6 Explain which is more like a stencil—a class template or a class-template specialization?

23.7 What’s the relationship between function templates and overloading?

23.8 The compiler performs a matching process to determine which function-template special-
ization to call when a function is invoked. Under what circumstances does an attempt to make a
match result in a compile error?

23.9 Why is it appropriate to refer to a class template as a parameterized type?

23.10 Explain why a C++ program would use the statement

Array< Employee > workerList(100);
23.11 Review your answer to Exercise 23.10. Explain why a C++ program might use the statement

Array< Employee > workerList;

23.12 Explain the use of the following notation in a C++ program:

template< typename T > Array< T >::Array(int s)
23.13 Why might you use a nontype parameter with a class template for a container such as an
array or stack?

A
C and C++ Operator Precedence Charts

Operators are shown in decreasing order of precedence from top to bottom (Figs. A.1–A.2).

C Operator Type Associativity

()
[]
.
->
++
--

parentheses (function call operator)
array subscript
member selection via object
member selection via pointer
unary postincrement
unary postdecrement

left to right

++

--

+

-

!

~

(type)
*
&
sizeof

unary preincrement
unary predecrement
unary plus
unary minus
unary logical negation
unary bitwise complement
C-style unary cast
dereference
address
determine size in bytes

right to left

*
/
%

multiplication
division
modulus

left to right

+
-

addition
subtraction

left to right

<<
>>

bitwise left shift
bitwise right shift

left to right

<
<=
>
>=

relational less than
relational less than or equal to
relational greater than
relational greater than or equal to

left to right

Fig. A.1 | C operator precedence chart. (Part 1 of 2.)

Appendix A C and C++ Operator Precedence Charts 887

==
!=

relational is equal to
relational is not equal to

left to right

& bitwise AND left to right
^ bitwise exclusive OR left to right
| bitwise inclusive OR left to right
&& logical AND left to right
|| logical OR left to right
?: ternary conditional right to left
=
+=
-=
*=
/=
%=
&=
^=
|=
<<=
>>=

assignment
addition assignment
subtraction assignment
multiplication assignment
division assignment
modulus assignment
bitwise AND assignment
bitwise exclusive OR assignment
bitwise inclusive OR assignment
bitwise left shift assignment
bitwise right shift with sign

right to left

, comma left to right

C++ Operator Type Associativity

::
::

binary scope resolution
unary scope resolution

left to right

()
[]
.
->
++
--
typeid

dynamic_cast<type>
static_cast<type>
reinterpret_cast<type>
const_cast<type>

parentheses (function call operator)
array subscript
member selection via object
member selection via pointer
unary postincrement
unary postdecrement
runtime type information
runtime type-checked cast
compile-time type-checked cast
cast for nonstandard conversions
cast away const-ness

left to right

Fig. A.2 | C++ operator precedence chart. (Part 1 of 3.)

C Operator Type Associativity

Fig. A.1 | C operator precedence chart. (Part 2 of 2.)

888 Appendix A C and C++ Operator Precedence Charts

++

--

+

-

!

~

(type)
sizeof
&
*
new
new[]
delete
delete[]

unary preincrement
unary predecrement
unary plus
unary minus
unary logical negation
unary bitwise complement
C-style unary cast
determine size in bytes
address
dereference
dynamic memory allocation
dynamic array allocation
dynamic memory deallocation
dynamic array deallocation

right to left

.*
->*

pointer to member via object
pointer to member via pointer

left to right

*
/
%

multiplication
division
modulus

left to right

+
-

addition
subtraction

left to right

<<
>>

bitwise left shift
bitwise right shift

left to right

<
<=
>
>=

relational less than
relational less than or equal to
relational greater than
relational greater than or equal to

left to right

==
!=

relational is equal to
relational is not equal to

left to right

& bitwise AND left to right
^ bitwise exclusive OR left to right
| bitwise inclusive OR left to right
&& logical AND left to right
|| logical OR left to right
?: ternary conditional right to left

C++ Operator Type Associativity

Fig. A.2 | C++ operator precedence chart. (Part 2 of 3.)

Appendix A C and C++ Operator Precedence Charts 889

=
+=
-=
*=
/=
%=
&=
^=
|=
<<=
>>=

assignment
addition assignment
subtraction assignment
multiplication assignment
division assignment
modulus assignment
bitwise AND assignment
bitwise exclusive OR assignment
bitwise inclusive OR assignment
bitwise left shift assignment
bitwise right shift with sign

right to left

, comma left to right

C++ Operator Type Associativity

Fig. A.2 | C++ operator precedence chart. (Part 3 of 3.)

B
ASCII Character Set

The digits at the left of the table are the left digits of the decimal equivalent (0–127) of the
character code, and the digits at the top of the table are the right digits of the character
code. For example, the character code for “F” is 70, and the character code for “&” is 38.

ASCII character set

0 1 2 3 4 5 6 7 8 9

0 nul soh stx etx eot enq ack bel bs ht

1 lf vt ff cr so si dle dc1 dc2 dc3

2 dc4 nak syn etb can em sub esc fs gs

3 rs us sp ! " # $ % & ‘

4 () * + , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 < = > ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [\] ^ _ ’ a b c

10 d e f g h i j k l m

11 n o p q r s t u v w

12 x y z { | } ~ del

Fig. B.1 | ASCII Character Set.

CNumber Systems

O b j e c t i v e s
In this appendix, you’ll learn:

■ To understand basic number
systems concepts such as
base, positional value and
symbol value.

■ To understand how to work
with numbers represented in
the binary, octal and
hexadecimal number systems

■ To be able to abbreviate
binary numbers as octal
numbers or hexadecimal
numbers.

■ To be able to convert octal
numbers and hexadecimal
numbers to binary numbers.

■ To be able to convert back
and forth between decimal
numbers and their binary,
octal and hexadecimal
equivalents.

■ To understand binary
arithmetic and how negative
binary numbers are
represented using two’s
complement notation.

892 Appendix C Number Systems

C.1 Introduction
In this appendix, we introduce the key number systems that programmers use, especially
when they are working on software projects that require close interaction with machine-
level hardware. Projects like this include operating systems, computer networking soft-
ware, compilers, database systems and applications requiring high performance.

When we write an integer such as 227 or –63 in a program, the number is assumed
to be in the decimal (base 10) number system. The digits in the decimal number system
are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. The lowest digit is 0 and the highest digit is 9—one less
than the base of 10. Internally, computers use the binary (base 2) number system. The
binary number system has only two digits, namely 0 and 1. Its lowest digit is 0 and its
highest digit is 1—one less than the base of 2.

As we’ll see, binary numbers tend to be much longer than their decimal equivalents.
Programmers who work in assembly languages and in high-level languages like C that
enable programmers to reach down to the machine level, find it cumbersome to work with
binary numbers. So two other number systems—the octal number system (base 8) and
the hexadecimal number system (base 16)—are popular primarily because they make it
convenient to abbreviate binary numbers.

In the octal number system, the digits range from 0 to 7. Because both the binary
number system and the octal number system have fewer digits than the decimal number
system, their digits are the same as the corresponding digits in decimal.

The hexadecimal number system poses a problem because it requires 16 digits—a
lowest digit of 0 and a highest digit with a value equivalent to decimal 15 (one less than
the base of 16). By convention, we use the letters A through F to represent the hexadecimal
digits corresponding to decimal values 10 through 15. Thus in hexadecimal we can have
numbers like 876 consisting solely of decimal-like digits, numbers like 8A55F consisting
of digits and letters and numbers like FFE consisting solely of letters. Occasionally, a hexa-
decimal number spells a common word such as FACE or FEED—this can appear strange
to programmers accustomed to working with numbers. The digits of the binary, octal,
decimal and hexadecimal number systems are summarized in Figs. C.1–C.2.

Each of these number systems uses positional notation—each position in which a
digit is written has a different positional value. For example, in the decimal number 937
(the 9, the 3 and the 7 are referred to as symbol values), we say that the 7 is written in the
ones position, the 3 is written in the tens position and the 9 is written in the hundreds
position. Each of these positions is a power of the base (base 10) and these powers begin
at 0 and increase by 1 as we move left in the number (Fig. C.3).

C.1 Introduction
C.2 Abbreviating Binary Numbers as

Octal and Hexadecimal Numbers
C.3 Converting Octal and Hexadecimal

Numbers to Binary Numbers
C.4 Converting from Binary, Octal or

Hexadecimal to Decimal

C.5 Converting from Decimal to Binary,
Octal or Hexadecimal

C.6 Negative Binary Numbers: Two’s
Complement Notation

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

C.1 Introduction 893

For longer decimal numbers, the next positions to the left would be the thousands
position (10 to the 3rd power), the ten-thousands position (10 to the 4th power), the hun-
dred-thousands position (10 to the 5th power), the millions position (10 to the 6th
power), the ten-millions position (10 to the 7th power) and so on.

In the binary number 101, the rightmost 1 is written in the ones position, the 0 is
written in the twos position and the leftmost 1 is written in the fours position. Each posi-

Binary digit Octal digit Decimal digit Hexadecimal digit

0 0 0 0

1 1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8

9 9

A (decimal value of 10)
B (decimal value of 11)
C (decimal value of 12)
D (decimal value of 13)
E (decimal value of 14)
F (decimal value of 15)

Fig. C.1 | Digits of the binary, octal, decimal and hexadecimal number systems.

Attribute Binary Octal Decimal Hexadecimal

Base 2 8 10 16

Lowest digit 0 0 0 0

Highest digit 1 7 9 F

Fig. C.2 | Comparing the binary, octal, decimal and hexadecimal number systems.

Positional values in the decimal number system

Decimal digit 9 3 7

Position name Hundreds Tens Ones

Positional value 100 10 1

Positional value as a
power of the base (10)

102 101 100

Fig. C.3 | Positional values in the decimal number system.

894 Appendix C Number Systems

tion is a power of the base (base 2) and these powers begin at 0 and increase by 1 as we
move left in the number (Fig. C.4). So, 101 = 1 * 22 + 0 * 21 + 1 * 20 = 4 + 0 + 1 = 5.

For longer binary numbers, the next positions to the left would be the eights position
(2 to the 3rd power), the sixteens position (2 to the 4th power), the thirty-twos position
(2 to the 5th power), the sixty-fours position (2 to the 6th power) and so on.

In the octal number 425, we say that the 5 is written in the ones position, the 2 is
written in the eights position and the 4 is written in the sixty-fours position. Each of these
positions is a power of the base (base 8) and that these powers begin at 0 and increase by
1 as we move left in the number (Fig. C.5).

For longer octal numbers, the next positions to the left would be the five-hundred-
and-twelves position (8 to the 3rd power), the four-thousand-and-ninety-sixes position (8
to the 4th power), the thirty-two-thousand-seven-hundred-and-sixty-eights position (8 to
the 5th power) and so on.

In the hexadecimal number 3DA, we say that the A is written in the ones position,
the D is written in the sixteens position and the 3 is written in the two-hundred-and-fifty-
sixes position. Each of these positions is a power of the base (base 16) and these powers
begin at 0 and increase by 1 as we move left in the number (Fig. C.6).

For longer hexadecimal numbers, the next positions to the left would be the four-
thousand-and-ninety-sixes position (16 to the 3rd power), the sixty-five-thousand-five-
hundred-and-thirty-sixes position (16 to the 4th power) and so on.

Positional values in the binary number system

Binary digit 1 0 1

Position name Fours Twos Ones

Positional value 4 2 1

Positional value as a
power of the base (2)

22 21 20

Fig. C.4 | Positional values in the binary number system.

Positional values in the octal number system

Decimal digit 4 2 5

Position name Sixty-fours Eights Ones

Positional value 64 8 1

Positional value as a
power of the base (8)

82 81 80

Fig. C.5 | Positional values in the octal number system.

C.2 Abbreviating Binary Numbers as Octal and Hexadecimal Numbers 895

C.2 Abbreviating Binary Numbers as Octal and
Hexadecimal Numbers
The main use for octal and hexadecimal numbers in computing is for abbreviating lengthy
binary representations. Figure C.7 highlights the fact that lengthy binary numbers can be
expressed concisely in number systems with higher bases than the binary number system.

A particularly important relationship that both the octal number system and the hexa-
decimal number system have to the binary system is that the bases of octal and hexadec-
imal (8 and 16 respectively) are powers of the base of the binary number system (base 2).
Consider the following 12-digit binary number and its octal and hexadecimal equivalents.

Positional values in the hexadecimal number system

Decimal digit 3 D A

Position name Two-hundred-
and-fifty-sixes

Sixteens Ones

Positional value 256 16 1

Positional value as a
power of the base
(16)

162 161 160

Fig. C.6 | Positional values in the hexadecimal number system.

Decimal
number

Binary
representation

Octal
representation

Hexadecimal
representation

 0 0 0 0

 1 1 1 1

 2 10 2 2

 3 11 3 3

 4 100 4 4

 5 101 5 5

 6 110 6 6

 7 111 7 7

 8 1000 10 8

 9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

16 10000 20 10

Fig. C.7 | Decimal, binary, octal and hexadecimal equivalents.

896 Appendix C Number Systems

See if you can determine how this relationship makes it convenient to abbreviate binary
numbers in octal or hexadecimal. The answer follows the numbers.

To see how the binary number converts easily to octal, simply break the 12-digit
binary number into groups of three consecutive bits each and write those groups over the
corresponding digits of the octal number as follows:

The octal digit you have written under each group of three bits corresponds precisely
to the octal equivalent of that 3-digit binary number, as shown in Fig. C.7.

The same kind of relationship can be observed in converting from binary to hexadec-
imal. Break the 12-digit binary number into groups of four consecutive bits each and write
those groups over the corresponding digits of the hexadecimal number as follows:

The hexadecimal digit you wrote under each group of four bits corresponds precisely
to the hexadecimal equivalent of that 4-digit binary number as shown in Fig. C.7.

C.3 Converting Octal and Hexadecimal Numbers to
Binary Numbers
In the previous section, we saw how to convert binary numbers to their octal and hexadec-
imal equivalents by forming groups of binary digits and simply rewriting them as their
equivalent octal digit values or hexadecimal digit values. This process may be used in re-
verse to produce the binary equivalent of a given octal or hexadecimal number.

For example, the octal number 653 is converted to binary simply by writing the 6 as
its 3-digit binary equivalent 110, the 5 as its 3-digit binary equivalent 101 and the 3 as its
3-digit binary equivalent 011 to form the 9-digit binary number 110101011.

The hexadecimal number FAD5 is converted to binary simply by writing the F as its
4-digit binary equivalent 1111, the A as its 4-digit binary equivalent 1010, the D as its 4-
digit binary equivalent 1101 and the 5 as its 4-digit binary equivalent 0101 to form the
16-digit 1111101011010101.

C.4 Converting from Binary, Octal or Hexadecimal to
Decimal
We’re accustomed to working in decimal, and therefore it’s often convenient to convert a
binary, octal, or hexadecimal number to decimal to get a sense of what the number is “re-
ally” worth. Our tables in Section C.1 express the positional values in decimal. To convert
a number to decimal from another base, multiply the decimal equivalent of each digit by
its positional value and sum these products. For example, the binary number 110101 is
converted to decimal 53, as shown in Fig. C.8.

Binary number Octal equivalent Hexadecimal equivalent
100011010001 4321 8D1

100 011 010 001
4 3 2 1

1000 1101 0001

8 D 1

C.5 Converting from Decimal to Binary, Octal or Hexadecimal 897

To convert octal 7614 to decimal 3980, we use the same technique, this time using
appropriate octal positional values, as shown in Fig. C.9.

To convert hexadecimal AD3B to decimal 44347, we use the same technique, this
time using appropriate hexadecimal positional values, as shown in Fig. C.10.

C.5 Converting from Decimal to Binary, Octal or
Hexadecimal
The conversions in Section C.4 follow naturally from the positional notation conventions.
Converting from decimal to binary, octal, or hexadecimal also follows these conventions.

Suppose we wish to convert decimal 57 to binary. We begin by writing the positional
values of the columns right to left until we reach a column whose positional value is greater
than the decimal number. We do not need that column, so we discard it. Thus, we first
write:

Converting a binary number to decimal

Postional values: 32 16 8 4 2 1

Symbol values: 1 1 0 1 0 1

Products: 1*32=32 1*16=16 0*8=0 1*4=4 0*2=0 1*1=1

Sum: = 32 + 16 + 0 + 4 + 0 + 1 = 53

Fig. C.8 | Converting a binary number to decimal.

Converting an octal number to decimal

Positional values: 512 64 8 1

Symbol values: 7 6 1 4

Products 7*512=3584 6*64=384 1*8=8 4*1=4

Sum: = 3584 + 384 + 8 + 4 = 3980

Fig. C.9 | Converting an octal number to decimal.

Converting a hexadecimal number to decimal

Postional values: 4096 256 16 1

Symbol values: A D 3 B

Products A*4096=40960 D*256=3328 3*16=48 B*1=11

Sum: = 40960 + 3328 + 48 + 11 = 44347

Fig. C.10 | Converting a hexadecimal number to decimal.

Positional values: 64 32 16 8 4 2 1

898 Appendix C Number Systems

Then we discard the column with positional value 64, leaving:

Next we work from the leftmost column to the right. We divide 32 into 57 and
observe that there is one 32 in 57 with a remainder of 25, so we write 1 in the 32 column.
We divide 16 into 25 and observe that there is one 16 in 25 with a remainder of 9 and
write 1 in the 16 column. We divide 8 into 9 and observe that there is one 8 in 9 with a
remainder of 1. The next two columns each produce quotients of 0 when their positional
values are divided into 1, so we write 0s in the 4 and 2 columns. Finally, 1 into 1 is 1, so
we write 1 in the 1 column. This yields:

and thus decimal 57 is equivalent to binary 111001.
To convert decimal 103 to octal, we begin by writing the positional values of the col-

umns until we reach a column whose positional value is greater than the decimal number.
We do not need that column, so we discard it. Thus, we first write:

Then we discard the column with positional value 512, yielding:

Next we work from the leftmost column to the right. We divide 64 into 103 and
observe that there is one 64 in 103 with a remainder of 39, so we write 1 in the 64 column.
We divide 8 into 39 and observe that there are four 8s in 39 with a remainder of 7 and
write 4 in the 8 column. Finally, we divide 1 into 7 and observe that there are seven 1s in
7 with no remainder, so we write 7 in the 1 column. This yields:

and thus decimal 103 is equivalent to octal 147.
To convert decimal 375 to hexadecimal, we begin by writing the positional values of

the columns until we reach a column whose positional value is greater than the decimal
number. We do not need that column, so we discard it. Thus, we first write:

Then we discard the column with positional value 4096, yielding:

Next we work from the leftmost column to the right. We divide 256 into 375 and
observe that there is one 256 in 375 with a remainder of 119, so we write 1 in the 256
column. We divide 16 into 119 and observe that there are seven 16s in 119 with a
remainder of 7 and write 7 in the 16 column. Finally, we divide 1 into 7 and observe that
there are seven 1s in 7 with no remainder, so we write 7 in the 1 column. This yields:

and thus decimal 375 is equivalent to hexadecimal 177.

Positional values: 32 16 8 4 2 1

Positional values: 32 16 8 4 2 1

Symbol values: 1 1 1 0 0 1

Positional values: 512 64 8 1

Positional values: 64 8 1

Positional values: 64 8 1

Symbol values: 1 4 7

Positional values: 4096 256 16 1

Positional values: 256 16 1

Positional values: 256 16 1

Symbol values: 1 7 7

C.6 Negative Binary Numbers: Two’s Complement Notation 899

C.6 Negative Binary Numbers: Two’s Complement
Notation
The discussion so far in this appendix has focused on positive numbers. In this section, we
explain how computers represent negative numbers using two’s complement notation.
First we explain how the two’s complement of a binary number is formed, then we show
why it represents the negative value of the given binary number.

Consider a machine with 32-bit integers. Suppose

The 32-bit representation of value is

To form the negative of value we first form its one’s complement by applying C’s bitwise
complement operator (~):

Internally, ~value is now value with each of its bits reversed—ones become zeros and ze-
ros become ones, as follows:

To form the two’s complement of value, we simply add 1 to value’s one’s complement.
Thus

Now if this is in fact equal to –13, we should be able to add it to binary 13 and obtain a
result of 0. Let’s try this:

The carry bit coming out of the leftmost column is discarded and we indeed get 0 as a re-
sult. If we add the one’s complement of a number to the number, the result would be all
1s. The key to getting a result of all zeros is that the twos complement is one more than
the one’s complement. The addition of 1 causes each column to add to 0 with a carry of
1. The carry keeps moving leftward until it’s discarded from the leftmost bit, and thus the
resulting number is all zeros.

Computers actually perform a subtraction, such as

by adding the two’s complement of value to a, as follows:

int value = 13;

00000000 00000000 00000000 00001101

onesComplementOfValue = ~value;

value:
00000000 00000000 00000000 00001101

~value (i.e., value’s ones complement):
11111111 11111111 11111111 11110010

Two’s complement of value:
11111111 11111111 11111111 11110011

 00000000 00000000 00000000 00001101

+11111111 11111111 11111111 11110011

 00000000 00000000 00000000 00000000

x = a - value;

x = a + (~value + 1);

900 Appendix C Number Systems

Suppose a is 27 and value is 13 as before. If the two’s complement of value is actually the
negative of value, then adding the two’s complement of value to a should produce the
result 14. Let’s try this:

which is indeed equal to 14.

a (i.e., 27) 00000000 00000000 00000000 00011011

+(~value + 1) +11111111 11111111 11111111 11110011

 00000000 00000000 00000000 00001110

Summary
• An integer such as 19 or 227 or –63 in a program is assumed to be in the decimal (base 10; 892)

number system. The digits in the decimal number system are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. The
lowest digit is 0 and the highest digit is 9—one less than the base of 10.

• Internally, computers use the binary (base 2; 892) number system. The binary number system
has only two digits, namely 0 and 1. Its lowest digit is 0 and its highest digit is 1—one less than
the base of 2.

• The octal number system (base 8; 892) and the hexadecimal number system (base 16; 892) are
popular primarily because they make it convenient to abbreviate binary numbers.

• The digits of the octal number system range from 0 to 7.

• The hexadecimal number system (892) poses a problem because it requires 16 digits—a lowest
digit of 0 and a highest digit with a value equivalent to decimal 15 (one less than the base of 16).
By convention, we use the letters A through F to represent the hexadecimal digits corresponding
to decimal values 10 through 15.

• Each number system uses positional notation (892)—each position in which a digit is written
has a different positional value (892).

• A particularly important relationship of both the octal number system and the hexadecimal num-
ber system to the binary system is that the bases of octal and hexadecimal (8 and 16 respectively)
are powers of the base of the binary number system (base 2).

• To convert (897) an octal to a binary number, replace each octal digit with its three-digit binary
equivalent.

• To convert a hexadecimal number to a binary number, simply replace each hexadecimal digit
with its four-digit binary equivalent.

• Because we’re accustomed to working in decimal, it’s convenient to convert a binary, octal or
hexadecimal number to decimal to get a sense of the number’s “real” worth.

• To convert a number to decimal from another base, multiply the decimal equivalent of each digit
by its positional value and sum the products.

• Computers represent negative numbers using two’s complement notation.

• To form the negative of a value in binary, first form its one’s complement by applying C’s bitwise
complement operator (~; 899). This reverses the bits of the value. To form the two’s comple-
ment (899) of a value, simply add one to the value’s one’s complement.

 Self-Review Exercises 901

Self-Review Exercises
C.1 Fill in the blanks in each of the following statements:

a) The bases of the decimal, binary, octal and hexadecimal number systems are ,
, and respectively.

b) The positional value of the rightmost digit of any number in either binary, octal, deci-
mal or hexadecimal is always .

c) The positional value of the digit to the left of the rightmost digit of any number in bi-
nary, octal, decimal or hexadecimal is always equal to .

C.2 State whether each of the following is true or false. If false, explain why.
a) A popular reason for using the decimal number system is that it forms a convenient no-

tation for abbreviating binary numbers simply by substituting one decimal digit per
group of four binary bits.

b) The highest digit in any base is one more than the base.
c) The lowest digit in any base is one less than the base.

C.3 In general, the decimal, octal and hexadecimal representations of a given binary number
contain (more/fewer) digits than the binary number contains.

C.4 The (octal / hexadecimal / decimal) representation of a large binary value is the most concise
(of the given alternatives).

C.5 Fill in the missing values in this chart of positional values for the rightmost four positions
in each of the indicated number systems:

decimal 1000 100 10 1

hexadecimal ... 256

binary

octal 512 ... 8 ...

C.6 Convert binary 110101011000 to octal and to hexadecimal.

C.7 Convert hexadecimal FACE to binary.

C.8 Convert octal 7316 to binary.

C.9 Convert hexadecimal 4FEC to octal. [Hint: First convert 4FEC to binary, then convert that
binary number to octal.]

C.10 Convert binary 1101110 to decimal.

C.11 Convert octal 317 to decimal.

C.12 Convert hexadecimal EFD4 to decimal.

C.13 Convert decimal 177 to binary, to octal and to hexadecimal.

C.14 Show the binary representation of decimal 417. Then show the one’s complement of 417
and the two’s complement of 417.

C.15 What is the result when a number and its two’s complement are added to each other?

Answers to Self-Review Exercises
C.1 a) 10, 2, 8, 16. b) 1 (the base raised to the zero power). c) The base of the number system.

C.2 a) False. Hexadecimal does this. b) False. The highest digit in any base is one less than the
base. c) False. The lowest digit in any base is zero.

C.3 Fewer.

902 Appendix C Number Systems

C.4 Hexadecimal.

C.5 decimal 1000 100 10 1

hexadecimal 4096 256 16 1

binary 8 4 2 1

octal 512 64 8 1

C.6 Octal 6530; Hexadecimal D58.

C.7 Binary 1111 1010 1100 1110.

C.8 Binary 111 011 001 110.

C.9 Binary 0 100 111 111 101 100; Octal 47754.

C.10 Decimal 2 + 4 + 8 + 32 + 64 = 110.

C.11 Decimal 7 + 1 * 8 + 3 * 64 = 7 + 8 + 192 = 207.

C.12 Decimal 4 + 13 * 16 + 15 * 256 + 14 * 4096 = 61396.

C.13 Decimal 177
to binary:

 256 128 64 32 16 8 4 2 1

 128 64 32 16 8 4 2 1

 (1*128)+(0*64)+(1*32)+(1*16)+(0*8)+(0*4)+(0*2)+(1*1)

 10110001

to octal:

 512 64 8 1

 64 8 1

 (2*64)+(6*8)+(1*1)

 261

to hexadecimal:

 256 16 1

 16 1

 (11*16)+(1*1)

 (B*16)+(1*1)

 B1

C.14 Binary:

512 256 128 64 32 16 8 4 2 1

256 128 64 32 16 8 4 2 1

(1*256)+(1*128)+(0*64)+(1*32)+(0*16)+(0*8)+(0*4)+(0*2)+(1*1)

110100001

One’s complement: 001011110
Two’s complement: 001011111
Check: Original binary number + its two’s complement

110100001

001011111

000000000

C.15 Zero.

 Exercises 903

Exercises
C.16 Some people argue that many of our calculations would be easier in the base 12 number
system because 12 is divisible by so many more numbers than 10 (for base 10). What is the lowest
digit in base 12? What would be the highest symbol for the digit in base 12? What are the positional
values of the rightmost four positions of any number in the base 12 number system?

C.17 Complete the following chart of positional values for the rightmost four positions in each
of the indicated number systems:

decimal 1000 100 10 1

base 6 6 ...

base 13 ... 169

base 3 27

C.18 Convert binary 100101111010 to octal and to hexadecimal.

C.19 Convert hexadecimal 3A7D to binary.

C.20 Convert hexadecimal 765F to octal. (Hint: First convert 765F to binary, then convert that
binary number to octal.)

C.21 Convert binary 1011110 to decimal.

C.22 Convert octal 426 to decimal.

C.23 Convert hexadecimal FFFF to decimal.

C.24 Convert decimal 299 to binary, to octal and to hexadecimal.

C.25 Show the binary representation of decimal 779. Then show the one’s complement of 779
and the two’s complement of 779.

C.26 Show the two’s complement of integer value –1 on a machine with 32-bit integers.

D Sorting: A Deeper Look

O b j e c t i v e s
In this appendix, you’ll:

■ Sort an array using the
selection sort algorithm.

■ Sort an array using the
insertion sort algorithm.

■ Sort an array using the
recursive merge sort
algorithm.

■ Learn about the efficiency of
searching and sorting
algorithms and express it in
“Big O” notation.

■ Explore (in the exercises)
additional recursive sorts,
including quicksort and a
recursive selection sort.

■ Explore (in the exercises) the
high performance bucket
sort.

D.1 Introduction 905

D.1 Introduction
As you learned in Chapter 6, sorting places data in order, typically ascending or descend-
ing, based on one or more sort keys. This appendix introduces the selection sort and in-
sertion sort algorithms, along with the more efficient, but more complex, merge sort. We
introduce Big O notation, which is used to estimate the worst-case run time for an algo-
rithm—that is, how hard an algorithm may have to work to solve a problem.

An important point to understand about sorting is that the end result—the sorted
array of data—will be the same no matter which sorting algorithm you use. The choice of
algorithm affects only the run time and memory use of the program. The first two sorting
algorithms we study here—selection sort and insertion sort—are easy to program, but
inefficient. The third algorithm—recursive merge sort—is more efficient, but harder to
program.

The exercises present two more recursive sorts—quicksort and a recursive version of
selection sort. Another exercise presents the bucket sort, which achieves high performance
by clever use of considerably more memory than the other sorts we discuss.

D.2 Big O Notation
Suppose an algorithm is designed to test whether the first element of an array is equal to
the second element. If the array has 10 elements, this algorithm requires one comparison.
If the array has 1,000 elements, the algorithm still requires one comparison. In fact, the
algorithm is completely independent of the number of elements in the array. This algo-
rithm is said to have a constant run time, which is represented in Big O notation as O(1)
and pronounced “order 1.” An algorithm that is O(1) does not necessarily require only one
comparison. O(1) just means that the number of comparisons is constant—it does not
grow as the size of the array increases. An algorithm that tests whether the first element of
an array is equal to any of the next three elements is still O(1) even though it requires three
comparisons.

An algorithm that tests whether the first element of an array is equal to any of the
other elements of the array will require at most n – 1 comparisons, where n is the number
of elements in the array. If the array has 10 elements, this algorithm requires up to nine
comparisons. If the array has 1,000 elements, this algorithm requires up to 999 compari-
sons. As n grows larger, the n part of the expression “dominates,” and subtracting 1
becomes inconsequential. Big O is designed to highlight these dominant terms and ignore
terms that become unimportant as n grows. For this reason, an algorithm that requires a
total of n – 1 comparisons (such as the one we described earlier) is said to be O(n). An O(n)
algorithm is referred to as having a linear run time. O(n) is often pronounced “on the
order of n” or more simply “order n.”

D.1 Introduction
D.2 Big O Notation
D.3 Selection Sort

D.4 Insertion Sort
D.5 Merge Sort

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

906 Appendix D Sorting: A Deeper Look

Suppose you have an algorithm that tests whether any element of an array is dupli-
cated elsewhere in the array. The first element must be compared with every other element
in the array. The second element must be compared with every other element except the
first—it was already compared to the first. The third element must be compared with
every other element except the first two. In the end, this algorithm will end up making
(n – 1) + (n – 2) + … + 2 + 1 or n2/2 – n/2 comparisons. As n increases, the n2 term dom-
inates, and the n term becomes inconsequential. Again, Big O notation highlights the n2

term, leaving n2/2. But as we’ll soon see, constant factors are omitted in Big O notation.
Big O is concerned with how an algorithm’s run time grows in relation to the number

of items processed. Suppose an algorithm requires n2 comparisons. With four elements, the
algorithm will require 16 comparisons; with eight elements, the algorithm will require 64
comparisons. With this algorithm, doubling the number of elements quadruples the number
of comparisons. Consider a similar algorithm requiring n2/2 comparisons. With four ele-
ments, the algorithm will require eight comparisons; with eight elements, the algorithm will
require 32 comparisons. Again, doubling the number of elements quadruples the number of
comparisons. Both of these algorithms grow as the square of n, so Big O ignores the constant
and both algorithms are considered to be O(n2), which is referred to as quadratic run time
and pronounced “on the order of n-squared” or more simply “order n-squared.”

When n is small, O(n2) algorithms (running on today’s billion-operation-per-second
personal computers) will not noticeably affect performance. But as n grows, you’ll start to
notice the performance degradation. An O(n2) algorithm running on a million-element
array would require a trillion “operations” (where each could actually require several
machine instructions to execute). This could require a few hours to execute. A billion-ele-
ment array would require a quintillion operations, a number so large that the algorithm
could take decades! O(n2) algorithms, unfortunately, are easy to write, as you’ll see in this
appendix. You’ll also see an algorithm with a more favorable Big O measure. Efficient
algorithms often take a bit more cleverness and work to create, but their superior perfor-
mance can be well worth the extra effort, especially as n gets large and as algorithms are
combined into larger programs.

D.3 Selection Sort
Selection sort is a simple, but inefficient, sorting algorithm. The first iteration of the al-
gorithm selects the smallest element in the array and swaps it with the first element. The
second iteration selects the second-smallest element (which is the smallest of those remain-
ing) and swaps it with the second element. The algorithm continues until the last iteration
selects the second-largest element and swaps it with the second-to-last, leaving the largest
element as the last. After the ith iteration, the smallest i positions of the array will be sorted
into increasing order in the first i positions of the array.

As an example, consider the array

A program that implements selection sort first determines the smallest element (4) of this
array which is contained in the third element of the array (i.e., element 2 because array
subscripts start at 0). The program swaps 4 with 34, resulting in

34 56 4 10 77 51 93 30 5 52

4 56 34 10 77 51 93 30 5 52

D.3 Selection Sort 907

The program then determines the smallest of the remaining elements (all elements except
4), which is 5, contained at array subscript 8. The program swaps 5 with 56, resulting in

On the third iteration, the program determines the next smallest value (10) and swaps it
with 34.

The process continues until after nine iterations the array is fully sorted.

After the first iteration, the smallest element is in the first position. After the second iter-
ation, the two smallest elements are in order in the first two positions. After the third it-
eration, the three smallest elements are in order in the first three positions.

Figure D.1 implements the selection sort algorithm on the array array, which is ini-
tialized with 10 random ints (possibly duplicates). The main function prints the unsorted
array, calls the function sort on the array, and then prints the array again after it has been
sorted.

4 5 34 10 77 51 93 30 56 52

4 5 10 34 77 51 93 30 56 52

4 5 10 30 34 51 52 56 77 93

1 // Fig. D.1: figD_01.c

2 // The selection sort algorithm.
3 #define SIZE 10
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <time.h>
7
8 // function prototypes
9 void selectionSort(int array[], size_t length);

10 void swap(int array[], size_t first, size_t second);
11 void printPass(int array[], size_t length, unsigned int pass, size_t index);
12
13 int main(void)
14 {
15 int array[SIZE]; // declare the array of ints to be sorted
16

17 srand(time(NULL)); // seed the rand function
18

19 for (size_t i = 0; i < SIZE; i++) {
20 array[i] = rand() % 90 + 10; // give each element a value
21 }

22

23 puts("Unsorted array:");
24

25 for (size_t i = 0; i < SIZE; i++) { // print the array
26 printf("%d ", array[i]);
27 }

28

29 puts("\n");
30 selectionSort(array, SIZE);
31 puts("Sorted array:");

Fig. D.1 | The selection sort algorithm. (Part 1 of 3.)

908 Appendix D Sorting: A Deeper Look

32

33 for (size_t i = 0; i < SIZE; i++) { // print the array
34 printf("%d ", array[i]);
35 }

36 }

37
38 // function that selection sorts the array

39 void selectionSort(int array[], size_t length)
40 {
41 // loop over length - 1 elements

42 for (size_t i = 0; i < length - 1; i++) {
43 size_t smallest = i; // first index of remaining array
44

45 // loop to find index of smallest element

46 for (size_t j = i + 1; j < length; j++) {
47 if (array[j] < array[smallest]) {
48 smallest = j;

49 }

50 }
51

52 swap(array, i, smallest); // swap smallest element

53 printPass(array, length, i + 1, smallest); // output pass
54 }

55 }

56
57 // function that swaps two elements in the array

58 void swap(int array[], size_t first, size_t second)
59 {
60 int temp = array[first];
61 array[first] = array[second];

62 array[second] = temp;
63 }

64
65 // function that prints a pass of the algorithm
66 void printPass(int array[], size_t length, unsigned int pass, size_t index)
67 {

68 printf("After pass %2d: ", pass);
69

70 // output elements till selected item

71 for (size_t i = 0; i < index; i++) {
72 printf("%d ", array[i]);
73 }

74
75 printf("%d* ", array[index]); // indicate swap
76

77 // finish outputting array
78 for (size_t i = index + 1; i < length; i++) {
79 printf("%d ", array[i]);
80 }
81

82 printf("%s", "\n "); // for alignment
83

Fig. D.1 | The selection sort algorithm. (Part 2 of 3.)

D.3 Selection Sort 909

Lines 39–55 define the selectionSort function. Line 43 declares the variable
smallest, which stores the index of the smallest element in the remaining array. Lines 42–
54 loop length - 1 times. Line 43 assigns to smallest the index i—representing the first
index of the unsorted portion of the array. Lines 46–50 loop over the remaining elements
in the array. For each of these elements, line 47 compares the current element’s value to
the value of the element at index smallest. If the current element is smaller, line 48
assigns the current element’s index to smallest. When this loop finishes, smallest con-
tains the index of the smallest element in the remaining array. Line 52 calls function swap
(lines 58–63) to place the smallest remaining element in the next spot in the array.

The output of this program uses dashes to indicate the portion of the array that is
guaranteed to be sorted after each pass. An asterisk is placed next to the position of the
element that was swapped with the smallest element on that pass. On each pass, the ele-
ment to the left of the asterisk and the element above the rightmost set of dashes were the
two values that were swapped.

Efficiency of Selection Sort
The selection sort algorithm runs in O(n2) time. The selectionSort method in Fig. D.1—
which implements the algorithm—contains two for loops. The outer for loop (lines 42–

84 // indicate amount of array that is sorted
85 for (unsigned int i = 0; i < pass; i++) {
86 printf("%s", "-- ");
87 }
88

89 puts(""); // add newline
90 }

Unsorted array:
72 34 88 14 32 12 34 77 56 83

After pass 1: 12 34 88 14 32 72* 34 77 56 83
 --
After pass 2: 12 14 88 34* 32 72 34 77 56 83
 -- --
After pass 3: 12 14 32 34 88* 72 34 77 56 83
 -- -- --
After pass 4: 12 14 32 34* 88 72 34 77 56 83
 -- -- -- --
After pass 5: 12 14 32 34 34 72 88* 77 56 83
 -- -- -- -- --
After pass 6: 12 14 32 34 34 56 88 77 72* 83
 -- -- -- -- -- --
After pass 7: 12 14 32 34 34 56 72 77 88* 83
 -- -- -- -- -- -- --
After pass 8: 12 14 32 34 34 56 72 77* 88 83
 -- -- -- -- -- -- -- --
After pass 9: 12 14 32 34 34 56 72 77 83 88*
 -- -- -- -- -- -- -- -- --
After pass 10: 12 14 32 34 34 56 72 77 83 88*
 -- -- -- -- -- -- -- -- -- --
Sorted array:
12 14 32 34 34 56 72 77 83 88

Fig. D.1 | The selection sort algorithm. (Part 3 of 3.)

910 Appendix D Sorting: A Deeper Look

54) iterates over the first n – 1 elements in the array, swapping the smallest remaining item
into its sorted position. The inner for loop (lines 46–50) iterates over each item in the re-
maining array, searching for the smallest element. This loop executes n – 1 times during the
first iteration of the outer loop, n – 2 times during the second iteration, then n – 3, … , 3,
2, 1. This inner loop iterates a total of n(n – 1) / 2 or (n2 – n)/2. In Big O notation, smaller
terms drop out and constants are ignored, leaving a Big O of O(n2).

D.4 Insertion Sort
Insertion sort is another simple, but inefficient, sorting algorithm. The first iteration of this
algorithm takes the second element in the array and, if it’s less than the first element, swaps
it with the first element. The second iteration looks at the third element and inserts it into
the correct position with respect to the first two elements, so all three elements are in order.
At the ith iteration of this algorithm, the first i elements in the original array will be sorted.

Consider as an example the following array [Note: This array is identical to the one
used in the discussions of selection sort and merge sort.]

A program that implements the insertion sort algorithm will first look at the first two ele-
ments of the array, 34 and 56. These two elements are already in order, so the program
continues (if they were out of order, the program would swap them).

In the next iteration, the program looks at the third value, 4. This value is less than
56, so the program stores 4 in a temporary variable and moves 56 one element to the right.
The program then checks and determines that 4 is less than 34, so it moves 34 one element
to the right. The program has now reached the beginning of the array, so it places 4 in
element 0. The array now is

In the next iteration, the program stores the value 10 in a temporary variable. Then the
program compares 10 to 56 and moves 56 one element to the right because it’s larger than
10. The program then compares 10 to 34, moving 34 right one element. When the pro-
gram compares 10 to 4, it observes that 10 is larger than 4 and places 10 in element 1. The
array now is

Using this algorithm, after the ith iteration, the first i + 1 elements of the original array are
sorted with respect to one another. They may not be in their final locations, however, be-
cause smaller values may be located later in the array.

 Figure D.2 implements the insertion sort algorithm. Lines 38–55 define the inser-
tionSort function. The variable insert (line 43) holds the element you’re going to insert
while you move the other elements. Lines 41–54 iterate over the items in the array from
index 1 through the end. In each iteration, line 42 initializes the variable moveItem, which
keeps track of where to insert the element, and line 43 stores in insert the value that will
be inserted into the sorted portion of the array. Lines 46–50 loop to locate the position
where the element should be inserted. The loop terminates either when the program
reaches the front of the array or when it reaches an element that is less than the value to be

34 56 4 10 77 51 93 30 5 52

4 34 56 10 77 51 93 30 5 52

4 10 34 56 77 51 93 30 5 52

D.4 Insertion Sort 911

inserted. Line 48 moves an element to the right, and line 49 decrements the position at
which to insert the next element. After the loop ends, line 52 inserts the element into
place. The output of this program uses dashes to indicate the portion of the array that is
sorted after each pass. An asterisk is placed next to the element that was inserted into place
on that pass.

1 // Fig. D.2: figD_02.c

2 // The insertion sort algorithm.

3 #define SIZE 10
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <time.h>
7
8 // function prototypes

9 void insertionSort(int array[], size_t length);
10 void printPass(int array[], size_t length, unsigned int pass, size_t index);
11
12 int main(void)
13 {
14 int array[SIZE]; // declare the array of ints to be sorted
15

16 srand(time(NULL)); // seed the rand function
17

18 for (size_t i = 0; i < SIZE; i++) {
19 array[i] = rand() % 90 + 10; // give each element a value
20 }

21

22 puts("Unsorted array:");
23

24 for (size_t i = 0; i < SIZE; i++) { // print the array
25 printf("%d ", array[i]);
26 }

27

28 puts("\n");
29 insertionSort(array, SIZE);
30 puts("Sorted array:");
31
32 for (size_t i = 0; i < SIZE; i++) { // print the array
33 printf("%d ", array[i]);
34 }
35 }

36
37 // function that sorts the array
38 void insertionSort(int array[], size_t length)
39 {

40 // loop over length - 1 elements
41 for (size_t i = 1; i < length; i++) {
42 size_t moveItem = i; // initialize location to place element
43 int insert = array[i]; // holds element to insert
44

Fig. D.2 | The insertion sort algorithm. (Part 1 of 3.)

912 Appendix D Sorting: A Deeper Look

45 // search for place to put current element

46 while (moveItem > 0 && array[moveItem - 1] > insert) {
47 // shift element right one slot
48 array[moveItem] = array[moveItem - 1];
49 --moveItem;

50 }
51

52 array[moveItem] = insert; // place inserted element

53 printPass(array, length, i, moveItem);
54 }

55 }

56
57 // function that prints a pass of the algorithm

58 void printPass(int array[], size_t length, unsigned int pass, size_t index)
59 {
60 printf("After pass %2d: ", pass);
61

62 // output elements till selected item

63 for (size_t i = 0; i < index; i++) {
64 printf("%d ", array[i]);
65 }

66
67 printf("%d* ", array[index]); // indicate swap
68

69 // finish outputting array
70 for (size_t i = index + 1; i < length; i++) {
71 printf("%d ", array[i]);
72 }
73

74 printf("%s", "\n "); // for alignment
75
76 // indicate amount of array that is sorted

77 for (size_t i = 0; i <= pass; i++) {
78 printf("%s", "-- ");
79 }

80

81 puts(""); // add newline
82 }

Unsorted array:
72 16 11 92 63 99 59 82 99 30

After pass 1: 16* 72 11 92 63 99 59 82 99 30
 -- --
After pass 2: 11* 16 72 92 63 99 59 82 99 30
 -- -- --
After pass 3: 11 16 72 92* 63 99 59 82 99 30
 -- -- -- --
After pass 4: 11 16 63* 72 92 99 59 82 99 30
 -- -- -- -- --
After pass 5: 11 16 63 72 92 99* 59 82 99 30
 -- -- -- -- -- --

Fig. D.2 | The insertion sort algorithm. (Part 2 of 3.)

D.5 Merge Sort 913

Efficiency of Insertion Sort
The insertion sort algorithm also runs in O(n2) time. Like selection sort, the insertion-
Sort function uses nested loops. The for loop (lines 41–54) iterates SIZE - 1 times, in-
serting an element into the appropriate position in the elements sorted so far. For the
purposes of this application, SIZE - 1 is equivalent to n – 1 (as SIZE is the size of the array).
The while loop (lines 46–50) iterates over the preceding elements in the array. In the
worst case, this while loop requires n – 1 comparisons. Each individual loop runs in O(n)
time. In Big O notation, nested loops mean that you must multiply the number of itera-
tions of each loop. For each iteration of an outer loop, there will be a certain number of
iterations of the inner loop. In this algorithm, for each O(n) iterations of the outer loop,
there will be O(n) iterations of the inner loop. Multiplying these values results in a Big O
of O(n2).

D.5 Merge Sort
The Merge sort algorithm is efficient, but conceptually more complex than selection sort
and insertion sort. The merge sort algorithm sorts an array by splitting it into two equal-
sized subarrays, sorting each subarray, then merging them into one larger array. With an
odd number of elements, the algorithm creates the two subarrays such that one has one
more element than the other.

The implementation of merge sort in this example is recursive. The base case is an
array with one element. A one-element array is, of course, sorted, so merge sort immedi-
ately returns when it’s called with a one-element array. The recursion step splits an array
of two or more elements into two equal-sized subarrays, recursively sorts each subarray,
then merges them into one larger, sorted array. [Again, if there are an odd number of ele-
ments, one subarray is one element larger than the other.]

Suppose the algorithm has already merged smaller arrays to create sorted arrays A:

and B:

Merge sort combines these two arrays into one larger, sorted array. The smallest element
in A is 4 (located in the element zero of A). The smallest element in B is 5 (located in the

After pass 6: 11 16 59* 63 72 92 99 82 99 30
 -- -- -- -- -- -- --
After pass 7: 11 16 59 63 72 82* 92 99 99 30
 -- -- -- -- -- -- -- --
After pass 8: 11 16 59 63 72 82 92 99 99* 30
 -- -- -- -- -- -- -- -- --
After pass 9: 11 16 30* 59 63 72 82 92 99 99
 -- -- -- -- -- -- -- -- -- --
Sorted array:
11 16 30 59 63 72 82 92 99 99

4 10 34 56 77

5 30 51 52 93

Fig. D.2 | The insertion sort algorithm. (Part 3 of 3.)

914 Appendix D Sorting: A Deeper Look

zeroth index of B). To determine the smallest element in the larger array, the algorithm
compares 4 and 5. The value from A is smaller, so 4 becomes the first element in the
merged array. The algorithm continues by comparing 10 (the second element in A) to 5
(the first element in B). The value from B is smaller, so 5 becomes the second element in
the larger array. The algorithm continues by comparing 10 to 30, with 10 becoming the
third element in the array, and so on.

 Figure D.3 implements the merge sort algorithm, and lines 35–38 define the merge-
Sort function. Line 37 calls function sortSubArray with 0 and length - 1 as the argu-
ments (length is the array’s size). The arguments correspond to the beginning and ending
indices of the array to be sorted, causing sortSubArray to operate on the entire array.
Function sortSubArray is defined in lines 41–64. Line 44 tests the base case. If the size of
the array is 1, the array is sorted, so the function simply returns immediately. If the size of
the array is greater than 1, the function splits the array in two, recursively calls function
sortSubArray to sort the two subarrays, then merges them. Line 58 recursively calls func-
tion sortSubArray on the first half of the array, and line 59 recursively calls function
sortSubArray on the second half of the array. When these two function calls return, each
half of the array has been sorted. Line 62 calls function merge (lines 67–114) on the two
halves of the array to combine the two sorted arrays into one larger sorted array.

1 // Fig. D.3: figD_03.c

2 // The merge sort algorithm.

3 #define SIZE 10
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <time.h>
7
8 // function prototypes

9 void mergeSort(int array[], size_t length);
10 void sortSubArray(int array[], size_t low, size_t high);
11 void merge(int array[], size_t left, size_t middle1,
12 size_t middle2, size_t right);
13 void displayElements(int array[], size_t length);
14 void displaySubArray(int array[], size_t left, size_t right);
15
16 int main(void)
17 {

18 int array[SIZE]; // declare the array of ints to be sorted
19

20 srand(time(NULL)); // seed the rand function
21
22 for (size_t i = 0; i < SIZE; i++) {
23 array[i] = rand() % 90 + 10; // give each element a value
24 }
25

26 puts("Unsorted array:");
27 displayElements(array, SIZE); // print the array
28 puts("\n");
29 mergeSort(array, SIZE); // merge sort the array
30 puts("Sorted array:");

Fig. D.3 | The merge sort algorithm. (Part 1 of 5.)

D.5 Merge Sort 915

31 displayElements(array, SIZE); // print the array
32 }

33
34 // function that merge sorts the array

35 void mergeSort(int array[], size_t length)
36 {
37 sortSubArray(array, 0, length - 1);
38 }

39
40 // function that sorts a piece of the array

41 void sortSubArray(int array[], size_t low, size_t high)
42 {
43 // test base case: size of array is 1

44 if ((high - low) >= 1) { // if not base case...
45 size_t middle1 = (low + high) / 2;
46 size_t middle2 = middle1 + 1;
47

48 // output split step

49 printf("%s", "split: ");
50 displaySubArray(array, low, high);

51 printf("%s", "\n ");
52 displaySubArray(array, low, middle1);
53 printf("%s", "\n ");
54 displaySubArray(array, middle2, high);

55 puts("\n");
56

57 // split array in half and sort each half recursively

58 sortSubArray(array, low, middle1); // first half
59 sortSubArray(array, middle2, high); // second half

60

61 // merge the two sorted arrays
62 merge(array, low, middle1, middle2, high);

63 }

64 }
65
66 // merge two sorted subarrays into one sorted subarray

67 void merge(int array[], size_t left, size_t middle1,
68 size_t middle2, size_t right)
69 {

70 size_t leftIndex = left; // index into left subarray
71 size_t rightIndex = middle2; // index into right subarray
72 size_t combinedIndex = left; // index into temporary array
73 int tempArray[SIZE]; // temporary array
74

75 // output two subarrays before merging

76 printf("%s", "merge: ");
77 displaySubArray(array, left, middle1);

78 printf("%s", "\n ");
79 displaySubArray(array, middle2, right);
80 puts("");
81

Fig. D.3 | The merge sort algorithm. (Part 2 of 5.)

916 Appendix D Sorting: A Deeper Look

82 // merge the subarrays until the end of one is reached

83 while (leftIndex <= middle1 && rightIndex <= right) {
84 // place the smaller of the two current elements in result
85 // and move to the next space in the subarray

86 if (array[leftIndex] <= array[rightIndex]) {
87 tempArray[combinedIndex++] = array[leftIndex++];
88 }

89 else {
90 tempArray[combinedIndex++] = array[rightIndex++];
91 }

92 }

93
94 if (leftIndex == middle2) { // if at end of left subarray ...
95 while (rightIndex <= right) { // copy the right subarray
96 tempArray[combinedIndex++] = array[rightIndex++];
97 }

98 }

99 else { // if at end of right subarray...
100 while (leftIndex <= middle1) { // copy the left subarray
101 tempArray[combinedIndex++] = array[leftIndex++];

102 }

103 }
104

105 // copy values back into original array

106 for (size_t i = left; i <= right; i++) {
107 array[i] = tempArray[i];

108 }

109
110 // output merged subarray

111 printf("%s", " ");
112 displaySubArray(array, left, right);
113 puts("\n");
114 }

115
116 // display elements in array

117 void displayElements(int array[], size_t length)
118 {
119 displaySubArray(array, 0, length - 1);
120 }

121
122 // display certain elements in array

123 void displaySubArray(int array[], size_t left, size_t right)
124 {
125 // output spaces for alignment

126 for (size_t i = 0; i < left; i++) {
127 printf("%s", " ");
128 }

129

130 // output elements left in array
131 for (size_t i = left; i <= right; i++) {
132 printf(" %d", array[i]);
133 }
134 }

Fig. D.3 | The merge sort algorithm. (Part 3 of 5.)

D.5 Merge Sort 917

Unsorted array:
 79 86 60 79 76 71 44 88 58 23

split: 79 86 60 79 76 71 44 88 58 23
 79 86 60 79 76
 71 44 88 58 23

split: 79 86 60 79 76
 79 86 60
 79 76

split: 79 86 60
 79 86
 60

split: 79 86
 79
 86

merge: 79
 86
 79 86

merge: 79 86
 60
 60 79 86

split: 79 76
 79
 76

merge: 79
 76
 76 79

merge: 60 79 86
 76 79
 60 76 79 79 86

split: 71 44 88 58 23
 71 44 88
 58 23

split: 71 44 88
 71 44
 88

split: 71 44
 71
 44
merge: 71
 44
 44 71

Fig. D.3 | The merge sort algorithm. (Part 4 of 5.)

918 Appendix D Sorting: A Deeper Look

Lines 83–92 in function merge loop until the program reaches the end of either sub-
array. Line 86 tests which element at the beginning of the arrays is smaller. If the element
in the left array is smaller, line 87 places it in position in the combined array. If the element
in the right array is smaller, line 90 places it in position in the combined array. When the
while loop completes, one entire subarray is placed in the combined array, but the other
subarray still contains data. Line 94 tests whether the left array has reached the end. If so,
lines 95–97 fill the combined array with the elements of the right array. If the left array
has not reached the end, then the right array must have reached the end, and lines 100–
102 fill the combined array with the elements of the left array. Finally, lines 106–108 copy
the combined array into the original array. The output from this program displays the
splits and merges performed by merge sort, showing the progress of the sort at each step
of the algorithm.

Efficiency of Merge Sort
Merge sort is a far more efficient algorithm than either insertion sort or selection sort
(although that may be difficult to believe when looking at the rather busy Fig. D.3). Con-
sider the first (nonrecursive) call to function sortSubArray. This results in two recursive
calls to function sortSubArray with subarrays each approximately half the size of the orig-
inal array, and a single call to function merge. This call to function merge requires, at worst,
n – 1 comparisons to fill the original array, which is O(n). (Recall that each element in the
array is chosen by comparing one element from each of the subarrays.) The two calls to
function sortSubArray result in four more recursive calls to function sortSubArray, each
with a subarray approximately one quarter the size of the original array, along with two calls
to function merge. These two calls to the function merge each require, at worst, n/2 – 1
comparisons, for a total number of comparisons of O(n). This process continues, each call

merge: 44 71
 88
 44 71 88

split: 58 23
 58
 23

merge: 58
 23
 23 58

merge: 44 71 88
 23 58
 23 44 58 71 88

merge: 60 76 79 79 86
 23 44 58 71 88
 23 44 58 60 71 76 79 79 86 88

Sorted array:
 23 44 58 60 71 76 79 79 86 88

Fig. D.3 | The merge sort algorithm. (Part 5 of 5.)

 Summary 919

to sortSubArray generating two additional calls to sortSubArray and a call to merge, until
the algorithm has split the array into one-element subarrays. At each level, O(n) compari-
sons are required to merge the subarrays. Each level splits the size of the arrays in half, so
doubling the size of the array requires one more level. Quadrupling the size of the array re-
quires two more levels. This pattern is logarithmic and results in log2n levels. This results
in a total efficiency of O(n log n).

Figure D.4 summarizes many of the searching and sorting algorithms covered in this
book and lists the Big O for each of them. Figure D.5 lists the Big O values we’ve covered
in this appendix along with a number of values for n to highlight the differences in the
growth rates.

Algorithm Big O

Insertion sort O(n2)

Selection sort O(n2)

Merge sort O(n log n)

Bubble sort O(n2)

Quicksort Worst case: O(n2)
Average case: O(n log n)

Fig. D.4 | Searching and sorting algorithms with Big O values.

n
Approximate
decimal value O(log n) O(n) O(n log n) O(n2)

210 1000 10 210 10 ⋅ 210 220

220 1,000,000 20 220 20 ⋅ 220 240

230 1,000,000,000 30 230 30 ⋅ 230 260

Fig. D.5 | Approximate number of comparisons for common Big O notations.

Summary
Section D.1 Introduction
• Sorting involves arranging data into order.

Section D.2 Big O Notation
• One way to describe the efficiency of an algorithm is with Big O notation (O; , 905), which in-

dicates how hard an algorithm may have to work to solve a problem.

• For searching and sorting algorithms, Big O describes how the amount of effort of a particular
algorithm varies, depending on how many elements are in the data.

• An algorithm that is O(1) is said to have a constant run time (, 905). This does not mean that
the algorithm requires only one comparison. It just means that the number of comparisons does
not grow as the size of the array increases.

• An O(n) algorithm is referred to as having a linear run time (, 905).

920 Appendix D Sorting: A Deeper Look

• Big O is designed to highlight dominant factors and ignore terms that become unimportant with
high values of n.

• Big O notation is concerned with the growth rate of algorithm run times, so constants are ignored.

Section D.3 Selection Sort
• Selection sort (, 906) is a simple, but inefficient, sorting algorithm.

• The first iteration of selection sort selects the smallest element in the array and swaps it with the
first element. The second iteration of selection sort selects the second-smallest element (which is
the smallest of those remaining) and swaps it with the second element. Selection sort continues
until the last iteration selects the second-largest element and swaps it with the second-to-last,
leaving the largest element as the last. At the ith iteration of selection sort, the smallest i elements
of the whole array are sorted into the first i positions of the array.

• The selection sort algorithm runs in O(n2) time (, 909).

Section D.4 Insertion Sort
• The first iteration of insertion sort (, 910) takes the second element in the array and, if it’s less

than the first element, swaps it with the first element. The second iteration of insertion sort looks
at the third element and inserts it in the correct position with respect to the first two elements.
After the ith iteration of insertion sort, the first i elements in the original array are sorted. Only
n – 1 iterations are required.

• The insertion sort algorithm runs in O(n2) time (, 913).

Section D.5 Merge Sort
• The merge sort algorithm (, 913) is faster, but more complex to implement, than selection sort

and insertion sort.

• The merge sort algorithm sorts an array by splitting the array into two equal-sized subarrays,
sorting each subarray and merging the subarrays into one larger array.

• Merge sort’s base case is an array with one element, which is already sorted, so merge sort imme-
diately returns when it’s called with a one-element array. The merge part of merge sort takes two
sorted arrays (these could be one-element arrays) and combines them into one larger sorted array.

• Merge sort performs the merge by looking at the first element in each array, which is also the
smallest element. Merge sort takes the smallest of these and places it in the first element of the
larger, sorted array. If there are still elements in the subarray, merge sort looks at the second ele-
ment in that subarray (which is now the smallest element remaining) and compares it to the first
element in the other subarray. Merge sort continues this process until the larger array is filled.

• In the worst case, the first call to merge sort has to make O(n) comparisons to fill the n slots in
the final array.

• The merging portion of the merge sort algorithm is performed on two subarrays, each of approx-
imately size n/2. Creating each of these subarrays requires n/2–1 comparisons for each subarray,
or O(n) comparisons total. This pattern continues, as each level works on twice as many arrays,
but each is half the size of the previous array.

• This halving results in log n levels, each level requiring O(n) comparisons, for a total efficiency
of O(n log n) (, 919), which is far more efficient than O(n2).

Self-Review Exercises
D.1 Fill in the blanks in each of the following statements:

a) A selection sort application would take approximately times as long to run on
a 128-element array as on a 32-element array.

b) The efficiency of merge sort is .

 Answers to Self-Review Exercises 921

D.2 The Big O of the linear search is O(n) and of the binary search is O(log n). What key aspect
of both the binary search (Chapter 6) and the merge sort accounts for the logarithmic portion of
their respective Big Os?

D.3 In what sense is the insertion sort superior to the merge sort? In what sense is the merge sort
superior to the insertion sort?

D.4 In the text, we say that after the merge sort splits the array into two subarrays, it then sorts
these two subarrays and merges them. Why might someone be puzzled by our statement that “it
then sorts these two subarrays”?

Answers to Self-Review Exercises
D.1 a) 16, because an O(n2) algorithm takes 16 times as long to sort four times as much infor-
mation. b) O(n log n).

D.2 Both of these algorithms incorporate “halving”—somehow reducing something by half on
each pass. The binary search eliminates from consideration one-half of the array after each compar-
ison. The merge sort splits the array in half each time it’s called.

D.3 The insertion sort is easier to understand and to implement than the merge sort. The merge
sort is far more efficient—O(n log n)—than the insertion sort—O(n2).

D.4 In a sense, it does not really sort these two subarrays. It simply keeps splitting the original
array in half until it provides a one-element subarray, which is, of course, sorted. It then builds up
the original two subarrays by merging these one-element arrays to form larger subarrays, which are
then merged, and so on.

Exercises
D.5 (Recursive Selection Sort) A selection sort searches an array looking for the smallest element
in the array. When that element is found, it’s swapped with the first element of the array. The pro-
cess is then repeated for the subarray, beginning with the second element. Each pass of the array
results in one element being placed in its proper location. This sort requires processing capabilities
similar to those of the bubble sort—for an array of n elements, n – 1 passes must be made, and for
each subarray, n – 1 comparisons must be made to find the smallest value. When the subarray being
processed contains one element, the array is sorted. Write a recursive function selectionSort to
perform this algorithm.

D.6 (Bucket Sort) A bucket sort begins with a one-dimensional array of positive integers to be
sorted, and a two-dimensional array of integers with rows subscripted from 0 to 9 and columns sub-
scripted from 0 to n – 1, where n is the number of values in the array to be sorted. Each row of the
two-dimensional array is referred to as a bucket. Write a function bucketSort that takes an integer
array and the array size as arguments.

The algorithm is as follows:
a) Loop through the one-dimensional array and place each of its values in a row of the

bucket array based on its ones digit. For example, 97 is placed in row 7, 3 is placed in
row 3 and 100 is placed in row 0.

b) Loop through the bucket array and copy the values back to the original array. The new
order of the above values in the one-dimensional array is 100, 3 and 97.

c) Repeat this process for each subsequent digit position (tens, hundreds, thousands, and
so on) and stop when the leftmost digit of the largest number has been processed.

On the second pass of the array, 100 is placed in row 0, 3 is placed in row 0 (it had only one digit
so we treat it as 03) and 97 is placed in row 9. The order of the values in the one-dimensional array
is 100, 3 and 97. On the third pass, 100 is placed in row 1, 3 (003) is placed in row zero and 97

922 Appendix D Sorting: A Deeper Look

(097) is placed in row zero (after 3). The bucket sort is guaranteed to have all the values properly
sorted after processing the leftmost digit of the largest number. The bucket sort knows it’s done
when all the values are copied into row zero of the two-dimensional array.

The two-dimensional array of buckets is ten times the size of the integer array being sorted.
This sorting technique provides far better performance than a bubble sort but requires much larger
storage capacity. Bubble sort requires only one additional memory location for the type of data
being sorted. Bucket sort is an example of a space–time trade-off. It uses more memory but per-
forms better. This version of the bucket sort requires copying all the data back to the original array
on each pass. Another possibility is to create a second two-dimensional bucket array and repeatedly
move the data between the two bucket arrays until all the data is copied into row zero of one of the
arrays. Row zero then contains the sorted array.

D.7 (Quicksort) In the examples and exercises of Chapter 6 and this appendix, we discussed var-
ious sorting techniques. We now present the recursive sorting technique called Quicksort. The basic
algorithm for a one-dimensional array of values is as follows:

a) Partitioning Step: Take the first element of the unsorted array and determine its final lo-
cation in the sorted array (i.e., all values to the left of the element in the array are less
than the element, and all values to the right of the element in the array are greater than
the element). We now have one element in its proper location and two unsorted subar-
rays.

b) Recursive Step: Perform Step a on each unsorted subarray.

Each time Step a is performed on a subarray, another element is placed in its final location of the
sorted array, and two unsorted subarrays are created. When a subarray consists of one element, it
must be sorted; therefore, that element is in its final location.

The basic algorithm seems simple enough, but how do we determine the final position of the
first element of each subarray? As an example, consider the following set of values (the element in
bold is the partitioning element—it will be placed in its final location in the sorted array):

37 2 6 4 89 8 10 12 68 45
a) Starting from the rightmost element of the array, compare each element with 37 until

an element less than 37 is found. Then swap 37 and that element. The first element less
than 37 is 12, so 37 and 12 are swapped. The new array is

12 2 6 4 89 8 10 37 68 45
Element 12 is in italic to indicate that it was just swapped with 37.

b) Starting from the left of the array, but beginning with the element after 12, compare
each element with 37 until an element greater than 37 is found. Then swap 37 and that
element. The first element greater than 37 is 89, so 37 and 89 are swapped. The new ar-
ray is

12 2 6 4 37 8 10 89 68 45
c) Starting from the right, but beginning with the element before 89, compare each ele-

ment with 37 until an element less than 37 is found. Then swap 37 and that element.
The first element less than 37 is 10, so 37 and 10 are swapped. The new array is

12 2 6 4 10 8 37 89 68 45
d) Starting from the left, but beginning with the element after 10, compare each element

with 37 until an element greater than 37 is found. Then swap 37 and that element.
There are no more elements greater than 37, so when we compare 37 with itself, we
know that 37 has been placed in its final location in the sorted array.

 Exercises 923

Once the partition has been applied to the array, there are two unsorted subarrays. The subarray
with values less than 37 contains 12, 2, 6, 4, 10 and 8. The subarray with values greater than 37 con-
tains 89, 68 and 45. The sort continues by partitioning both subarrays in the same manner as the
original array.

Write recursive function quicksort to sort a one-dimensional integer array. The function
should receive as arguments an integer array, a starting subscript and an ending subscript. Function
partition should be called by quicksort to perform the partitioning step.

E Multithreading and Other
C11 and C99 Topics

O b j e c t i v e s
In this appendix, you’ll:

■ Learn various additional C99
and C11 features.

■ Initialize arrays and structs
with designated initializers.

■ Use data type bool to create
boolean variables whose
data values can be true or
false.

■ Perform arithmetic operations
on complex variables.

■ Learn about preprocessor
enhancements.

■ Learn which headers were
new in C99 and C11.

■ Use C11’s multithreading
features to improve
performance on today’s
multi-core systems.

E.1 Introduction 925

E.1 Introduction
C99 (1999) and C11 (2011) are revised standards for the C programming language that
refine and expand the capabilities of Standard C. Not every C compiler implements every
C99 and C11 feature. Before using the features shown in this appendix, check that your
compiler supports them. Our goal is to introduce these capabilities and provide resources
for further reading.

We discuss compiler support and include links to several free compilers and IDEs that
provide various levels of C99 and C11 support. We explain with complete working code
examples and code snippets some of these key features that were not discussed in the main
text, including designated initializers, compound literals, type bool, implicit int return type
in function prototypes and function definitions (not allowed in C11) and complex numbers.
We provide brief explanations for additional key C99 features, including restricted pointers,
reliable integer division, flexible array members, generic math, inline functions and return
without expression. Another significant C99 feature is the addition of float and long
double versions of most of the math functions in <math.h>.

We discuss capabilities of the C11 standard, including improved Unicode support,
the _Noreturn function specifier, type-generic expressions, the quick_exit function,
memory alignment control, static assertions, analyzability and floating-point types. Many
of these capabilities have been designated as optional. We include an extensive list of
Internet resources to help you locate appropriate C11 compilers and IDEs, and dig deeper
into the technical details of the language.

Multithreading
A key feature of this appendix is the introduction to multithreading (Section E.9.2). In to-
day’s multicore systems, the hardware can put multiple processors to work on different
parts of your task, thereby enabling the tasks (and the program) to complete faster. To take
advantage of multicore architecture from C programs you need to write multithreaded ap-
plications. When a program splits tasks into separate threads, a multicore system can run

E.1 Introduction
E.2 New C99 Headers
E.3 Designated Initializers and

Compound Literals
E.4 Type bool
E.5 Implicit int in Function Declarations
E.6 Complex Numbers
E.7 Additions to the Preprocessor
E.8 Other C99 Features

E.8.1 Compiler Minimum Resource Limits
E.8.2 The restrict Keyword
E.8.3 Reliable Integer Division
E.8.4 Flexible Array Members
E.8.5 Relaxed Constraints on Aggregate

Initialization

E.8.6 Type Generic Math
E.8.7 Inline Functions
E.8.8 Return Without Expression
E.8.9 __func__ Predefined Identifier

E.8.10 va_copy Macro
E.9 New Features in the C11 Standard

E.9.1 New C11 Headers
E.9.2 Multithreading Support
E.9.3 quick_exit function
E.9.4 Unicode® Support
E.9.5 _Noreturn Function Specifier
E.9.6 Type-Generic Expressions
E.9.7 Annex L: Analyzability and Undefined

Behavior
E.9.8 Memory Alignment Control
E.9.9 Static Assertions

E.9.10 Floating-Point Types
E.10 Web Resources

926 Appendix E Multithreading and Other C11 and C99 Topics

those threads in parallel. Section E.9.2 first demonstrates long-running calculations per-
formed in sequence, then shows that by separating those calculations into multiple
threads, we can significantly improve performance on a multicore system.

Compiler Flags for C99 and C11 on GNU gcc for Linux1

GNU supports many C99 and C11 features (but not C11’s multithreading). To compile
for C99, you must use the compiler flag -std=c99 as in

Similarly, for C11 you must used the flag -std=c11 (as we showed in Section 1.10.2):

On Windows, you can install GCC to run C99 or C11 programs by downloading either
Cygwin (www.cygwin.com) or MinGW (sourceforge.net/projects/mingw). Cygwin is
a complete Linux-style environment for Windows, while MinGW (Minimalist GNU for
Windows) is a native Windows port of the compiler and related tools.

E.2 New C99 Headers
Figure E.1 lists alphabetically the standard library headers added in C99 (three of these
were added in C95). All of these remain available in C11. We’ll discuss the new C11 head-
ers later in Section E.9.1.

1. For the C99 and C11 features that Xcode LLVM and Microsoft Visual C++ support, no additional
compiler flags are required.

gcc -std=c99 YourProgram.c -o YourExecutableName

gcc -std=c11 YourProgram.c -o YourExecutableName

Standard library
header Explanation

<complex.h> Contains macros and function prototypes for supporting complex numbers (see
Section E.6). [C99 feature.]

<fenv.h> Provides information about the C implementation’s floating-point environment
and capabilities. [C99 feature.]

<inttypes.h> Defines several new portable integral types and provides format specifiers for
defined types. [C99 feature.]

<iso646.h> Defines macros that represent the equality, relational and bitwise operators; an
alternative to trigraphs. [C95 feature.]

<stdbool.h> Contains macros defining bool, true and false, used for boolean variables (see
Section E.4). [C99 feature.]

<stdint.h> Defines extended integer types and related macros. [C99 feature.]
<tgmath.h> Provides type-generic macros that allow functions from <math.h> to be used

with a variety of parameter types (see Section E.8). [C99 feature.]
<wchar.h> Along with <wctype.h>, provides multibyte and wide-character input and out-

put support. [C95 feature.]
<wctype.h> Along with <wchar.h>, provides wide-character library support. [C95 feature.]

Fig. E.1 | Standard library headers added in C99 and C95.

E.3 Designated Initializers and Compound Literals 927

E.3 Designated Initializers and Compound Literals
[This section can be read after Section 10.3.]
Designated initializers allow you to initialize the elements of an array, union or struct
explicitly by subscript or name. Figure E.2 shows how we might assign the first and last
elements of an array.

In Fig. E.3 we show the program again, but rather than assigning values to the first
and last elements of the array, we initialize them explicitly by subscript, using designated
initializers.

1 // Fig. E.2: figE_02.c

2 // Assigning elements of an array prior to C99
3 #include <stdio.h>
4
5 int main(void)
6 {

7 int a[5]; // array declaration
8
9 a[0] = 1; // explicitly assign values to array elements...

10 a[4] = 2; // after the declaration of the array
11
12 // assign zero to all elements but the first and last
13 for (size_t i = 1; i < 4; ++i) {
14 a[i] = 0;
15 }
16
17 // output array contents

18 printf("The array is\n");
19
20 for (size_t i = 0; i < 5; ++i) {
21 printf("%d\n", a[i]);
22 }

23 }

The array is
1
0
0
0
2

Fig. E.2 | Assigning elements of an array prior to C99.

1 // Fig. E.3: figE_03.c

2 // Using designated initializers

3 // to initialize the elements of an array in C99
4 #include <stdio.h>
5

Fig. E.3 | Using designated initializers to initialize the elements of an array in C99. (Part 1 of 2.)

928 Appendix E Multithreading and Other C11 and C99 Topics

Lines 8–12 declare the array and initialize the specified elements within the braces.
Note the syntax. Each initializer in the initializer list (lines 10–11) is separated from the
next by a comma, and the end brace is followed by a semicolon. Elements that are not
explicitly initialized are implicitly initialized to zero (of the correct type). This syntax was
not allowed prior to C99.

In addition to using an initializer list to declare a variable, you can also use an initial-
izer list to create an unnamed array, struct or union. This is known as a compound lit-
eral. For example, if you wanted to pass an array equivalent to a in Fig. E.3 to a function
without having to declare it beforehand, you could use

Consider the more elaborate example in Fig. E.4, where we use designated initializers
for an array of structs.

6 int main(void)
7 {

8 int a[5] =
9 {

10

11
12 }; // semicolon is required

13
14 // output array contents
15 printf("The array is \n");
16
17 for (size_t i = 0; i < 5; ++i) {
18 printf("%d\n", a[i]);
19 }

20 }

The array is
1
0
0
0
2

demoFunction((int [5]) {[0] = 1, [4] = 2});

1 // Fig. E.4: figE_04.c

2 // Using designated initializers to initialize an array of structs in C99
3 #include <stdio.h>
4
5 struct twoInt // declare a struct of two integers
6 {

7 int x;
8 int y;
9 };

Fig. E.4 | Using designated initializers to initialize an array of structs in C99. (Part 1 of 2.)

Fig. E.3 | Using designated initializers to initialize the elements of an array in C99. (Part 2 of 2.)

[0] = 1, // initialize elements with designated initializers...
[4] = 2 // within the declaration of the array

E.4 Type bool 929

Lines 17 and 18 each use a designated initializer to explicitly initialize a struct ele-
ment in the array. Then, within that initialization, we use another level of designated ini-
tializer, explicitly initializing the x and y members of the struct. To initialize struct or
union members we list each member’s name preceded by a period.

Compare lines 15–19 of Fig. E.4, which use designated initializers, to the following
executable code, which does not use designated initializers:

Using initializers rather than runtime assignments improves program startup time.

E.4 Type bool
[This section can be read after Section 3.6.]
The C99 boolean type is _Bool, which can hold only the values 0 or 1. Recall C’s conven-
tion of using zero and nonzero values to represent false and true—the value 0 in a condition
evaluates to false, while any nonzero value in a condition evaluates to true. Assigning any
nonzero value to a _Bool sets it to 1. C99 provides the <stdbool.h> header file which de-
fines macros representing the type bool and its values true and false. These macros re-

10
11 int main(void)
12 {
13 // explicitly initialize elements of array a

14 // then explicitly initialize two elements

15 struct twoInt a[5] =
16 {

17

18
19 };

20
21 // output array contents
22 printf("x\ty\n");
23
24 for (size_t i = 0; i < 5; ++i) {
25 printf("%d\t%d\n", a[i].x, a[i].y);
26 }

27 } //end main

x y
1 2
0 0
0 0
0 0
10 20

struct twoInt a[5];

a[0].x = 1;
a[0].y = 2;
a[4].x = 10;
a[4].y = 20;

Fig. E.4 | Using designated initializers to initialize an array of structs in C99. (Part 2 of 2.)

[0] = {.x = 1, .y = 2},
[4] = {.x = 10, .y = 20}

930 Appendix E Multithreading and Other C11 and C99 Topics

place true with 1, false with 0 and bool with the keyword _Bool. Figure E.5 uses a
function named isEven (lines 29–37) that returns a bool value of true if the function’s
argument is even and false if it’s odd.

Line 16 declares a bool variable named valueIsEven. Lines 13–14 in the loop prompt
for and obtain the next integer. Line 16 passes the input to function isEven (lines 29–37).

1 // Fig. E.5: figE_05.c
2 // Using the type bool and the values true and false in C99.

3 #include <stdio.h>
4
5
6 bool isEven(int number); // function prototype
7
8 int main(void)
9 {

10 // loop for 2 inputs
11 for (int i = 0; i < 2; ++i) {
12 printf("Enter an integer: ");
13 int input; // value entered by user
14 scanf("%d", &input);
15
16

17
18 // determine whether input is even

19 if () {

20 printf("%d is even \n\n", input);
21 }

22 else {
23 printf("%d is odd \n\n", input);
24 }

25 }

26 }
27
28 // isEven returns true if number is even

29
30 {

31 if (number % 2 == 0) { // is number divisible by 2?
32
33 }

34 else {
35
36 }

37 }

Enter an integer: 34
34 is even

Enter an integer: 23
23 is odd

Fig. E.5 | Using the type bool and the values true and false in C99.

#include <stdbool.h> // allows the use of bool, true, and false

bool valueIsEven = isEven(input); // determine if input is even

valueIsEven

bool isEven(int number)

return true;

return false;

E.5 Implicit int in Function Declarations 931

Function isEven returns a value of type bool. Line 31 determines whether the argument
is divisible by 2. If so, line 32 returns true (i.e., the number is even); otherwise, line 35
returns false (i.e., the number is odd). The result is assigned to bool variable valueIs-
Even in line 16. If valueIsEven is true, line 20 displays a string indicating that the value
is even. If valueIsEven is false, line 23 displays a string indicating that the value is odd.

E.5 Implicit int in Function Declarations
[This section can be read after Section 5.5.]
Prior to C99, if a function does not have an explicit return type, it implicitly is assumed to
return an int. In addition, if a function does not specify a parameter type, that type im-
plicitly becomes int. Consider the program in Fig. E.6.

When this program is run in compilers that are not C99 compliant, no compilation
errors or warning messages occur and the program executes correctly. C99 disallows the
use of the implicit int, requiring that C99-compliant compilers issue either a warning or
an error. On C99-compliant compilers this program generates warnings or errors.
Figure E.7 shows the warning messages from GNU gcc 4.9.2.

1 // Fig. E.6: figE_06.c

2 // Using implicit int prior to C99

3 #include <stdio.h>
4
5 returnImplicitInt(); // prototype with unspecified return type

6 int demoImplicitInt(x); // prototype with unspecified parameter type
7
8 int main(void)
9 {

10 // assign data of unspecified return type to int

11 int x = returnImplicitInt();
12
13 // pass an int to a function with an unspecified type

14 int y = demoImplicitInt(82);
15
16 printf("x is %d\n", x);
17 printf("y is %d\n", y);
18 }
19
20 returnImplicitInt()

21 {
22 return 77; // returning an int when return type is not specified
23 }

24
25 int demoImplicitInt(x)
26 {

27 return x;
28 }

Fig. E.6 | Using implicit int prior to C99.

932 Appendix E Multithreading and Other C11 and C99 Topics

E.6 Complex Numbers
[This section can be read after Section 5.3.]
The C99 standard introduced support for complex numbers and complex arithmetic. The
program of Fig. E.8 performs basic operations with complex numbers. We compiled and
ran this program on the LLVM compiler in Apple’s Xcode 6.2

test.c:5:1: warning: data definition has no type or storage class
 returnImplicitInt(); // prototype with unspecified return type
 ^
test.c:5:1: warning: type defaults to ‘int’ in declaration of ‘returnImplic-
itInt’
test.c:6:1: warning: parameter names (without types) in function declaration
 int demoImplicitInt(x); // prototype missing a parameter name type
 ^
test.c:20:1: warning: return type defaults to ‘int’
 returnImplicitInt()
 ^
test.c: In function ‘demoImplicitInt’:
test.c:25:5: warning: type of ‘x’ defaults to ‘int’
 int demoImplicitInt(x)
 ^

Fig. E.7 | Warning messages for implicit int produced by gcc.

1 // Fig. E.8: figE_08.c

2 // Using complex numbers in C99
3 #include <stdio.h>
4 #include <complex.h> // for complex type and math functions
5
6 int main(void)
7 {

8 double complex a = 32.123 + 24.456 * I; // a is 32.123 + 24.456i
9 double complex b = 23.789 + 42.987 * I; // b is 23.789 + 42.987i

10 double complex c = 3.0 + 2.0 * I; // c is 3.0 + 2.0i
11
12 double complex sum = a + b; // perform complex addition
13 double complex pwr = cpow(a, c); // perform complex exponentiation
14
15 printf("a is %f + %fi\n", creal(a), cimag(a));
16 printf("b is %f + %fi\n", creal(b), cimag(b));
17 printf("a + b is: %f + %fi\n", creal(sum), cimag(sum));
18 printf("a - b is: %f + %fi\n", creal(a - b), cimag(a - b));
19 printf("a * b is: %f + %fi\n", creal(a * b), cimag(a * b));
20 printf("a / b is: %f + %fi\n", creal(a / b), cimag(a / b));
21 printf("a ^ b is: %f + %fi\n", creal(pwr), cimag(pwr));
22 }

Fig. E.8 | Using complex numbers in C99. (Part 1 of 2.)

2. In GNU gcc, the function cpow (line 13 in Fig. E.8) is not supported. Microsoft Visual C++ supports
the complex-number features defined by the C++ standard, not those from C99.

E.7 Additions to the Preprocessor 933

For C99 to recognize complex, we include the <complex.h> header (line 4). This will
expand the macro complex to the keyword _Complex—a type that reserves an array of
exactly two elements, corresponding to the complex number’s real part and imaginary part.

Having included the header file in line 4, we can define variables as in lines 8–10 and
12–13. We define each of the variables a, b, c, sum and pwr as type double complex. We
also could have used float complex or long double complex.

The arithmetic operators also work with complex numbers. The <complex.h> header
also defines several math functions, for example, cpow in line 13. You can also use the oper-
ators !, ++, --, &&, ||, ==, != and unary & with complex numbers.

Lines 17–21 output the results of various arithmetic operations. The real part and the
imaginary part of a complex number can be accessed with functions creal and cimag,
respectively, as shown in lines 15–21. In the output string of line 21, we use the symbol ^
to indicate exponentiation.

E.7 Additions to the Preprocessor
[This section can be read after Chapter 13.]
C99 adds features to the C preprocessor. The first is the _Pragma operator, which func-
tions like the #pragma directive introduced in Section 13.6. _Pragma ("tokens") has the
same effect as #pragma tokens, but is more flexible because it can be used inside a macro
definition. Therefore, instead of surrounding each usage of a compiler-specific pragma by
an #if directive, you can simply define a macro using the _Pragma operator once and use
it anywhere in your program.

Second, C99 specifies three standard pragmas that deal with the behavior of floating-
point operations. The first token in these standard pragmas is always STDC, the second is
one of FENV_ACCESS, FP_CONTRACT or CX_LIMITED_RANGE, and the third is ON, OFF or
DEFAULT to indicate whether the given pragma should be enabled, disabled, or set to its
default value, respectively. The FENV_ACCESS pragma is used to inform the compiler which
portions of code will use functions in the C99 <fenv.h> header. On modern desktop sys-
tems, floating-point processing is done with 80-bit floating-point values. If FP_CONTRACT
is enabled, the compiler may perform a sequence of operations at this precision and store
the final result into a lower-precision float or double instead of reducing the precision
after each operation. Finally, if CX_LIMITED_RANGE is enabled, the compiler is allowed to
use the standard mathematical formulas for complex operations such as multiplying or
dividing. Because floating-point numbers are not stored exactly, using the normal mathe-
matical definitions can result in overflows where the numbers get larger than the floating-
point type can represent, even if the operands and result are below this limit.

a is 32.123000 + 24.456000i
b is 23.789000 + 42.987000i
a + b is: 55.912000 + 67.443000i
a - b is: 8.334000 + -18.531000i
a * b is: -287.116025 + 1962.655185i
a / b is: 0.752119 + -0.331050i
a ^ b is: -17857.051995 + 1365.613958i

Fig. E.8 | Using complex numbers in C99. (Part 2 of 2.)

934 Appendix E Multithreading and Other C11 and C99 Topics

Third, the C99 preprocessor allows passing empty arguments to a macro call—in the
previous version, the behavior of an empty argument was undefined, though gcc acts
according to the C99 standard even in C89 mode. In many cases, it results in a syntax
error, but in some cases it can be useful. For instance, consider a macro
PTR(type, cv, name) defined to be type * cv name (where cv means const or volatile).
In some cases, there is no const or volatile declaration on the pointer, so the second
argument will be empty. When an empty macro argument is used with the # or ## oper-
ator (Section 13.7), the result is the empty string or the identifier the argument was con-
catenated with, respectively.

A key preprocessor addition is variable-length argument lists for macros. This allows for
macro wrappers around functions like printf—for example, to automatically add the
name of the current file to a debug statement, you can define a macro as follows:

The DEBUG macro takes a variable number of arguments, as indicated by the ... in the ar-
gument list. As with functions, the ... must be the last argument; unlike functions, it may
be the only argument. The identifier __VA_ARGS__, which begins and ends with two under-
scores, is a placeholder for the variable-length argument list. When a call such as

is preprocessed, it’s replaced with

As mentioned in Section 13.7, strings separated by whitespace are concatenated during
preprocessing, so the three string literals will be combined to form the first argument to
printf.

E.8 Other C99 Features
Here we provide brief overviews of some additional C99 features. These include keywords,
language capabilities and standard library additions.

E.8.1 Compiler Minimum Resource Limits
[This section can be read after Section 14.5.]
Prior to C99 the standard required implementations of the language to support identifiers
of no less than 31 characters for identifiers with internal linkage (valid only within the file
being compiled) and no less than six characters for identifiers with external linkage (also valid
in other files). For more information on internal and external linkage, see Section 14.5. The
C99 standard increases these limits to 63 characters for identifiers with internal linkage and
to 31 characters for identifiers with external linkage. These are just lower limits. Compilers
are free to support identifiers with more characters than these limits. Identifiers are now al-
lowed to contain national language characters via Universal Character Names (C99 Stan-
dard, Section 6.4.3) and, if the implementation chooses, directly (C99 Standard, Section
6.4.2.1). [For more information, see C99 Standard Section 5.2.4.1.]

In addition to increasing the identifier length that compilers are required to support,
the C99 standard sets minimum limits on many language features. For example, compilers
are required to support at least 1,023 members in a struct, enum or union, and at least

#define DEBUG(...) printf(__FILE__ ": " __VA_ARGS__)

DEBUG("x = %d, y = %d\n", x, y);

printf("file.c" ": " "x = %d, y = %d\n", x, y);

E.8 Other C99 Features 935

127 parameters to a function. For more information on other limits set by the C99 Stan-
dard, see C99 Standard Section 5.2.4.1.

E.8.2 The restrict Keyword
[This section can be read after Section 7.5.]
The keyword restrict is used to declare restricted pointers. We declare a restricted pointer
when that pointer should have exclusive access to a region of memory. Objects accessed
through a restricted pointer cannot be accessed by other pointers except when the value of
those pointers was derived from the value of the restricted pointer. We can declare a re-
stricted pointer to an int as:

Restricted pointers allow the compiler to optimize the way the program accesses memory.
For example, the standard library function memcpy is defined in the C99 standard as follows:

The specification of the memcpy function states that it should not be used to copy between
overlapping regions of memory. Using restricted pointers allows the compiler to see that
requirement, and it can optimize the copy by copying multiple bytes at a time, which is
more efficient. Incorrectly declaring a pointer as restricted when another pointer points to
the same region of memory can result in undefined behavior. [For more information, see
C99 Standard Section 6.7.3.1.]

E.8.3 Reliable Integer Division
[This section can be read after Section 2.5.]
In compilers prior to C99, the behavior of integer division varies across implementations.
Some implementations round a negative quotient toward negative infinity, while others
round toward zero. When one of the integer operands is negative, this can result in different
answers. Consider dividing –28 by 5. The exact answer is –5.6. If we round the quotient
toward zero, we get the integer result of –5. If we round –5.6 toward negative infinity, we
get an integer result of –6. C99 removes the ambiguity and always performs integer divi-
sion (and integer modulus) by rounding the quotient toward zero. This makes integer divi-
sion reliable—C99-compliant platforms all treat integer division in the same way. [For
more information, see C99 Standard Section 6.5.5.]

E.8.4 Flexible Array Members
[This section can be read after Section 10.3.]
C99 allows us to declare an array of unspecified length as the last member of a struct. Con-
sider the following:

A flexible array member is declared by specifying empty square brackets ([]). To allocate
a struct with a flexible array member, use code such as:

int *restrict ptr;

void *memcpy(void *restrict s1, const void *restrict s2, size_t n);

struct s {
 int arraySize;
 int array[];
};

936 Appendix E Multithreading and Other C11 and C99 Topics

The sizeof operator ignores flexible array members. The sizeof(struct s) phrase is
evaluated as the size of all the members in a struct s except for the flexible array. The extra
space we allocate with sizeof(int) * desiredSize is the size of our flexible array.

There are many restrictions on the use of flexible array members. A flexible array
member can be declared only as the last member of a struct—so each struct may contain
at most one flexible array member. Also, a flexible array cannot be the only member of a
struct. The struct must also have one or more fixed members. Furthermore, any struct
containing a flexible array member cannot be a member of another struct. Finally, a
struct with a flexible array member cannot be statically initialized—it must be allocated
dynamically. You cannot fix the size of the flexible array member at compile time. [For
more information, see C99 Standard Section 6.7.2.1.]

E.8.5 Relaxed Constraints on Aggregate Initialization
[This section can be read after Section 10.3.]
In C99, it’s no longer required that aggregates such as arrays, structs, and unions be ini-
tialized by constant expressions. This enables the use of more concise initializer lists in-
stead of using many separate statements to initialize members of an aggregate.

E.8.6 Type Generic Math
[This section can be read after Section 5.3.]
The <tgmath.h> header is new in C99. It provides type-generic macros for many math
functions in <math.h>. For example, after including <tgmath.h>, if x is a float, the ex-
pression sin(x) will call sinf (the float version of sin); if x is a double, sin(x) will call
sin (which takes a double argument); if x is a long double, sin(x) will call sinl (the long
double version of sin); and if x is a complex number, sin(x) will call the appropriate ver-
sion of the sin function for that complex type (csin, csinf or csinl). C11 includes ad-
ditional generics capabilities which we mention later in this appendix.

E.8.7 Inline Functions
[This section can be read after Section 5.5.]
C99 allows the declaration of inline functions (as C++ does) by placing the keyword inline
before the function declaration, as in:

This has no effect on the logic of the program from the user’s perspective, but it can improve
performance. Function calls take time. When we declare a function as inline, the program
might no longer call that function. Instead, the compiler has the option to replace every call
to an inline function with a copy of the code body of that function. This improves the run-
time performance but it may increase the program’s size. Declare functions as inline only if
they are short and called frequently. The inline declaration is only advice to the compiler,
which can decide to ignore it. [For more information, see C99 Standard Section 6.7.4.]

int desiredSize = 5;
struct s *ptr;
ptr = malloc(sizeof(struct s) + sizeof(int) * desiredSize);

inline void randomFunction();

E.9 New Features in the C11 Standard 937

E.8.8 Return Without Expression
[This section can be read after Section 5.5.]
C99 adds tighter restrictions on returning from functions. In functions that return a non-
void value, we are no longer permitted to use the statement

In compilers prior to C99 this is allowed but results in undefined behavior if the caller tries
to use the returned value of the function. Similarly, in functions that do not return a value,
we are no longer permitted to return a value. Statements such as:

are no longer allowed. C99 requires that compatible compilers produce warning messages
or compilation errors in each of the preceding cases. [For more information, see C99 Stan-
dard Section 6.8.6.4.]

E.8.9 __func__ Predefined Identifier
[This section can be read after Section 13.9.]
The __func__ predefined identifier is similar to the __FILE__ and __LINE__ preprocessor
macros—it’s a string that holds the name of the current function. Unlike __FILE__, it’s not
a string literal but a real variable, so it cannot be concatenated with other literals. This is
because string literal concatenation is performed during preprocessing, and the preproces-
sor has no knowledge of the semantics of the C language proper.

E.8.10 va_copy Macro
[This section can be read after Section 14.3.]
Section 14.3 introduced the <stdarg.h> header and facilities for working with variable-
length argument lists. C99 added the va_copy macro, which takes two va_lists and cop-
ies its second argument into its first argument. This allows for multiple passes over a vari-
able-length argument list without starting from the beginning each time.

E.9 New Features in the C11 Standard
C11 refines and expands the capabilities of C. At the time of this writing, most C compil-
ers that support C11 implement only a subset of the new features. In addition, various new
features are considered optional by the C11 standard. Microsoft Visual C++ provides only
partial support for features that were added in C99 and C11. Figure E.9 lists C compilers
that have incorporated various C11 features.

return;

void returnInt() {return 1;}

Compiler URL

GNU GCC https://gcc.gnu.org/gcc-4.9/

Clang/LLVM clang.llvm.org/docs/ReleaseNotes.html

IBM XL C http://www.ibm.com/software/products/en/ccompfami

Pelles C www.smorgasbordet.com/pellesc/

Fig. E.9 | C11-compliant compilers.

938 Appendix E Multithreading and Other C11 and C99 Topics

A pre-final draft of the standard document can be found at

and the final standard document can be purchased at

E.9.1 New C11 Headers
Figure E.10 lists the new C11 standard library headers.

E.9.2 Multithreading Support
Multithreading is one of the most significant improvements in the C11 standard. Though
multithreading has been around for decades, interest in it is rising quickly due to the pro-
liferation of multicore systems—even smartphones and tablets are typically multicore
now. Most new processors today have at least two cores, with three, four and eight cores
now common. The number of cores will continue to grow. In multicore systems, the hard-
ware can put multiple cores to work on different parts of your task, thereby enabling the
tasks (and the program) to complete faster. To take the fullest advantage of multicore ar-
chitecture you need to write multithreaded applications. When a program splits tasks into
separate threads, a multicore system can run those threads in parallel.

Standard Multithreading Implementation
Previously, C multithreading libraries were nonstandard, platform-specific extensions. C
programmers often want their code to be portable across platforms. This is a key benefit
of standardized multithreading. C11’s <threads.h> header declares the new (optional)
multithreading capabilities that enable you to write more portable multithreaded C code.
At the time of this writing, very few C compilers provide C11 multithreading support. For
the examples in this section, we used the Pelles C compiler (Windows only), which you can
download from www.smorgasbordet.com/pellesc/. In this section, we introduce the ba-
sic multithreading features that enable you to create and execute threads. At the end of the
section we introduce several other multithreading features that C11 supports.

Running Multithreaded Programs
When you run a program on a modern computer system, your program’s tasks compete
for the attention of the processor(s) with the operating system, and with other programs

www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

webstore.ansi.org/RecordDetail.aspx?sku=INCITS%2FISO%2FIEC+9899-2012

Standard library
header Explanation

<stdalign.h> Provides type alignment controls.
<stdatomic.h> Provides uninterruptible access to objects, used in multithreading.
<stdnoreturn.h> Nonreturning functions
<threads.h> Thread library
<uchar.h> UTF-16 and UTF-32 character utilities

Fig. E.10 | New C11 standard library header files

E.9 New Features in the C11 Standard 939

and other activities that the operating system is running on your behalf. All kinds of tasks
are typically running in the background on your system. When you execute the examples
in this section, the time to perform each calculation will vary based on your computer’s
processor speed, number of processor cores and what’s running on your computer. It’s not
unlike a drive to the supermarket—the time it takes can vary based on traffic conditions,
weather and other factors. Some days the drive might take 10 minutes, but during rush
hour or bad weather it could take longer. The same is true for executing applications on
computer systems.

There is also overhead inherent in multithreading itself. Simply dividing a task into
two threads and running it on a dual-core system does not run it twice as fast, though it
will typically run faster than performing the thread’s tasks in sequence.

Overview of This Section’s Examples
To provide a convincing demonstration of the power of multithreading on a multicore
system, this section presents two programs:

• One performs two compute-intensive calculations sequentially.

• The other executes the same compute-intensive calculations in parallel threads.

We executed each program on single-core and dual-core Windows computers to demon-
strate the performance of each program in each scenario. We timed each calculation and
the total calculation time in both programs. The program outputs show the time improve-
ments when the multithreaded program executes on a multicore system.

Example: Sequential Execution of Two Compute-Intensive Tasks
Figure E.11 uses the recursive fibonacci function (lines 37–46) that we introduced in
Section 5.15. Recall that, for larger Fibonacci values, the recursive implementation can re-
quire significant computation time. The example sequentially performs the calculations
fibonacci(50) (line 16) and fibonacci(49) (line 25). Before and after each fibonacci
call, we capture the time so that we can calculate the total time required for the calculation.
We also use this to calculate the total time required for both calculations. Lines 21, 30 and
33 use function difftime (from header <time.h>) to calculate the number of seconds be-
tween two times.

Performance Tip E.1
As you’ll see, executing a multithreaded application on a single-core processor can actually
take longer than simply performing the thread’s tasks in sequence.

1 // Fig. E.11: figE_11.c

2 // Fibonacci calculations performed sequentially

3 #include <stdio.h>
4 #include <time.h>
5
6 unsigned long long int fibonacci(unsigned int n); // function prototype
7

Fig. E.11 | Fibonacci calculations performed sequentially. (Part 1 of 3.)

940 Appendix E Multithreading and Other C11 and C99 Topics

8 // function main begins program execution

9 int main(void)
10 {
11 puts("Sequential calls to fibonacci(50) and fibonacci(49)");
12
13 // calculate fibonacci value for 50
14 time_t startTime1 = time(NULL);
15 puts("Calculating fibonacci(50)");
16 unsigned long long int result1 = fibonacci(50);
17 time_t endTime1 = time(NULL);
18
19 printf("fibonacci(%u) = %llu\n", 50, result1);
20 printf("Calculation time = %f minutes\n\n",
21 difftime(endTime1, startTime1) / 60.0);
22
23 time_t startTime2 = time(NULL);
24 puts("Calculating fibonacci(49)");
25 unsigned long long int result2 = fibonacci(49);
26 time_t endTime2 = time(NULL);
27
28 printf("fibonacci(%u) = %llu\n", 49, result2);
29 printf("Calculation time = %f minutes\n\n",
30 difftime(endTime2, startTime2) / 60.0);
31
32 printf("Total calculation time = %f minutes\n",
33 difftime(endTime2, startTime1) / 60.0);
34 }

35
36 // Recursively calculates fibonacci numbers

37 unsigned long long int fibonacci(unsigned int n)
38 {
39 // base case

40 if (0 == n || 1 == n) {
41 return n;
42 }

43 else { // recursive step
44 return fibonacci(n - 1) + fibonacci(n - 2);
45 }

46 }

a) Output on a Dual-Core Windows Computer

Sequential calls to fibonacci(50) and fibonacci(49)
Calculating fibonacci(50)
fibonacci(50) = 12586269025
Calculation time = 1.366667 minutes

Calculating fibonacci(49)
fibonacci(49) = 7778742049
Calculation time = 0.883333 minutes

Total calculation time = 2.250000 minutes

Fig. E.11 | Fibonacci calculations performed sequentially. (Part 2 of 3.)

E.9 New Features in the C11 Standard 941

The first output shows the results of executing the program on a dual-core Windows
computer on which every execution produced the same results, though this is not guaran-
teed. The second and third outputs show the results of executing the program on a single-
core Windows computer on which the results varied, but execution always took longer,
because the processor was being shared between this program and all the others that hap-
pened to be executing on the computer at the same time.

Example: Multithreaded Execution of Two Compute-Intensive Tasks
Figure E.12 also uses the recursive fibonacci function, but executes each call to it in a sep-
arate thread. The first two outputs show the multithreaded Fibonacci example executing on
a dual-core computer. Though execution times varied, the total time to perform both Fibo-
nacci calculations (in our tests) was always less than for sequential execution in Fig. E.11—
because our program split into two threads and used two cores, rather than just one. The last
two outputs show the example executing on a single-core computer with the same speed as
the dual-core computer. Again, times varied for each execution, but the total time was more
than the sequential execution due to the overhead of sharing one processor among the pro-
gram’s threads and the other programs executing on the computer at the same time.

b) Output on a Single-Core Windows Computer

Sequential calls to fibonacci(50) and fibonacci(49)
Calculating fibonacci(50)
fibonacci(50) = 12586269025
Calculation time = 1.566667 minutes

Calculating fibonacci(49)
fibonacci(49) = 7778742049
Calculation time = 0.883333 minutes

Total calculation time = 2.450000 minutes

c) Output on a Single-Core Windows Computer

Sequential calls to fibonacci(50) and fibonacci(49)
Calculating fibonacci(50)
fibonacci(50) = 12586269025
Calculation time = 1.450000 minutes

Calculating fibonacci(49)
fibonacci(49) = 7778742049
Calculation time = 0.883333 minutes

Total calculation time = 2.333333 minutes

1 // Fig. E.12: figE_12.c

2 // Fibonacci calculations performed in separate threads
3 #include <stdio.h>

Fig. E.12 | Fibonacci calculations performed in separate threads. (Part 1 of 4.)

Fig. E.11 | Fibonacci calculations performed sequentially. (Part 3 of 3.)

942 Appendix E Multithreading and Other C11 and C99 Topics

4 #include <threads.h>
5 #include <time.h>
6
7 #define NUMBER_OF_THREADS 2
8
9 int startFibonacci(void *nPtr);

10 unsigned long long int fibonacci(unsigned int n);
11
12 typedef struct ThreadData {
13 time_t startTime; // time thread starts processing

14 time_t endTime; // time thread finishes processing

15 unsigned int number; // fibonacci number to calculate
16 } ThreadData; // end struct ThreadData

17
18 int main(void)
19 {

20 // data passed to the threads; uses designated initializers

21 ThreadData data[NUMBER_OF_THREADS] =
22 { [0] = {.number = 50},
23 [1] = {.number = 49}};
24
25 // each thread needs a thread identifier of type thrd_t
26

27
28 puts("fibonacci(50) and fibonacci(49) in separate threads");
29
30 // create and start the threads

31 for (size_t i = 0; i < NUMBER_OF_THREADS; ++i) {
32 printf("Starting thread to calculate fibonacci(%d)\n",
33 data[i].number);

34
35 // create a thread and check whether creation was successful

36

37
38
39 puts("Failed to create thread");
40 }
41 }

42
43 // wait for each of the calculations to complete
44 for (size_t i = 0; i < NUMBER_OF_THREADS; ++i)
45

46
47 // determine time that first thread started

48 time_t startTime = (data[0].startTime < data[1].startTime) ?
49 data[0].startTime : data[1].startTime;
50
51 // determine time that last thread terminated

52 time_t endTime = (data[0].endTime > data[1].endTime) ?
53 data[0].endTime : data[1].endTime;
54

Fig. E.12 | Fibonacci calculations performed in separate threads. (Part 2 of 4.)

thrd_t threads[NUMBER_OF_THREADS];

if (thrd_create(&threads[i], startFibonacci, &data[i]) !=
 thrd_success) {

thrd_join(threads[i], NULL);

E.9 New Features in the C11 Standard 943

55 // display total time for calculations

56 printf("Total calculation time = %f minutes\n",
57 difftime(endTime, startTime) / 60.0);
58 }

59
60 // Called by a thread to begin recursive Fibonacci calculation
61
62 {

63 // cast ptr to ThreadData * so we can access arguments
64 ThreadData *dataPtr = (ThreadData *) ptr;

65
66 dataPtr->startTime = time(NULL); // time before calculation
67

68 printf("Calculating fibonacci(%d)\n", dataPtr->number);
69 printf("fibonacci(%d) = %lld\n",
70 dataPtr->number,);

71
72 dataPtr->endTime = time(NULL); // time after calculation
73
74 printf("Calculation time = %f minutes\n\n",
75 difftime(dataPtr->endTime, dataPtr->startTime) / 60.0);
76 return thrd_success;
77 }

78
79 // Recursively calculates fibonacci numbers
80 unsigned long long int fibonacci(unsigned int n)
81 {

82 // base case
83 if (0 == n || 1 == n) {
84 return n;
85 }
86 else { // recursive step
87 return fibonacci(n - 1) + fibonacci(n - 2);
88 }
89 }

a) Output on a Dual-Core Windows Computer

fibonacci(50) and fibonacci(49) in separate threads
Starting thread to calculate fibonacci(50)
Starting thread to calculate fibonacci(49)
Calculating fibonacci(50)
Calculating fibonacci(49)
fibonacci(49) = 7778742049
Calculation time = 0.866667 minutes

fibonacci(50) = 12586269025
Calculation time = 1.466667 minutes

Total calculation time = 1.466667 minutes

Fig. E.12 | Fibonacci calculations performed in separate threads. (Part 3 of 4.)

int startFibonacci(void *ptr)

fibonacci(dataPtr->number)

944 Appendix E Multithreading and Other C11 and C99 Topics

struct ThreadData
The function that each thread executes in this example receives a ThreadData object as its
argument. This object contains the number that will be passed to fibonacci and two
time_t members where we store the time before and after each thread’s fibonacci call.
Lines 21–23 create an array of the two ThreadData objects and use designated initializers
to set their number members to 50 and 49, respectively.

b) Output on a Dual-Core Windows Computer

fibonacci(50) and fibonacci(49) in separate threads
Starting thread to calculate fibonacci(50)
Starting thread to calculate fibonacci(49)
Calculating fibonacci(50)
Calculating fibonacci(49)
fibonacci(49) = 7778742049
Calculation time = 0.783333 minutes

fibonacci(50) = 12586269025
Calculation time = 1.266667 minutes

Total calculation time = 1.266667 minutes

c) Output on a Single-Core Windows Computer

fibonacci(50) and fibonacci(49) in separate threads
Starting thread to calculate fibonacci(50)
Starting thread to calculate fibonacci(49)
Calculating fibonacci(50)
Calculating fibonacci(49)
fibonacci(49) = 7778742049
Calculation time = 1.683333 minutes

fibonacci(50) = 12586269025
Calculation time = 2.183333 minutes

Total calculation time = 2.183333 minutes

d) Output on a Single-Core Windows Computer

fibonacci(50) and fibonacci(49) in separate threads
Starting thread to calculate fibonacci(50)
Starting thread to calculate fibonacci(49)
Calculating fibonacci(50)
Calculating fibonacci(49)
fibonacci(49) = 7778742049
Calculation time = 1.600000 minutes

fibonacci(50) = 12586269025
Calculation time = 2.083333 minutes

Total calculation time = 2.083333 minutes

Fig. E.12 | Fibonacci calculations performed in separate threads. (Part 4 of 4.)

E.9 New Features in the C11 Standard 945

thrd_t
Line 26 creates an array of thrd_t objects. When you create a thread, the multithreading
library creates a thread ID and stores it in a thrd_t object. The thread’s ID can then be
used with various multithreading functions.

Creating and Executing a Thread
Lines 31–41 create two threads by calling function thrd_create (line 36). The function’s
three arguments are:

• A thrd_t pointer that thrd_create uses to store the thread’s ID.

• A pointer to a function (startFibonacci) that specifies the task to perform in the
thread. The function must return an int and receive a void pointer representing
the argument to the function (in this case, a pointer to a ThreadData object). The
int represents the thread’s state when it terminates (e.g., thrd_success or
thrd_error).

• A void pointer to the argument that should be passed to the function in the sec-
ond argument.

Function thrd_create returns thrd_success if the thread is created, thrd_nomem if there
was not enough memory to allocate the thread or thrd_error otherwise. If the thread is
created successfully, the function specified as the second argument begins executing in the
new thread.

Joining the Threads
To ensure that the program does not terminate until the threads terminate, lines 44–45
call thrd_join for each thread that we created. This causes the program to wait until the
threads complete execution before executing the remaining code in main. Function
thrd_join receives the thrd_t representing the ID of the thread to join and an int pointer
where thrd_join can store the status returned by the thread. After the threads terminate,
lines 48–57 calculate and display the total execution time by determining the time differ-
ence between the time the first thread started and the second thread ended.

Function startFibonacci
Function startFibonacci (lines 61–77) specifies the task to perform—in this case, to call
fibonacci to recursively perform a calculation, to time the calculation, to display the cal-
culation’s result and to display the time the calculation took (as we did in Fig. E.11). The
thread executes until startFibonacci returns the thread’s status (thrd_success, line 76),
at which point the thread terminates.

Other C11 Multithreading Features
In addition to the basic multithreading support shown in this section, C11 also includes
other features such as _Atomic variables and atomic operations, thread local storage, con-
ditions and mutexes. For more information on these topics, see Sections 6.7.2.4, 6.7.3,
7.17 and 7.26 of the standard and the following blog post and article:

http://blog.smartbear.com/software-quality/bid/173187/

 C11-A-New-C-Standard-Aiming-at-Safer-Programming

http://lwn.net/Articles/508220/

946 Appendix E Multithreading and Other C11 and C99 Topics

E.9.3 quick_exit function
In addition to exit (Section 14.6) and abort, C11 now also supports function quick_exit
(header <stdlib.h>) for terminating a program. Like exit, you call quick_exit and pass it
an exit status as an argument—typically EXIT_SUCCESS or EXIT_FAILURE, but other platform-
specific values are possible. The exit status value is returned from the program to the calling
environment to indicate whether the program terminated successfully or an error occurred.
When called, quick_exit can, in turn, call up to at least 32 other functions to perform clean-
up tasks. You register these functions with the at_quick_exit function (similar to atexit
in Section 14.6) and are called in the reverse order from which they were registered. Each reg-
istered function must return void and have a void parameter list. The motivation for func-
tions quick_exit and at_quick_exit is explained at

E.9.4 Unicode® Support
Internationalization and localization is the process of creating software that supports multiple
spoken languages and locale-specific requirements—such as displaying monetary formats. The
Unicode® character set contains characters for many of the world’s languages and symbols.

C11 now includes support for both the 16-bit (UTF-16) and 32-bit (UTF-32) Uni-
code character sets, which makes it easier for you to internationalize and localize your apps.
Section 6.4.5 in the C11 standard discusses how to create Unicode string literals. Section
7.28 in the standard discusses the features of the new Unicode utilities header
(<uchar.h>), which include the new types char16_t and char32_t for UTF-16 and UTF-
32 characters, respectively. At the time of this writing, the new Unicode features are not
widely supported among C compilers.

E.9.5 _Noreturn Function Specifier
The _Noreturn function specifier indicates that a function will not return to its caller. For
example, function exit (Section 14.6) terminates a program, so it does not return to its
caller. Such functions in the C Standard Library are now declared with _Noreturn. For
example, the C11 standard shows function exit’s prototype as:

If the compiler knows that a function does not return, it can perform various optimizations.
It can also issue error messages if a _Noreturn function is inadvertently written to return.

E.9.6 Type-Generic Expressions
C11’s new _Generic keyword provides a mechanism that you can use to create a macro
(Chapter 13) that can invoke different type-specific versions of functions based on the
macro’s argument type. In C11, this is now used to implement the features of the type-
generic math header (<tgmath.h>). Many math functions provide separate versions that
take as arguments floats, doubles or long doubles. In such cases, there is a macro that
automatically invokes the corresponding type-specific version. For example, the macro
ceil invokes the function ceilf when the argument is a float, ceil when the argument
is a double and ceill when the argument is a long double. Section 6.5.1.1 of the C11
standard discusses the details of using _Generic.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1327.htm

_Noreturn void exit(int status);

E.9 New Features in the C11 Standard 947

E.9.7 Annex L: Analyzability and Undefined Behavior
The C11 standard document defines the features of the language that compiler vendors
must implement. Because of the extraordinary range of hardware and software platforms
and other issues, the standard specifies in a number of places that the result of an operation
is undefined behavior. These can raise security and reliability concerns—every time there’s
an undefined behavior something happens that could leave a system open to attack or fail-
ure. The term “undefined behavior” appears approximately 50 times in the the C11 stan-
dard document.

The people from CERT (cert.org) who developed C11’s optional Annex L on ana-
lyzability scrutinized all undefined behaviors and discovered that they fall into two cate-
gories—those for which compiler implementers should be able to do something
reasonable to avoid serious consequences (known as bounded undefined behaviors), and
those for which implementers would not be able to do anything reasonable (known as crit-
ical undefined behaviors). It turned out that most undefined behaviors belong to the first
category. David Keaton (a researcher from the CERT Secure Coding Program) explains
the categories in the following article:

The C11 standard’s Annex L identifies the critical undefined behaviors. Including this
annex as part of the standard provides an opportunity for compiler implementors—a com-
piler that’s Annex L compliant can be depended upon to do something reasonable for most
of the undefined behaviors that might have been ignored in earlier implementations.
Annex L still does not guarantee reasonable behavior for critical undefined behaviors. A
program can determine whether the implementation is Annex L compliant by using con-
ditional compilation directives (Section 13.5) to test whether the macro
__STDC_ANALYZABLE__ is defined.

E.9.8 Memory Alignment Control
In Chapter 10, we discussed the fact that computer platforms have different boundary
alignment requirements, which could lead to struct objects requiring more memory than
the total of their members’ sizes. C11 now allows you to specify the boundary alignment
requirements of any type using features of the <stdalign.h> header. _Alignas is used to
specify alignment requirements. Operator alignof returns the alignment requirement for
its argument. Function aligned_alloc allows you to dynamically allocate memory for an
object and specify its alignment requirements. For more details see Section 6.2.8 of the
C11 standard document.

E.9.9 Static Assertions
In Section 13.10, you learned that C’s assert macro tests the value of an expression at ex-
ecution time. If the condition’s value is false, assert prints an error message and calls func-
tion abort to terminate the program. This is useful for debugging purposes. C11 now
provides _Static_assert for compile-time assertions that test constant expressions after
the preprocessor executes and at a point during compilation when the types of expressions
are known. For more details see Section 6.7.10 of the C11 standard document.

http://blog.sei.cmu.edu/post.cfm/improving-security-in-the-latest-

c-programming-language-standard-1

948 Appendix E Multithreading and Other C11 and C99 Topics

E.9.10 Floating-Point Types
C11 is now compatible with the IEC 60559 floating-point arithmetic standard, though
support for this is optional. Among its features, IEC 60559 defines how floating-point
arithmetic should be performed to ensure that you always get the same results, whether the
calculations are performed by hardware, software or both, and across implementations
(whether in C or in other languages that support this standard). You can learn more about
this standard at:

E.10 Web Resources

C99 Resources
http://www.open-std.org/jtc1/sc22/wg14/

Official site for the C standards committee. Includes defect reports, working papers, projects and
milestones, the rationale for the C99 standard, contacts and more.
http://blogs.msdn.com/b/vcblog/archive/2007/11/05/iso-c-standard-update.aspx

Blog post of Arjun Bijanki, the test lead for the Visual C++ compiler. Discusses why C99 is not sup-
ported in Visual Studio.
http://www.ibm.com/developerworks/linux/library/l-c99/index.html

Article: “Open Source Development Using C99,” by Peter Seebach. Discusses C99 library features
on Linux and BSD.
http://www.informit.com/guides/content.aspx?g=cplusplus&seqNum=215

Article: “A Tour of C99,” by Danny Kalev. Summarizes some of the new features in the C99 standard.

C11 Standard
http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS%2FISO%2FIEC+9899-2012

Purchase the ANSI variant of the C11 standard.
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

This is the last free draft of the C11 standard before it was approved and published.

What’s New in C11
http://en.wikipedia.org/wiki/C11_(C_standard_revision)

The Wikipedia page for the new C11 standard describes what's new since C99.
http://progopedia.com/dialect/c11/

This page includes a brief listing of the new features in C11.
http://www.informit.com/articles/article.aspx?p=1843894

The article, “The New Features of C11,” by David Chisnall.
http://www.drdobbs.com/cpp/c-finally-gets-a-new-standard/232800444

The article, “C Finally Gets a New Standard,” by Tom Plum. Discusses concurrency, keywords, the
thread_local storage class, optional threads and more.
http://www.drdobbs.com/cpp/cs-new-ease-of-use-and-how-the-language/240001401

The article, “C’s New Ease of Use and How the Language Compares with C++,” by Tom Plum. Dis-
cusses some of the new C11 features that match features in C++, and a few key differences in C11
that have no corresponding features in C++.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/

catalogue_detail.htm?csnumber=57469

E.10 Web Resources 949

http://www.i-programmer.info/news/98-languages/3546-new-iso-c-standard-c1x.html

The article, “New ISO C standard—C11,” by Mike James. Briefly discusses some of the new fea-
tures.
http://www.drdobbs.com/cpp/the-new-c-standard-explored/232901670

The article, “The New C Standard Explored,” by Tom Plum. Discusses the C11 Annex K functions,
fopen() safety, fixing tmpnam, the %n formatting vulnerability, security improvements and more.
http://www.sdtimes.com/link/36892

The article, “The thinking behind C11,” by John Benito, the convener of the ISO working group
for the C programming language standard. The article discusses the C programming language stan-
dard committee’s guiding principles for the new C11 standard.

Improved Security
http://blog.smartbear.com/software-quality/bid/173187/C11-A-New-C-Standard-Aim-

ing-at-Safer-Programming

The blog, “C11: A New C Standard Aiming at Safer Programming,” by Danny Kalev. Discusses the
problems with the C99 standard and new hopes with the C11 standard in terms of security.
http://www.amazon.com/exec/obidos/ASIN/0321822137/deitelassociatin

The book, Secure Coding in C and C++, Second Edition, by Robert Seacord. Discusses the security
benefits of the Annex K library.
http://blog.sei.cmu.edu/post.cfm/improving-security-in-the-latest-c-program-

ming-language-standard-1

The blog, “Improving Security in the Latest C Programming Language Standard,” by David Keaton
of the CERT Secure Coding Program at Carnegie Mellon’s Software Engineering Institute. Discuss-
es bounds checking interfaces and analyzability.
http://blog.sei.cmu.edu/post.cfm/helping-developers-address-security-with-the-

cert-c-secure-coding-standard

The blog, “Helping Developers Address Security with the CERT C Secure Coding Standard,” by
David Keaton. Discusses how C has handled security issues over the years and the CERT C Secure
Coding Rules.

Bounds Checking
http://www.securecoding.cert.org/confluence/display/seccode/ERR03-C.+Use+run-

time-constraint+handlers+when+calling+the+bounds-checking+interfaces

Carnegie Mellon’s Software Engineering Institute’s post, “ERR03-C. Use runtime-constraint han-
dlers when calling the bounds-checking interfaces,” by David Svoboda. Provides examples of non-
compliant and compliant code.

Multithreading
http://stackoverflow.com/questions/8876043/multi-threading-support-in-c11

The forum discussion, “Multi-Threading support in C11.” Discusses the improved memory se-
quencing model in C11 vs C99.
http://www.t-dose.org/2012/talks/multithreaded-programming-new-c11-and-c11-

standards

The slide presentation, “Multithreaded Programming with the New C11 and C++11 Standards,”
by Klass van Gend. Introduces the new features of both the C11 and C++11 languages and discusses
how far gcc and clang are implementing the new standards.
http://www.youtube.com/watch?v=UqTirRXe8vw

The video, “Multithreading Using Posix in C Language and Ubuntu,” with Ahmad Naser.

950 Appendix E Multithreading and Other C11 and C99 Topics

http://fileadmin.cs.lth.se/cs/Education/EDAN25/F06.pdf

The slide presentation, “Threads in the Next C Standard,” by Jonas Skeppstedt.
http://www.youtube.com/watch?v=gRe6Zh2M3zs

A video of Klaas van Gend discussing multithreaded programming with the new C11 and C++11
standards.

Compiler Support
http://www.ibm.com/developerworks/rational/library/support-iso-c11/support-iso-

c11-pdf.pdf

The whitepaper, “Support for ISO C11 added to IBM XL C/C++ compilers: New features intro-
duced in Phase 1.” Provides an overview of the new features supported by the compiler including
complex value initialization, static assertions and functions that do not return.

Appendices on the Web

The following appendices are available as PDF documents from this book’s Companion
Website (www.pearsonhighered.com/deitel/):

• Appendix F, Using the Visual Studio Debugger

• Appendix G, Using the GNU gdb Debugger

• Appendix H, Using the Xcode Debugger

These files can be viewed in Adobe® Reader® (get.adobe.com/reader).

Symbols
\t horizontal-tab escape sequence

42
^ bitwise exclusive OR operator 417
^ inverted scan set 394
^= bitwise exclusive OR assignment

operator 424
__func__ predefined identifier 937
__VA_ARGS__ 934
_Pragma operator 933
, (comma operator) 118
:: (binary scope resolution

operator) 669
:: (scope resolution operator) 612
::, unary scope resolution operator

566
!, logical negation (NOT) operator

132, 134
!= inequality operator 54
? 75
?: conditional operator 75, 95, 193
. dot operator 408, 409
* assignment suppression character

396
* multiplication operator 49, 87
*= multiplication assignment

operator 95
/ division operator 87
/*…*/ multi-line comment 41
// single-line comment 551
/= division assignment operator 95
\\ backslash-character escape

sequence 42
\? escape sequence 390
\' single-quote-character escape

sequence 390
\" double-quote-character escape

sequence 390
\\ backslash-character escape

sequence 390
\0 null character escape sequence

226
\a alert escape sequence 42, 390
\b escape sequence 390
\f escape sequence 337

\f form-feed escape sequence 390
\n newline escape sequence 42, 337,

390
\r carriage-return escape sequence

337, 390
\t horizontal-tab escape sequence

390
\v vertical-tab escape sequence 337,

390
& address operator 46
& and * pointer operators 278
& bitwise AND operator 417
& to declare reference 560

in a parameter list 561
&&, logical AND operator 132, 193
&= bitwise AND assignment

operator 424
formatting flag 389
preprocessor operator 41, 524
preprocessor operator 525
% character in a conversion specifier

87, 379
% remainder operator 49, 175
%% conversion specifier 384
%= remainder assignment operator

95
%c conversion specifier 168, 383,

394
%d conversion specifier 168
%E conversion specifier 382, 393
%e conversion specifier 382, 393
%f conversion specifier 87, 167
%g conversion specifier 393
%hd conversion specifier 168
%hu conversion specifier 168
%i conversion specifier 392
%ld conversion specifier 168
%Lf conversion specifier 167
%lf conversion specifier 167
%lld conversion specifier 168
%llu conversion specifier 168
%lu conversion specifier 168
%p conversion specifier 278, 383
%s conversion specifier 58, 306, 383,

394
%u conversion specifier 90, 168, 380

%X conversion specifier 391
+ flag 387, 388
- unary minus operator 95
+ unary plus operator 95
-- operator 93, 95, 296
++ operator 93, 95, 296
+= addition assignment operator 92,

95
< less than operator 54
< redirect input symbol 532
<< left-shift operator 417
<< stream insertion operator 553
<<= left-shift assignment operator

424
<= less-than-or-equal-to operator 53
<string.h> 349
= 650, 688
= (assignment operator) 47
= assignment operator 95
-= subtraction assignment operator

95
== equality operator 53, 136
> greater than operator 54
> redirect output symbol 533
-> structure pointer operator 408
>= greater-than-or-equal-to operator

53
>> append output symbol 533
>> right-shift operator 417
>>= right shift assignment operator

424
| bitwise inclusive OR operator 417
| pipe 533
|= bitwise inclusive OR assignment

operator 424
||, logical OR operator 132, 193
~, bitwise complement operator

417, 422

Numerics
0 conversion specifier 46, 47, 392,

393
0X 829
0x 389, 829
100 Destinations 30

Index

Index 953

A
a file open mode 448
a.out 17
a+ file open mode 448
ab file open mode 448
ab+ file open mode 448
abnormal program termination 541
abort function 526, 643, 863
absolute value 160
abstract base class 783, 784, 810
abstract class 783, 784, 785, 800
abstraction 161
accelerometer 4
access function 636
access global variable 566
access non-static class data

members and member functions
672

access private member of a class
599

access privileges 284
access specifier 592, 599, 662

private 599
protected 629
public 599

access the caller’s data 559
access violation 48, 336, 383
accessibility heuristic 271
accessor 601
Account class exercise 625
Account inheritance hierarchy

exercise 766
accounts receivable 152
accumulated outputs 553
accumulator 325, 326, 330
action 42, 42, 53, 70, 71, 78
action oriented 574
action statement 71
action symbol 72
action/decision model 42, 74
actions (computers perform) 2
add an integer to a pointer 295
addition 4
addition assignment operator (+=) 92
addition program 44
addition program that displays the

sum of two numbers 551
address 486
address of a bit field 428
address operator (&) 46, 173, 226,

277, 279, 291, 688
“administrative” section of the

computer 5
Advanced String Manipulation

exercises 373

aggregate data types 287, 405
aggregation 635
Agile Alliance

(www.agilealliance.org) 32
Agile Manifesto

(www.agilemanifesto.org) 32
agile software development 32
aiming a derived-class pointer at a

base-class object 774
airline reservation system 268
Ajax (Asynchronous JavaScript and

XML) 32
alert (\a) 42
algebra 49
algorithm 70, 81

insertion sort 910
merge sort 913
selection sort 906

<algorithm> header 556
alias 562

for a variable (reference) 562
for the name of an object 647

aligning 379
allocate 701
allocate dynamic memory 864
allocate memory 555, 701
alpha software 33
ALU (arithmetic and logic unit) 4
American National Standards

Committee on Computers and
Information Processing 10

American National Standards
Institute (ANSI) 10

ampersand (&) 46, 48
analysis of examination results 90
analyze a requirements document

575
AND 417
Android 12, 28

operating system 27, 28
smartphone 28

angle brackets (< and >)
in templates 571

angle brackets (< and >) in templates
876

Annex K 257
ANSI 10
Apache Software Foundation 27
append output symbol >> 533
Apple Inc. 28
Apple Macintosh 28
area of a circle 111
argc 535
argument 42, 46
argument (of a function) 159
argument to a function 594

arguments 521
arguments passed to member-object

constructors 654
argv 535
arithmetic 17
arithmetic and logic unit (ALU) 4
arithmetic assignment operators 92

+=, -=, *=, /=, and %= 92
arithmetic conversion rules 167
arithmetic expressions 295
arithmetic mean 51
arithmetic operations 326
arithmetic operators 49, 49

precedence 51
arithmetic overflow 95, 859
arithmetic overflow error 868
arithmetic underflow error 868
“arity” of an operator 689
ARPANET 29
<array> header 555
array 215, 216

bounds checking 223, 256
Array class 704
Array class definition with

overloaded operators 708
Array class member-function and

friend function definitions 709
Array class test program 704
array index notation 288, 301
array initializer 218, 219
array notation 301
array of pointers 302, 311

to functions 324
array of strings 302
array subscript notation 226
array subscript operator ([]) 708
arrow operator (->) 408, 636, 664
ASCII (American Standard Code for

Information Interchange) 6, 126,
819

assembler 8
assembly language 8
assert macro 526
<assert.h> 172, 526
assigning addresses of base-class and

derived-class objects to base-class
and derived-class pointers 771

assigning class objects 650
Assigning elements of an array in

C89 927
assignment expressions 295
assignment operator = 47, 54
assignment operator functions 713
assignment operators 650, 688

=, +=, -=, *=, /=, and %= 92
assignment statement 47

954 Index

associate from right-to-left 56, 87
association (in the UML) 575
associativity 51, 57, 95, 216, 278,

425
associativity not changed by

overloading 689
asterisk (*) 49
asynchronous event 859
at member function

class string 688
at member function of vector 582
atexit function 539
attribute 574, 597

in the UML 573, 593
attribute of a class 12, 14
audible (bell) 390
auto storage class specifier 182
auto_ptr object manages

dynamically allocated memory
866

automatic array 219
automatic local variable 563
automatic object 860
automatic storage 182, 215, 228
automatic variable 169, 182, 183
average 51
avoid naming conflicts 662
avoid repeating code 641

B
B language 9
backslash (\) 42, 390, 522
bad member function 839
bad_alloc exception 861, 863, 867
bad_cast exception 867
bad_typeid exception 867
badbit of stream 819, 839
bandwidth 29
bank account program 462
bar chart 152, 224
base 892
base 10 number system 344
base 16 number system 344
base 8 number system 344
base case(s) 187
base class 733, 735
base-class catch 867
base-class constructor 760
base-class exception 867
base-class member accessibility in

derived class 761
base-class pointer to a derived-class

object 782
base-class private member 751
base specified for a stream 833

base-10 number system 829
base-16 number system 829
base-8 number system 829
base-class initializer syntax 749
base-class member function

redefined in a derived class 758
BasePlusCommissionEmployee class

header 795
BasePlusCommissionEmployee class

implementation file 795
BasePlusCommissionEmployee class

represents an employee who
receives a base salary in addition
to a commission 742

BasePlusCommissionEmployee class
test program 745

BasePlusCommissionEmployee class
that inherits from class
CommissionEmployee, which does
not provide protected data 757

basic_fstream class template 817
basic_ifstream class template 817
basic_ios class template 815
basic_iostream class template 815,

817
basic_istream class template 815
basic_ostream class template 817
BCPL 9
behavior

of a class 13
behavior of an object 574
behaviors in the UML 573
Bell Laboratories 9, 11
beta software 34
big data 7
Big O notation 905, 909
binary 337
binary (base 2) number system 892
binary arithmetic operators 87
binary digit (bit) 5
binary number 153
binary operator 47, 50
binary search 195, 208, 241, 243,

273
binary search tree 501, 505, 506,

515
binary-to-decimal conversion

problem 110
binary tree 501
binary tree insert 195
binary tree sort 505
bit (binary digit) 5
bit field 425, 426
bit field member name 425
bit manipulation 428
<bitset> header 555

bitwise AND (&) operator 417, 422,
438

bitwise AND, bitwise inclusive OR,
bitwise exclusive OR and bitwise
complement operators 420

bitwise assignment operators 424
bitwise complement operator (~)

420, 422, 899
bitwise data manipulations 417
bitwise exclusive OR (^) operator

417, 422
bitwise inclusive OR (|) operator

417, 422
bitwise left-shift operator (<<) 684
bitwise operators 416, 417
bitwise right-shift operator (>>) 684
bitwise shift operators 423
bitwise XOR 417
blank 73
blank insertion 66
block 41, 77, 164, 597
block of data 359
block scope 184, 636

variable 636
body mass index (BMI) 37
Body Mass Index Calculator (Test

Drive) 37
body of a class definition 591
body of a function 41, 56, 592
body of a while 78
Bohm, C. 71
Booch, Grady 576
_Bool 930
_Bool Data Type 135
bool primitive type (C++) 558
boolalpha stream manipulator 829,

835
boolean type 135, 929
bounds checking 223, 256
braces ({}) 77
branching instructions 330
break 127, 130, 132, 155
brittle software 754
bubble sort 234, 241, 265, 289,

291, 308
with pass by reference 289

bucket sort 921
buffer is filled 817
buffer is flushed 817
buffer overflow 256
buffered output 817
buffered standard error stream 815
buffering 840
building-block approach 11, 14,

554, 574
business-critical computing 854

Index 955

business publications 34
byte 4, 5, 416

C
C compiler 40
C development environment 15
C Environment 15
C language 9
C preprocessor 16, 41, 519
C program and sample execution for

the class average problem with
counter-controlled iteration 80

C program and sample execution for
the class average problem with
sentinel-controlled iteration 85

C program and sample executions
for examination results problem
90

C Resource Center 16
C standard document (INCITS/

ISO/IEC 9899-1999) 10
C Standard Library 11, 15, 158,

174, 284
C# programming language 12
C++ 166
C++ Standard Library 554

<string> file 595
class template vector 577
header files 554
header location 609
string class 595

C++11
default type arguments for

function template type
parameters 882

delegating constructor 642
in-class initializer 631
list initializer 642
noexcept 860
override 777
unique_ptr class template 864,

864, 867
C11 925
C11 headers 938
C95 926
C95 headers 926
C99 10, 925
C99 headers 926
calculations 5, 47, 57
call a function 159, 162, 594
call-by-reference 410
call-by-value 410
caller 159
calling function (caller) 159, 592,

600

calloc 543
camel case 591
capital letter 45
Carbon Footprint Calculator 37

Test Drive 37
card games 319
Card Shuffling and Dealing 303,

306, 411, 681, 682
caret (^) 395
carriage return (’\r’) 337
carry bit 899
cascading member function calls

664, 665, 667
cascading stream insertion

operations 553
case label 127, 128, 184
case sensitive 45, 81
casino 178
<cassert> header 556
cast 523

downcast 775
cast operator 85, 86, 168, 717, 718

(float) 86
cast operator function 717
catch a base class object 867
catch all exceptions 868
catch block 582
catch clause (or handler) 855, 859
catch handler 853
catch related errors 861
catch(...) 868
Catching All Exceptions 873
Catching Derived-Class Exceptions

873
cbrt function 160
<cctype> header 555
ceil function 160
Celsius 402
central processing unit (CPU) 5
cerr (standard error stream) 618,

815, 816
<cfloat> header 556
chaining stream insertion operations

553
char * 383
char ** 342
char primitive type 125, 168, 335
CHAR_BIT symbolic constant 419
char16_t 815
char32_t 815
character 5
character and string conversion

specifiers 383
character array 226, 227
character constant 285, 335, 383
character handling library 336, 337

character presentation 556
character set 5, 66, 126, 335
character string 42, 217
check if a string is a palindrome 195
check protection 374
checkerboard 66, 110
chess 269
child 501
chrono library 680
cin (standard input stream) 552,

815, 816
cin.clear 839
cin.eof 819, 839
cin.get function 820
cin.tie function 840
circumference of a circle 111
class 13, 554, 573, 574

attribute 597
client-code programmer 614
constructor 602
data member 597
default constructor 603, 605
define a constructor 604
define a member function 590
implementation programmer

614
instance of 598
instance variable 14
interface 610
interface described by function

prototypes 610
member function 590
member-function

implementations in a separate
source-code file 611

naming convention 591
object of 598
public services 610
services 601

class averaging problem 79, 84, 85
class definition 591
class development 704
class diagram (UML) 593
class hierarchy 734, 782, 784
class-implementation programmer

614
class keyword 571, 876
class library 762
class scope 632, 635
class-scope variable is hidden 636
class template 875,

auto_ptr 864
definition 875
scope 878
specialization 875
Stack 876, 878

956 Index

class-average problem with counter-
controlled iteration 80

class-average program with sentinel-
controlled iteration 85

Classes
Array 704
Complex 726
exception 851
HugeInt 728
invalid_argument 867
out_of_range exception class

582
Polynomial 731
RationalNumber 731
runtime_error 851, 859
string 595
unique_ptr 864
vector 576

classic stream libraries 814
clear function of ios_base 839
client code 769
client-code programmer 614
client of a class 574
client of an object 601
<climits> header 556
clock 178
clog (standard error buffered) 815,

816
cloud computing 33
<cmath> header 555
coefficient 731
coercion of arguments 167
coin tossing 207
colon (:) 657
column 246
combining Class Time and Class

Date exercise 679
comma operator (,) 118, 193
comma-separated list 118
command-line arguments 535, 536
comment 41, 551
commission 106, 265
CommissionEmployee class header

792
CommissionEmployee class

implementation file 793
CommissionEmployee class

represents an employee paid a
percentage of gross sales 737

CommissionEmployee class test
program 740

CommissionEmployee class uses
member functions to manipulate
its private data 755

Common Programming Errors
overview xxviii

Communications of the ACM 71
commutative operation 716
comparing strings 349
comparison expressions 295
compilation 16
compilation error 16, 135
compile 16
compile phase 16
compile-time error 16
compiler 8, 16, 40, 41, 42
compiling

multiple-source-file program
615

complement operator (~) 417
complete algorithm 72
_Complex 933
complex 933
Complex class 678, 726, 848

exercise 678
member-function definitions

726
complex numbers 678, 726, 932
complex.h 933
components (software) 11, 12
composition 635, 654, 658, 733,

736
as an Alternative to Inheritance

765
compound interest 121, 151
compound literal 928
compound statement 77
computer dump 329
computer program 3
computer simulator 328
Computer-Assisted Instruction

(CAI) 212, 213
Computer-Assisted Instruction

(CAI): Difficulty Levels 213
Computer-Assisted Instruction

(CAI): Monitoring Student
Performance 212

Computer-Assisted Instruction
(CAI): Reducing Student Fatigue
212

Computer-Assisted Instruction
(CAI): Varying the Types of
Problems 213

Computerization of Health Records
439, 626

computers in education 212
computing the sum of the elements

of an array 221
concatenate stream insertion

operations 553
concatenating strings 349
concrete class 783

concrete derived class 788
condition 53, 132
conditional compilation 519, 523
conditional execution of

preprocessor directives 519
conditional expression 75
conditional operator (?:) 75, 95
connector symbols 72
consistent state 618
const 284, 287, 291, 302, 652, 693
const keyword 233, 557
const member function 592, 652
const member function on a const

object 653
const member function on a non-

const object 653
const object 653
const objects and const member

functions 653
const pointer 577
const qualifier 283
const qualifier before type specifier

in parameter declaration 561
const type qualifier 234
const version of operator[] 715
constant 512
constant integral expression 129
constant pointer 288, 298
constant pointer to constant data

284, 288
constant pointer to non-constant

data 284, 287, 288
constant reference 714
constant reference parameter 561
constant run time 905
constant string 302
constructed inside out 659
constructor 602

call order 645
conversion 717, 719
copy 712
default 605
default arguments 640
defining 604
explicit 719
function prototype 611
in a UML class diagram 606
inherit 760
naming 604
parameter list 604
single argument 719, 720

constructors
inherit from base class 760

constructors and destructors called
automatically 643

constructors cannot be virtual 782

Index 957

constructors cannot specify a return
type 603

Constructors Throwing Exceptions
873

container 555
container class 636, 708
continue 130, 132, 155
continuous beta 34
control characters 340
control statement 74
control-statement nesting 73
control-statement stacking 73, 74
control structures 71
control variable 114, 120

increment 115
initial value 115
name 115

controlling expression in a switch
127

conversion 897
conversion constructor 717, 719
conversion operator 717

explicit 720
conversion rules 167
conversion specifications 379
conversion specifier 46, 379, 389

%u 90
%X 391
0 (zero) flag 389
c 382
e and E 380
f 381
for scanf 391
g (or G) 381
s 382
scanf 391

conversions among fundamental
types
by cast 717

converson specifiers
%s 58

convert
a binary number to decimal 897
a hexadecimal number to

decimal 897
an octal number to decimal 897
between types 717
lowercase letters to uppercase

letters 172, 555
among user-defined types and

built-in types 717
Converting Fahrenheit to Celsius

847
Cooking with Healthier Ingredients

375
copy 173

copy assignment 650
copy constructor 651, 658, 707,

712, 714, 760
copy-and-paste approach 746
copying strings 349
correction 17
cos function 161
cosine 161
counter 80, 107
counter-controlled iteration 80,

115, 116
counter-controlled looping 88, 89
counting letter grades 127
counting loop 116
cout (<<) (the standard output

stream) 552, 815, 816
cout.put 818
cout.write 823
CPU (central processing unit) 5, 17
craps (casino game) 178, 211
“crashing” 83
create an object (instance) 592
create new data types 553
create sentences 371
CreateAndDestroy class

definition 644
member-function definitions

645
Creating and traversing a binary tree

502
credit limit problem 105
credit limits 152
crossword puzzle generator 375
<cstdio> header 556
<csdtlib> header 863
<cstdlib> header 555
<cstring> header 555
<ctime> header 555
<Ctrl> c 540
<Ctrl> d 826
<Ctrl> z 826
<ctype.h> header file 336, 172, 523
Cube a variable using pass by

reference 280
Cube a variable using pass by value

280
cube root function 160
custom header 173
Cygwin 926

D
dangerous pointer manipulation

800
dangling else problem 108

dangling pointer 713
dangling reference 563
dangling-else problem 109
data 3
data hiding 599, 601
data hierarchy 5, 6
data member 574, 590, 597, 598
data structure 478
data types in the UML 596
database 7
date 173
Date class 654, 678, 696
Date class exercise 625
Date class definition 654
Date class definition with

overloaded increment operators
696

Date class member function
definitions 655

Date class member-function and
friend-function definitions 697

Date Class Modification 680
Date class test program 699
__DATE__, predefined symbolic

constant 525
deallocate 701
deallocate memory 480, 701, 864
debug 71
dec stream manipulator 824, 829,

833
decimal 155, 337, 344
decimal (base 10) number system

892
decimal (base-10) number system

829
decimal digit 5
decimal numbers 833
decimal point 818, 829
decision 42, 53, 57, 79
decision symbol 72, 73
decisions (made by computers) 2
deck of cards 302, 304
declaration of a function 611
declaring a static member function

const 672
decomposition 161
decrement 115, 119, 296
decrement a pointer 295
decrement operator (--) 93, 695
decrypt 112
default access mode for class is

private 599
default argument 564, 566, 637
default arguments with constructors

637
default case 127, 128

958 Index

default constructor 603, 605, 638,
659, 696, 707, 712, 760
provided by the compiler 605
provided by the programmer

605
default copy constructor 658
default delimiter 822
default memberwise assignment 650
default memberwise copy 712
default precision 87, 381
default to decimal 833
default type argument for a type

parameter 882, 882
define a constructor 604
define a member function of a class

590
Define class GradeBook with a

member function
displayMessage, create a
GradeBook object, and call its
displayMessage function 590

Define class GradeBook with a
member function that takes a
parameter, create a GradeBook
object and call its
displayMessage function 594

#define preprocessor directive 220,
520, 630

defining occurrence 18
definite iteration 80, 114
definition 45
Deitel Resource Centers 34
delegating constructor 642
delete 713, 864, 866
delete [] (dynamic array

deallocation) 703
delete operator 701, 782
deleting a node from a list 488
deleting dynamically allocated

memory 713
delimiter (with default value '\n')

820
delimiting characters 358
DeMorgan’s Laws 154
depth of a binary tree 515
<deque> header 555
dequeue 495
dereferencing a pointer 278
dereferencing a void * pointer 297
dereferencing operator (*) 277, 409
derive one class from another 635
derived class 733, 735, 762

indirect 794
derived-class catch 867
derived data type 405
design a system 575

design pattern 32
designated initializer 927, 929
destructive 48
destructor 643, 747

call order 643, 645
called in reverse order of

constructors 643
destructor in a derived class 760
destructors called in reverse order

760
determining the length of strings

349
devices 16, 17
diagnostics 172
diagnostics that aid program

debugging 556
diameter of a circle 111
diamond symbol 72, 73, 74, 79
dice game 178
dice rolling 175, 178, 225

using arrays instead of switch
225

dictionary 475
digit 67, 892
direct base class 735
directly reference a value 276
disk 3, 17
disk drive 814
disk I/O completion 859
disk space 862, 863
displacement 458, 803
display a binary tree 516
display screen 814, 816
displaying

an unsigned integer in bits 417
value of a union in both member

data types 415
distance between two points 210
divide and conquer 158, 161
divide by zero 17
DivideByZeroException 855
division 4, 49
division by zero 83
do...while iteration statement 73
do…while statement example 129
document a program 40
dot (.) operator 593
dot operator (.) 408, 636, 664, 777,

865
double 167
double-array subscripting 725
double backslash (\\) 42
double complex 933
double indirection (pointer to a

pointer) 486
double primitive type 122

double quote character (") 42
double quotes 383
double-selection statement 72, 89
“doubly initializing” member

objects 659
downcasting 775
drawing graphs 152
driver program 607
dual-core processor 5
dummy value 82
dump 329
duplicate elimination 266, 272,

506, 515
duration 182, 184
dynamic array 543
dynamic binding 777, 799, 800,

803
dynamic casting 804
dynamic data structure 275, 478
dynamic memory 864
dynamic memory allocation 479,

543, 650, 651, 712, 713, 782,
864
allocate and deallocate storage

643
array of integers 708

dynamic memory management 275,
701

dynamic_cast 806, 867
dynamically determine function to

execute 776

E
Eclipse 16
Eclipse Foundation 27
edit phase 16, 17
editor 16, 334
efficiency of

insertion sort 913
merge sort 918
selection sort 909

Eight Queens 195, 272, 273
Eight Queens: Brute Force approach

272
electronic mail (e-mail) 29
element of an array 215
#elif 523
ellipsis (...) in a function prototype

533
emacs 16
e-mail (electronic mail) 29
embedded parentheses 50
embedded system 9, 27

Index 959

Employee class 654
definition showing composition

656
definition with a static data

member to track the number
of Employee objects in
memory 670

exercise 625
header 787
implementation file 788
member-function definitions

657, 670
employee identification number 6
empty member function

of string 687
empty parameter list 564
empty parentheses 592, 593, 596
empty statement 78
empty string 600
encapsulation 14, 574, 599, 601,

633, 649, 659
encrypt 112
end line 553
“end of data entry” 82
end-of-file 126, 336, 345, 442, 446,

839
key combination 532

#endif 523
#endif preprocessor directive 630
endl stream manipulator 553
Enforcing Privacy with

Cryptography 112
English-like abbreviations 8
Enhancing Class Date exercise 678
Enhancing Class Rectangle exercise

679
Enhancing Class Time exercise 677,

678
enqueue 495
Enter key 16, 46, 128, 552
enum 181, 428
enumeration 181, 429
enumeration constant 181, 428,

523
enumeration example 429
environment 15
EOF 126, 336, 819, 822
eof member function 819, 839
eofbit of stream 839
equality and relational operators 297
equality operator (==) 53, 704
<errno.h> 172
error bits 822
error checking (in file processing)

459
error conditions 172

error detected in a constructor 860
error message 17
#error preprocessor directive 524
error state of a stream 819, 837, 838
errors 17
escape character 42, 390
escape sequence 42, 390, 403
Euler 269
event 540
exam results analysis 90
examination results problem 90
<exception> header 555
exception 581, 582, 850

handler 582
handling 555, 577, 850
out_of_range exception class

582
parameter 582
what member function of an

exception object 582
exception class 851, 867

what virtual function 851
exception classes derived from

common base class 861
<exception> header 851, 867
exception object 855
exception parameter 853
exceptions

bad_alloc 861
bad_cast 867
bad_typeid 867
length_error 867
logic_error 867
out_of_range 867
overflow_error 867
underflow_error 868

exclusive write mode 448
executable image 16
executable program 43
execute 17
execute phase 16
executes 17
execution-time error 17
execution-time overhead 800
exit function 538, 643, 644, 863

atexit functions 539
EXIT_FAILURE 539
EXIT_SUCCESS 539
exp function 160
expand a macro 521
explicit constructor 719
explicit conversion 87
explicit keyword 604, 719

conversion operators 720
exponent 731
exponential complexity 193

exponential format 379
exponential function 160
exponential notation 380, 381
exponentiation 52
exponentiation operator 122
expression 123, 164
extensibility 769
extensibility of C++ 694
extensible programming language

576, 593
extern 182, 537
external linkage 538
external variable 183

F
f or F for a float 540
fabs function 160
Facebook 28
factorial 111, 151
factorial function 187, 188, 195
Fahrenheit temperatures 402
fail member function 839
failbit of stream 819, 823, 839
false boolean value 53
false boolean value 558
false boolean value 835
fatal error 17, 66, 83, 330
fatal logic error 78
fault-tolerant programs 582, 850
FCB 443, 445
fclose function 446
feature-complete 34
fenv.h 926
feof function 446, 459
fetch 329
fgetc function 443, 475
fgets function 345, 443
Fibonacci function 193, 195
Fibonacci series 191, 208
field 6
field of a class 7
field width 123, 379, 384, 387, 395,

823, 826
inputting data 395

fields larger than values being
printed 832

FIFO (first-in first-out) 495
file 7, 442
file control block (FCB) 443, 445
file descriptor 443
file-matching program 473
file name 16
file offset 450
file open mode 445, 448
FILE pointer 443, 449

960 Index

file position pointer 450, 459
__FILE__, predefined symbolic

constant 525
file processing 814, 817

error checking 459
file scope 184, 635
FILE structure 443
filename extensions

.h 606
file-processing classes 817
fill character 632, 823, 826, 831,

832
fill member function 830, 832,

839
final

class 782
member function 782

final release 34
final value 115
final value of a control variable 118,

120
find the minimum value in an array

273
first-in first-out (FIFO) 495
first refinement 82, 89
Fisher-Yates Shuffling Algorithm

414
five-card poker 320
fixed notation 818, 829, 834
fixed stream manipulator 829, 830,

834
flag value 82
flags 379, 387
flags member function of ios_base

836
flexible array member 935
flight simulator 810
float 85, 86, 87, 167
(float) cast operator 86
<float.h> 172
floating point 382, 829, 834
floating-point arithmetic 684
floating-point conversion specifiers

381, 385, 392
using 382

floating-point number 81, 85, 87
floating-point number in scientific

format 834
floating-point size limits 172, 556
floating-point suffix

f or F for a float 540
l or L for a long double 540

floor function 160
flow of control 57
flow of control of a virtual

function call 801

flowchart 71, 73
if selection statement 74
sequence structure 72
while iteration statement 79
double-selection if/else

statement 75
flowcharting C’s sequence structure

72
flowcharting the do...while iteration

statement 130
flowcharting the single-selection if

statement 74
flowcharting the while iteration

statement 79
flowline 72, 74
flush buffer 553, 840
flushing stream 823
fmod function 161
fmtflags data type 836
fopen function 448
for header components 117
for iteration statement 73, 120
force a decimal point 818
forcing a plus sign 831
formal type parameter 571
format control string 46, 378, 379,

386, 391
format control string flags 387
format error 839
format of floating-point numbers in

scientific format 834
format state 823, 836
format-state stream manipulators

829
formatted I/O 814
formatted input/output model 453
form-feed character (\f) 337
<forward_list> header 555
fprintf function 443
fprintf_s function 466
fputc function 443
fputs function 443
fractional parts 86
fractions 731
fragile software 754
fread function 443, 454
free function 479, 494
free function (global function) 633
free store 701
friend function 660, 736
friends are not member functions

662
Friends can access private members

of class 660
friendship granted, not taken 660
front of a queue 478

fscanf function 443
fscanf_s function 466
fseek function 456
<fstream> header 555
function 10, 16, 41, 142, 158, 554,

574
argument 159, 594
body 164
call 159, 164
call and return 173
caller 159
empty parameter list 564
empty parentheses 592, 593,

596
header 163, 164, 291, 311, 592
invoke 159, 162
local variable 597
multiple parameters 596
name 162, 183, 195, 308
overloading 567
parameter 162, 281, 283, 288,

593, 596
parameter list 596
pointer 308, 311
prototype 122, 163, 164, 166,

183, 281, 291, 560, 610
prototype scope 183, 184
return a result 600
return from 159, 160
scope 184

function body 592
function call 594

overhead 556
stack 169, 287

function call operator () 720, 803
function declaration (prototype)

163
function overloading 813
function pointer 800, 803
function prototype 610, 660

parameter names optional 611
function template 570, 875, 883

max 588
min 588
specialization 570

<functional> header 555
functions for manipulating data in

the standard library containers
556

function-template specialization
875

fwrite 443, 454, 456

G
game of craps 179, 268

Index 961

game playing 174
“garbage value” 81
gcc compilation command 16
gcount function of istream 823
Gender Neutrality 37, 376
general utilities library (stdlib) 342
generalities 769
generating mazes randomly 324
generic pointer 297
generic programming 550, 875
get a value 601
get and set functions 601
get member function 819, 820
getc 523
getchar 346, 347, 475, 523
getline function of cin 821
getline function of the string

header 595, 600
gigabyte 4
GitHub 27
global 612
global namespace scope 643, 669
global object constructors 643
global scope 643, 645
global variable 183, 184, 292, 414,

537, 566
Global Warming Facts Quiz 211
golden mean 190
golden ratio 190
good function of ios_base 839
Good Programming Practices

overview xxviii
goodbit of stream 839
Google Maps 30
goto elimination 71
goto-less programming 71
goto statement 71, 184, 543, 544
GPS device 4
Graphical User Interface (GUI) 28
Greatest common divisor 195
Guess the Number exercise 207
GUI (Grahical User Interface) 28
guillemets (« and ») in the UML 606

H
.h filename extension 606
.h header files 556
halt 329
handle on an object 635
hard drive 3, 5, 16
hardcopy printer 17
hardware 2, 3, 8
hardware independent 9
hardware platform 10
has-a relationship 733, 654

head of a queue 478, 495
header 606, 630
header (file) 41, 135, 172, 520, 554,

556, 614, 762
<ctype.h> 336
<exception> 851
<memory> 864
<stdexcept> 851, 867
<stdio.h> 344
<stdlib.h> 342
<string.h> 349
<string> 595
<typeinfo> 806
<vector> 577
complex.h 933
fenv.h 926
how they are located 609
inttypes.h 926
iso646.h 926
name enclosed in angle brackets

(< >) 609
name enclosed in quotes (" ")

609
stdbool.h 929
stdint.h 926
tgmath.h 926
wchar.h 926

header file
wctype.h 926

heap 701
helper function 636
heuristic 270
hex stream manipulator 824, 829,

833
hexadecimal 153, 337, 344, 379,

384
hexadecimal (base 16) number

system 892
hexadecimal (base-16) number 818,

824, 829, 833
hexadecimal integer 278
hexadecimal notation 818
hide implementation details 659
hierarchical boss function/worker

function relationship 159
hierarchy of exception classes 867
hierarchy of shapes 783
high-level language 8
highest level of precedence 50
high-level I/O 814
High-performance card shuffling

and dealing simulation 412
histogram 224
Histogram printing 224
horizontal tab (\t) 42, 337
host object 654

HTML (HyperText Markup
Language) 30

HTTP (HyperText Transfer
Protocol) 30

Huge integers 730
HugeInt class 728
HugeInteger Class exercise 679
HyperText Markup Language

(HTML) 30
HyperText Transfer Protocol

(HTTP) 30
hypotenuse of a right triangle 205

I
identifier(s) 45, 520
#if 523
if selection statement 53, 74, 77
if statements, relational operators,

and equality operators 54
if...else selection statement 72, 74,

89
flowchart 75

#ifdef preprocessor directive 523
#ifndef preprocessor directive 630,

523
ignore 692
ignore function of istream 822
image 16
implementation inheritance 786
implementation of a member

function changes 641
implicit conversion 87, 718, 719

via conversion constructors 719
implicit first argument 662
implicit handle 635
implicit, user-defined conversions

718
implicitly virtual 777
improper implicit conversion 718
in-class initializers 631
INCITS/ISO/IEC 9899-1999 (C

standard document) 10
include guard 628, 630
#include preprocessor directive

221, 519, 556
including a header multiple times

630
including headers 173
increment 119
increment a control variable 115,

118, 120
increment a pointer 295
increment operator (++) 93, 695
incremented 296
indefinite iteration 82, 114

962 Index

indefinite postponement 304, 320
indentation 73, 77
independent software vendor (ISV)

554
index 224
index (subscript) 216
index notation 288
indirect base class 735
indirect derived class 794
indirection 276, 279, 800
indirection operator (*) 173, 277,

279
indirectly reference a value 276
inequality operator (!=) 704
infinite loop 78, 86, 118
infinite recursion 190
infix notation 512
infix-to-postfix conversion 512
information hiding 14, 184, 290,

574
inherit constructors from base class

760
inherit implementation 810
inherit interface 783, 810
inherit members of an existing class

733
inheritance 14, 573, 629, 635, 733,

735
examples 734
hierarchy 777
hierarchy for university

CommunityMembers 734
implementation vs. interface

inheritance 786
relationships of the I/O-related

classes 817
inheriting interface versus inheriting

implementation 810
initial value of a control variable

115, 120
initialization phase 84
initialize a variable 47
initializer list 226
initializer_list class template

716
initializing a reference 562
initializing multidimensional arrays

247
initializing structures 408
initializing the elements of an array

to zeros 218
initializing the elements of an array

with an initializer list 219
inline function 556, 557, 715, 936

calculate the volume of a cube
557

inner block 184
innermost pair of parentheses 50
inorder traversal of a binary tree 195,

502, 505
input a line of text 821
input device 4
input from string in memory 555
input stream 819, 820
input unit 4
input/output operators 326
input/output stream header

(<iostream>) 552
inputting data with a field width

395
inputting decimal, octal and

hexadecimal values 847
inserting literal characters 379
insertion sort algorithm 910, 911,

913
instance 13
instance of a class 598
instance variable 14
instantiate an object of a class 574
instruction 17
instruction execution cycle 328
int type 41, 45, 168
integer 41, 45
integer arithmetic 684
integer array 215
Integer class definition 864
integer constant 288
integer conversion specifiers 379

using 380
integer division 50, 86
integer promotion 167
integer suffix

l or L for a long int 540
ll or LL for a long long int 540
u or U for an unsigned int 540

integers prefixed with 0 (octal) 833
integers prefixed with 0x or 0X

(hexadecimal) 833
IntegerSet class 680
integral size limits 172, 556
interactive attention signal 541
interactive computing 46
interface 574, 610
interface inheritance 786
interface of a class 610
internal linkage 538
internal spacing 831
internal stream manipulator 829,

831
International Standards

Organization (ISO) 10
Internet 29

Internet of Things (IoT) 32
interpreter 9
interrupt 540
inttypes.h 926
invalid_argument class 867
invalid_argument exception class

631
inventory 474
inverted scan set 395
Invoice class (exercise) 625
invoke a function 159, 162
invoking a non-const member

function on a const object 652
<iomanip> header 555, 815, 824
iOS 27
ios_base class 837

precision function 824
width member function 826

<iostream> header 552, 555, 815,
816

iPod Touch 28
is-a relationship (inheritance) 733,

762
isalnum function 336, 337
isalpha function 336, 337
isblank function 337
iscntrl function 337, 340
isdigit function 336, 337
isgraph function 337, 340
islower function 337, 339
ISO (International Standards

Organization) 10
iso646.h header file 926
isprint function 337, 340
ispunct function 337, 340
isspace function 337, 340
istream class 817

peek function 822
istream member function ignore

692
isupper function 339
ISV (independent software vendor)

554
isxdigit function 336, 337
iteration 194
iteration statement 71, 78
iterative function 243
<iterator> header 555

J
Jacobson, Ivar 576
Jacopini, G. 71
Java programming language 12, 28
Jobs, Steve 28
justified field 832

Index 963

K
kernel 27
Kernighan, B. W. 10
key value 241
keyboard 3, 44, 46, 345, 552, 814,

816
keywords 57

added in C11 57
added in C99 57
table of keywords 558

Knight’s Tour 269
Brute Force approaches 271
Closed tour test 273

L
l or L suffix for a long double literal

540
l or L suffix for a long int literal 540
label 184, 544
LAMP 32
large object 561
larger of two numbers 104
largest number problem 65
last-in, first-out (LIFO) 169, 489

order 875, 878
late binding 777
leading 0 833
leading 0x and leading 0X 829, 833
leading asterisks 374
leaf node 501
least access privilege 288
left child 501
left justify 123, 126, 379, 831

strings in a field 387
left-shift operator (<<) 684
left side of an assignment 647, 708
left stream manipulator 829, 830
left subtree 501
left-shift operator (<<) 417, 438,

816
legacy code 283
length modifier 379
length of a substring 720
length_error exception 867
letter 5
level order binary tree traversal 516
library function 11
LIFO (last-in, first-out) 169, 489

order 875, 878
Limerick exercise 371
<limits> header 556
<limits.h> header 172, 419
line of text 821
__LINE__, predefined symbolic

constant 525

#line preprocessor directive 525
linear data structure 481, 501
linear run time 905
linear search 195, 241, 273
link (pointer in a self-referential

structure) 479
link phase 16
linkage 182
linkage of an identifier 182
linked list 275, 405, 478, 480
linker 16, 43, 537
linker error 537
linking 16
links 480
Linux 16, 27, 532

shell prompt 18
Linux operating system 27
<list> header 555
list initializer 642

dynamically allocated array 702
literal 42, 47
literal characters 379
live-code approach 2
ll or LL suffix for a long long int

literal 540
-lm command line option for using

the math library 122
load a program into memory 325
load phase 16
load/store operations 326
loader 17
loading 17
local automatic object 647
local variable 161, 182, 183, 228, 597

destructors 873
<locale> header 556
locale 172
<locale.h> header 172
location 48
log function 160
log10 function 160
log2n comparisons 506
logic error 78, 81, 117, 136, 221,

414
logic_error exception 867
logical AND operator (&&) 132, 419
logical decision 3
logical negation (NOT) operator (!)

132, 134
logical OR operator (||) 132
logical page 390
logical unit 4
Logo language 268
long 129
long double 167
long int 168

long long int 168
loop 82, 116
loop continuation condition 114,

116, 118, 119, 129
looping 116
loss of data 839
lowercase letter 6, 66, 172
lowercase letters 555
low-level I/O capabilities 814
lvalue ("left value") 136, 216, 562,

647, 708, 715

M
Mac OS X 27, 28
machine dependent 8, 417
machine independent 9
machine language 8, 16

programming 325
Macintosh 28
macro 172, 519, 521

complex 933
defined in 533
definition 521
expansion 521
identifier 521
with arguments 521

magnitude 831
magnitude right justified 829
main 41, 552
make 538
makefile 538
malloc function 479, 543
mangled function name 569
“manufacturing” section of the

computer 4
<map> header 555
mashup 30
mask 418, 419
master file 473
matching catch block 853
math library 555
math library functions 173, 210
<math.h> header file 122, 160, 173
maximum 107
maximum 165
maze traversal 195, 324
mazes of any size 324
m-by-n array 246
mean 236
median 236
member function 574, 590, 591

argument 594
implementation in a separate

source-code file 611
parameter 593

964 Index

member function automatically
inlined 632

member function calls for const
objects 652

member function calls often concise
633

member function defined in a class
definition 632

member function definitions of class
Integer 865

member functions 590
member functions that take no

arguments 633
member-initializer list 604, 654,

657
member name (bit field) 425
member object

default constructor 659
destructors 873
initializer 658

member of a struct 406
member selection operator (.) 636,

664, 777, 865
members 406
memberwise assignment 650, 688
memberwise copy 712
memchr function 360, 362
memcmp function 360, 362
memcpy function 360
memmove function 361
memory 3, 4, 17
memory access violation 284
memory addresses 276
memory allocation 173
memory consumption 800
memory functions of the string

handling library 359, 360
<memory> header 555, 864
memory leak 702, 864, 866

prevent 866
memory unit 4
memory utilization 425
memset function 360, 363
menu-driven system 311
merge sort algorithm 913, 914, 918
merge two arrays 913
message 42, 574
method 13, 574
method call 14
metric conversion program 375
Microsoft Visual Studio 16
mileage problem 105
MinGW (Minimalist GNU for

Windows) 926
minimum value in an array 195
minus sign, – (UML) 602

mission-critical computing 854
mixed-type expressions 167
mode 236, 266
modifiable 220
modifiable lvalue 688, 708, 715
modifications to the simpletron

simulator 330
monetary calculations 123
monetary formats 556
Moore’s Law 3
motion information 4
mouse 3
move assignment operator 714
move constructor 714, 760
move semantics 714
Mozilla Foundation 27
multi-core processor 5
multidimensional array 246, 247,

249
multiple inheritance 735, 815
multiple parameters to a function

596
multiple selection statement 72, 127
multiple-source-file program 182,

183
compilation and linking process

614
multiple source files 537, 538
multiple-word variable name 46
multiples of an integer 110
multiplication 49
multiplicative operators 87
multiply two integers 195
multithreading 495
mutator 601
MySQL 32

N
n factorial (n!) 187
name 115, 216
name decoration 568
name function of class type_info

806
name handle 635

on an object 635
name mangling 568

to enable type-safe linkage 569
name of a control variable 115
name of a user-defined class 591
name of a variable 48
name of an array 215
naming conflict 662
natural logarithm 160
negative binary numbers 891
negative value 899

nested 89
nested building block 140
nested control statement 88
nested if...else statement 76, 77
nested parentheses 50, 52
nesting 88
nesting (of statements) 116
nesting rule 139
network connection 814
network message arrival 859
new 712
new calls the constructor 701
new failure handler 863
<new> header 861
new operator 701
new returning 0 on failure 862
new stream manipulators 827
new throwing bad_alloc on failure

861, 862
newline ('\n') escape sequence 818
newline (\n) 42, 73, 226, 335, 336,

337, 396, 553
NeXTSTEP operating system 28
noboolalpha stream manipulator

835
nodes 479, 480
noexcept keyword 860
non-const member function 653
non-const member function called

on a const object 653
non-const member function on a

non-const object 653
non-constant pointer to constant

data 284, 286
non-constant pointer to non-

constant data 284
nondestructive 49
nonfatal error 17, 66, 78, 166
non-member, friend function 693
non-member function to overload

an operator 716
nonmodifiable function code 635
nonmodifiable lvalue 688
nonrecoverable failures 839
nonrecursive function 208
non-static member function 662,

672, 717
nontype template parameter 882
noshowbase stream manipulator

829, 833
noshowpoint stream manipulator

829
noshowpos stream manipulator 829,

831
noskipws stream manipulator 829
nothrow object 862

Index 965

nothrow_t type 862
nouns in a system specification 574
nouppercase stream manipulator

829, 835
NULL 276, 298, 302, 445, 479, 486
null character ('\0') 226, 285, 301,

335, 514, 823
NULL pointer 543
null-terminated string 818, 302
Number Systems Appendix 891
numeric codes 353
numerical data type limits 556

O
O(1) 905
O(n log n) time 919
O(n) time 905
O(n2) time 906, 909, 913
object 11, 12
object (or instance) 573
object code 16, 614
object leaves scope 643
Object Management Group

(OMG) 576
object of a derived class 770, 773
object of a derived class is

instantiated 759
object orientation 573
object-oriented analysis and design

(OOAD) 576, 575
object-oriented design (OOD) 11,

573
object-oriented language 574
object-oriented programming

(OOP) 28, 161, 550, 574, 576,
629, 733

object program 43
object’s vtable pointer 803
Objective-C 11, 28
objects contain only data 635
oct stream manipulator 824, 829,

833
octal (base-8) number system 824,

829, 892
octal number 153, 337, 344, 379,

818, 833
off-by-one error 117
offset 298, 458, 803
“old-style” header files 554
OMG (Object Management

Group) 576
one-dimensional array 284, 291,

303
one-dimensional array problem 268
one’s complement 422, 899

ones position 892
OOAD (object-oriented analysis

and design) 575, 576
OOD (object-oriented design) 573
OOP (object-oriented

programming) 574, 576, 733
open a file 445
open file table 443
Open Handset Alliance 28
open source 27, 28
operand 47, 326
operating system 9, 27, 28
operation (UML) 593
operation in the UML 574, 593
operation parameter in the UML

596
operator keywords 688
operator overloading 553, 570, 684,

813
decrement operators 695
in templates 885
increment operators 695

operator precedence 56
rules 50

operator precedence chart 886
operator sizeof when applied to an

array name returns the number of
bytes in the array 293

operator void* member function
839

operator! member function 694,
839

operator!= 714
operator() 725
operator[]

const version 715
non-const version 715

operator+ 688
operator++ 695, 701
operator++(int) 695
operator<< 693, 711
operator= 713
operator== 714
operator>> 692, 711
operators 92

arrow member selection (->)
636

delete 701
dot (.) 593
member selection (.) 636
new 701
scope resolution (::) 612
stream insertion operator, <<

553
typeid 806
unary scope resolution, :: 566

optimizations on constants 652
order 70, 71
order of evaluation of operands 193
order of exception handlers 873
order of operands of operators 193
orientation information 4
original format settings 837
OS X 28
ostream class 815
out-of-range array subscript 859
out-of-range element 708
out_of_range exception 715, 867

<stdexcept> include to prevent
errors in GNU C++ 582

out_of_range exception class 582
outer block 184
out-of-bounds array elements 256
output a floating-point value 829
output buffering 840
output data items of built-in type

816
output device 4
output format of floating-point

numbers 834
output of char * variables 818
output of characters 817
output of floating-point values 818
output of integers 818
output of standard data types 817
output of uppercase letters 818
output to string in memory 555
output unit 4
oval symbol 72
overflow 541, 859
overflow_error exception 867
overload the addition operator (+)

688
overload unary operator ! 694
overloaded [] operator 708
overloaded << operator 694
overloaded addition assignment

operator (+=) 696
overloaded assignment (=) operator

707, 713
overloaded binary operators 689
overloaded cast operator function

717
overloaded constructors 760
overloaded equality operator (==)

707, 714
overloaded function 883
overloaded function call operator ()

720
overloaded increment operator 696
overloaded inequality operator 707,

714

966 Index

overloaded operator += 700
overloaded operator[] member

function 715
overloaded postfix increment

operator 696, 700
overloaded prefix increment

operator 696, 700
overloaded stream insertion and

stream extraction operators 691
overloaded subscript operator 708,

715
overloading 553, 567

<< and >> 570
constructor 642
function definitions 568
operators 570

overloading + 689
overloading binary operator < 690
overloading binary operators 689
overloading function call operator

() 720, 725
overloading postfix increment

operator 695, 701
overloading prefix and postfix

decrement operators 695
overloading prefix and postfix

increment operators 695
overloading resolution 883
overloading stream insertion and

stream extraction operators 690,
696, 700, 707, 711

overloading template functions 883
override a function 776
override keyword 777
overtime pay problem 107

P
π 65, 154
PaaS (Platform as a Service) 33, 33
Package inheritance hierarchy 765,

810
packets in a computer network 495
pad with specified characters 818
padding 428
padding characters 826, 829, 830,

832
page layout software 334
palindrome 273
palindrome problem 110
parameter 161, 593, 596
parameter in the UML 596
parameter list 163, 196, 596, 604
parameter of a function 162
parameter passing 283
parameter types 291

parameterized stream manipulator
815, 824

parameterized type 875, 885
parent node 501
parentheses () 50, 56
partitioning step of Quicksort 922
Pascal case 591
pass-by-reference 230, 231, 275,

279, 281, 283, 287, 290, 559
with reference parameters 560

pass-by-value 279, 282, 283, 287,
559

passing an array 232
passing an array element 232
passing arguments by value and by

reference 560
passing arrays and individual array

elements to functions 232
passing large objects 561
pattern of 1s and 0s 5
Payroll System Modification 810

exercise 810, 811
peek function of istream 822
percent sign (%) 49
perfect number 207
perform a task 592
performance 11, 554
performance requirements 183
persistent 5
Phishing Scanner 476
PHP 12, 32
Pig Latin exercise 371
pipe symbol (|) 533
Platform as a Service (PaaS) 33
plus sign, + (UML) 593
Point Class 848
pointer 275, 277, 279
pointer arithmetic 295, 296, 298,

373
pointer arrow (->) operator 408
pointer comparisons 297
pointer expression 298
pointer handle 635
pointer indexing 299
pointer manipulation 800
pointer notation 281, 298, 301
pointer parameter 281
pointer to a function 308, 800
pointer to pointer (double

indirection) 486
pointer to the structure 409
pointer to void (void *) 297, 479
pointer variable 288, 864
pointer/index notation 299
pointer/offset notation 298

pointers to dynamically allocated
storage 664, 714

poker 319, 682
poll 222
Polymorphic Banking Program

Exercise Using Account
Hierarchy 811

polymorphic exception processing
861

polymorphic programming 783, 803
polymorphic screen manager 769
polymorphism 763, 768
polymorphism and references 800
polymorphism as an alternative to

switch logic 810
polynomial 52, 53
Polynomial class 731
pop 489, 878, 880
pop off a stack 169
portability 11
Portability Tips overview xxix
portable 11
portable code 9, 11
position number 215
positional notation 892
positional value 892, 893
positional values in the decimal

number system 893
postdecrement 93
postfix increment and decrement

operators 93
postfix notation 512
postincrement 93, 94, 700
postorder traversal 502, 505, 506
postorder traversal of a binary tree

195
pow (power) function 52, 122, 160
power 160
#pragma processor directive 524
precedence 50, 216, 278
precedence not changed by

overloading 689
precedence of arithmetic operators

51, 56
precision 87, 123, 379, 381, 818,

823
precision for integers, floating-point

numbers and strings 386
precision function of ios_base

824
precision of floating-point numbers

824
precision setting 825
predecrement operator 93
predefined symbolic constants 525
predicate function 486, 636

Index 967

prefix increment and decrement
operators 93

preincrement 93, 700
operator 93

preorder traversal of a binary tree
195, 502, 505

preprocess phase 16
preprocessor 16, 173
preprocessor directive 16, 519, 522,

552
#ifndef 630
#define 630
#endif 630

prevent memory leak 866
preventing headers from being

included more than once 630
primary memory 4
prime number 207
primitive types

bool (C++) 558
principle of least privilege 184, 234,

283, 287, 291, 292, 652
print a hollow square 110
print a linked list backwards 195
print a square 110
print a string backwards 195, 273
print an array 195, 273
print an array backwards 195
print characters 339
print patterns 151
printer 814
printf 378
printf 443
printf function 42
printing a string input at the

keyboard backwards 195
Printing a string one character at a

time using a non-constant
pointer to constant data 286

printing character 340
printing dates in various formats

374
printing multiple lines with a single

printf 44
printing one line with two printf

statements 43
printing positive and negative

numbers with and without the +
flag 388

printing trees 516
private

access specifier 599
base class 762
base-class data cannot be

accessed from derived class
748

private (cont.)
inheritance 735
inheritance as an alternative to

composition 761
members of a base class 735
static data member 669

private base class 765
probability 174
procedural programming language

574
procedure 70
processing phase 83, 84
processing unit 3
product 63
program 3
program control 70
program execution stack 169
program in the general 768, 810
program in the specific 768
program termination 646, 647
Program to simulate the game of

craps 179
Programmableweb 30
programmer 3
programmer-defined function 159
programmer-defined header file 556
programmer-defined maximum

function 165
promotion 167
prompt 46
prompting message 840
proprietary classes 762
protected 751
protected access specifier 629
protected base class 762, 765

data can be accessed from
derived class 753

protected inheritance 735, 762
pseudo-random numbers 177
pseudocode 70, 72, 90
public

method 631
public access specifier 592
public base class 761
public inheritance 733, 735
public keyword 592
public member of a derived class

736
public services of a class 610
public static class member 669
public static member function

669
pure specifier 784
pure virtual function 784, 800
push 489, 493, 880
push onto a stack 169

put member function 817, 818, 819
putback function of istream 822
putchar 345
puts 346, 475
puts function 58
Pythagorean Triples 154
Python 12

Q
quad-core processor 5
quadratic run time 906
Quadrilateral Inheritance Hierarchy

765
qualified name 759
<queue> header 555
queue 275, 405, 478, 495, 496
quicksort 195, 922

R
r file open mode 448
r+ file open mode 448, 449
radians 161
radius 111
raise 540
raising an integer to an integer

power 195
RAM (Random Access Memory) 4
rand 174
RAND_MAX 174, 178
random number 173
random number generation 303,

371
random-access file 454, 457
randomizing 177
range checking 143, 704
Rational Class exercise 678
Rational Software Corporation 576
RationalNumber class 731
rb file open mode 448
rb+ file open mode 448
rdstate function of ios_base 839
read a line of text 595
read characters with getline 595
read function of istream 822
read member function 823
readability 56, 89, 116
reading and discarding characters

from the input stream 396
reading characters and strings 394
reading input with floating-point

conversion specifiers 393
reading input with integer

conversion specifiers 392
realloc 543
reassign a reference 563

968 Index

“receiving” section of the computer
4

record 6, 287, 443
recover from errors 839
rectangle 74
Rectangle Class exercise 679
rectangle symbol 72, 79
recursion 187, 193

binary search 195
binary tree insert 195
check if a string is a palindrome

195
eight queens 195
factorial function 195
Fibonacci function 195
Greatest common divisor 195
inorder traversal of a binary tree

195
linear search 195
maze traversal 195
minimum value in an array 195
multiply two integers 195
postorder traversal of a binary

tree 195
preorder traversal of a binary

tree 195
print a linked list backwards 195
print a string backwards 195
print an array 195
print an array backwards 195
printing a string input at the

keyboard backwards 195
quicksort 195
raising an integer to an integer

power 195
recursion step 187
recursive call 187, 188
recursive calls to method

fibonacci 192
recursive definition 188
recursive evaluation 188
recursive function 187
recursive function gcd 209
recursive function power 208
recursive main 195
search a linked list 195
selection sort 195
sum of the elements of an array

195
Towers of Hanoi 195
visualizing recursion 195
vs. iteration 194

recursive main 195
recursive selection sort 921
recursive step of Quicksort 922
recursively search a list 516

redirect input from a file 532
redirect input or output 378
redirect input symbol < 532
redirect output symbol > 533
redundant parentheses 52
refactoring 32
reference 813

must be initialized 563
parameter 559, 561
to a constant 561
to an automatic variable 563
to an int 560

reference to a private data member
647

register 182
reinventing the wheel 11, 14, 158,

554
relational operators 53
release candidate 34
release dynamically allocated

memory 713
reliable integer division 935
remainder 161
remainder operator (%) 49, 66, 175
replacement text 220, 520
requirements 183, 575
reserved word 57
resource leak 861
restore a stream’s state to “good”

839
restrict 935
restricted pointer 935
resumption model of exception

handling 854
rethrow an exception 856, 873
return 279
return a result 41
return from a function 159, 160
return key 16, 329
return statement 162, 165, 600
return type 291, 592

void 592, 600
return value type 163, 196
return without expression 937
returning a reference from a

function 563
returning a reference to a private

data member 647
Returning Error Indicators from

Class Time’s set Functions exercise
679

reusability 875
reusable software 11
reusable software components 12
reuse 13, 575, 575, 606, 635
Richards, Martin 9

Richer Shape Hierarchy 765
right brace (}) 41, 42
right child 501
right justify in a field 123, 379, 384,

385, 387, 829, 830
right shift operator (>>) 684
right stream manipulator 829, 830
right subtree 501
right-justifying integers in a field

385
rightmost (trailing) arguments 564
right-shift (>>) operator 417, 438
right-shift operator (>>) 816
rise-and-shine algorithm 70
Ritchie, D. 9
robust application 850, 854
roll a six-sided die 175
root node of a binary tree 501, 516
rounded 87
rounding 63, 187, 379
rounding numbers 847
rounding toward negative infinity

935
rounding toward zero 935
rows 246
RTTI (runtime type information)

804, 807
rules of operator precedence 50
Rumbaugh, James 576
runtime error 17
runtime type information (RTTI)

804, 807
runtime_error class 851, 859, 867

what function 856
rvalue ("right value") 136, 562, 708

S
SaaS (Software as a Service) 33
SalariedEmployee class header 790
SalariedEmployee class

implementation file 791
savings account example 121
SavingsAccount class 680
scalar 231, 291
scaling 175
scaling factor 175, 178
scan characters 392
scan set 394

inverted 395
scanf 378
scanf function 46
scanf_s function 257
scanning images 4
scientific notation 380, 818, 834

Index 969

scientific notation floating-point
value 835

scientific stream manipulator
829, 834

scope 522
scope of an identifier 182, 183, 184
scope resolution operator (::) 612,

669, 878
Scoping example 185
screen 3, 4, 17
screen-manager program 769
scrutinize data 630
SDK (Software Development Kit)

33
search a linked list 195
search functions of the string

handling library 353
search key 241
searching 241, 242
searching a binary tree 506
searching strings 349
second-degree polynomial 53
second refinement 83, 90
secondary storage 3
secondary storage device 16
secondary storage unit 5
Secure Coding in C and C++, 2/e 143
seed 178
seed the rand function 177
SEEK_CUR 458
SEEK_END 458
SEEK_SET 458
segmentation fault 48, 284
select a substring 720
selection sort 195, 921

recursive 921
selection sort algorithm 906, 907,

909
selection statement 73, 74
selection structure 71
self assignment 664, 713
self documenting 45
self-referential structure 406, 479
semicolon (;) 42, 56
send a message to an object 14
sentinel-controlled iteration 83, 84,

114
sentinel value 82, 83, 86, 104
separate interface from

implementation 610
sequence structure 71, 73
sequential access file 443
sequential execution 71
sequential file 444
services of a class 601
<set> header 555

set a value 601
set and get functions 601
set function 659
set_new_handler function 861, 863
set_new_handler specifying the

function to call when new fails
863

setbase stream manipulator 824
setfill stream manipulator 632,

830, 832
<setjmp.h> 173
setprecision stream manipulator

824
setw 692
setw stream manipulator 826, 830
Shape class hierarchy 735, 765
shell prompt on Linux 18
shift 175
Shifted, scaled integers produced by

1 + rand() % 6 174
shifting value 178
“shipping” section of the computer

4
short 129, 167
short-circuit evaluation 134
showbase stream manipulator 829,

833
showpoint stream manipulator 829
showpos stream manipulator 829,

831
sibling 501
side effect 173, 183, 193, 559
Sieve of Eratosthenes 273
SIGABRT 541
SIGFPE 541
SIGILL 541
SIGINT 541
sign left justified 829
signal 540
signal handling 541

library 540
signal value 82
<signal.h> 173, 540
signature 568, 695
signatures of overloaded prefix and

postfix increment operators 695
signed decimal integer 379
significant digits 830
SIGSEGV 541
SIGTERM 541
simple condition 133
simple interest problem 106
simplest flowchart 137
Simpletron 475
Simpletron Machine Language

(SML) 325, 326, 330

Simpletron simulator 325, 328, 330
simulation 174, 303
sin function 161
sine 161
single-argument constructor 719,

720
single entry/single exit control

statement 73, 74, 140
single inheritance 735
single quote (') character 383
single-selection statement 72
sinking sort 234
size member function of class

string 617
size member function of vector

580
size_t 218, 349, 353
sizeof operator 292, 407, 475, 479,

523, 662
skipping whitespace 823, 829
skipws stream manipulator 829
small circle symbol 72, 74
smallest number problem 65
SML 325, 328, 330
SMS Language 376
software 2
Software as a Service (SaaS) 33
software asset 575
software-based simulation 325, 328
Software Development Kit (SDK)

33
software engineering 132, 184, 292,

610
data hiding 599, 601
encapsulation 601
reuse 606, 609
separate interface from

implementation 610
set and get functions 601

Software Engineering Observations
overview xxix

software model 328
software reuse 11, 14, 161, 292,

538, 554, 733, 875
sort algorithms

bucket sort 921
insertion sort 910
merge sort 913
Quicksort 922
recursive selection sort 921
selection sort 906

sort key 905
sorting 234, 905

strings 556
source code 606, 762
SourceForge 27

970 Index

space 396
space flag 388
spaces for padding 832
spam scanner 376
speaking to a computer 4
special characters 335
Special Section: Advanced String

Manipulation Exercises 373
Special Section: Building Your Own

Compiler 517
special symbol 5
split the array in merge sort 913
sprintf 345, 347
sqrt function 160
square brackets ([]) 215
square root 160, 825
srand 177
sscanf 345, 348
<sstream> header 555
<stack> header 555
stack 168, 275, 405, 478, 489, 875
Stack class template 875, 882
stack frame 169
stack overflow 169
stack program 490
stack unwinding 855, 858, 860, 873
Stack<double> 878, 882
Stack<int> 882
Stack<T> 880
stacked building blocks 140
stacking rule 137
Standard C 10
standard data types 293
standard error stream (stderr) 17,

378, 442
standard exception classes 867
standard input 46, 344, 532
standard input object (cin) 552,

815
standard input stream (stdin) 17,

378, 442
standard input/output header

(stdio.h) 41
standard input/output library

(stdio) 344
standard libraries 16
Standard Library

class string 685
exception classes 868
exception hierarchy 867
headers
header 172, 172, 519, 556

standard output object (cout) 552,
815

standard output stream (stdout) 17,
378, 442, 532

standard stream libraries 815
standard version of C 10
“standardized, interchangeable

parts” 575
“warehouse” section of the computer

5
state bits 819
statement 42, 71, 592
statement terminator (;) 42
statements

return 162
throw 632
try 582

static 182
static 183, 184, 228
static array 219
Static arrays are automatically

initialized to zero if not explicitly
initialized by the programmer
229

_Static_assert 526
static binding 777
static data member 668, 669
static data member tracking the

number of objects of a class 671
static data members save storage 669
static data structures 543
static local object 644, 646, 647
static member 669
static member function 669
static storage duration 182
status bits 839
std::cin (standard input stream

object) 552
std::cout (standard output stream

object) 552
std::endl stream manipulator 553
stdarg.h 173, 533
stdbool.h 135, 929
stddef.h 173, 276
stderr (standard error stream) 17,

443
stdexcept header 555, 851, 867

must include in GNU C++ to
use out_of_range 582

stdin (standard input stream) 17,
345, 443

stdint.h 926
stdio.h 41, 126, 173, 183, 344,

378, 443, 522
stdlib.h 173, 174, 342, 520, 538,

543
stdout (standard output stream) 17,

443, 446
StepStone 28
stepwise refinement 303

stepwise refinement, 82
“sticky” setting 632
storage class 182
storage class of an identifier 182
storage class specifiers 182
storage duration 182, 228
storage duration of an identifier 182
storage unit boundary 428
Store 326
stored array 481
straight-line form 50
strcat function 350
strchr function 354
strcmp function 351, 352
strcpy function 349, 350
strcspn function 353, 355
stream 378, 442
stream base 824
stream extraction operator >> ("get

from") 552, 570, 684, 690, 712,
816, 819

stream input 816, 819
stream insertion operator << ("put

to") 552, 553, 570, 684, 690,
712, 816, 817

stream manipulator 553, 823, 831
endl (end line) 553

stream manipulators
boolalpha 835
dec 824
fixed 834
hex 824
internal 831
left 830
noboolalpha 835
noshowbase 833
noshowpoint 829
noshowpos 829, 831
nouppercase 829, 835
oct 824
right 830
scientific 834
setbase 824
setfill 632, 832
setprecision 824
setw 826
showbase 833
showpoint 829
showpos 831

stream of bytes 814
stream operation failed 839
stream output 816
strerror 364
<string> header 555
string 42, 335
string array 302

Index 971

string class 595, 684, 687
at member function 688
size member function 617
substr member function 618,

687
string class from the Standard

Library 555
string comparison functions 351
string concatenation 373
string constant 335
string conversion functions 342
string copy 373
<string> header 595, 608
string is a pointer 335
string literal 227, 335
string literals separated only by

whitespace 227
string manipulation functions of the

string handling library 349, 353
string object

empty string 600
initial value 600

string processing 173, 225
<string.h> header file 173
strlen function 363, 364
strncat function 349, 350, 351
strncmp function 351, 352
strncpy function 349
Stroustrup, Bjarne 11
strpbrk 355
strpbrk function 353, 356
strrchr function 353, 356
strspn function 353, 357
strstr function 354, 357
strtod function 342
strtok function 354, 358
strtol function 342, 343
strtoul function 342, 344
struct 215, 406
structure 287, 405
structure definition 407
structure member (.) operator 408,

409, 415
structure member operator and

structure pointer operator 409
structure pointer (->) operator 408,

409, 415
structure tag name 406, 407
structure type 406
structured programming 2, 40, 57,

70, 71, 543
structured programming summary

137
Structures 405
Student Inheritance Hierarchy 765
student poll analysis program 222

subclass 14, 733
subscript 216
subscripted name used as an rvalue

708
substr member function of class

string 618
substr member function of string

687
substring 720
substring length 720
subtract an integer from a pointer

295
subtracting one pointer from

another 295
subtracting two pointers 297
subtraction 4
suffix

floating point 540
integer 540

sum 64
sum of numbers 104
sum of the elements of an array 195,

221
superclass 14, 733
supermarket simulation 515
survey data analysis 236, 240
survey data analysis program 236
swapping values 906, 910
Swift 12
switch logic 783
switch multiple-selection statement

72, 124, 127
with break 128

symbol 66, 72
symbol value 892
symbolic constant 126, 220, 519,

521
synchronize operation of an istream

and an ostream 840
synchronous error 859
syntax error 16, 78, 95, 137

T
tab 42, 67, 73, 390, 396
tables of values 246
tabular format 217
tail of a queue 478, 495
tan 161
tangent 161
Target-Heart-Rate Calculator 111,

626
Tax Plan Alternatives 156
TCP (Transmission Control

Protocol) 29
TCP/IP 29

technical publications 34
telephone number program 371
telephone-number word problem

474
template

default type argument for a type
parameter 882

definition 571
function 571
parameter list 571

template keyword 571, 876
template parameter 876
temporary copy 87
temporary double representation

122
temporary object 717
terabyte 5
terminate 17
terminate a program 863
terminating null character 226, 335,

336, 346, 382
termination housekeeping 643
termination model of exception

handling 854
termination phase 84
termination request 541
ternary operator 75, 193
test characters 555
test state bits after an I/O operation

819
Test-Drive: Body Mass Index

Calculator 37
Test-Drive: Carbon Footprint

Calculator 37
text analysis 373
text processing 334
tgmath.h 926
The “FairTax” 156
The Twelve Days of Christmas 127
this pointer 662, 664, 672, 714
this pointer used explicitly 662
this pointer used implicitly and

explicitly to access members of an
object 663

Thompson, Ken 9
_Thread_local storage class

specifier 182
throw an exception 582, 631, 632,

853
throw exceptions derived from

standard exceptions 868
throw exceptions not derived from

standard exceptions 868
throw keyword 855
throw point 854
throw standard exceptions 868

972 Index

throwing exceptions from a catch
873

throwing the result of a conditional
expression 873

TicTacToe Class exercise 679
tie an input stream to an output

stream 840
tilde character (~) 643
time 173
Time class 678
Time class containing a constructor

with default arguments 637
Time class definition 629
Time class definition modified to

enable cascaded member-
function calls 665

Time class member-function
definitions 630

Time class member-function
definitions, including a
constructor that takes arguments
638

Time Class Modification 681
__STDC__, predefined symbolic

constant 526
__TIME__, predefined symbolic

constant 526
<time.h> 173
token 354, 525
tokenizing strings 349
tokens 358
tokens in reverse 372
tolower function 339
top 82
top-down, stepwise refinement 82,

84, 88, 89
top of a stack 478
top-down stepwise refinement 303,

304
Tortoise and the Hare 321
total 81
toupper function 285, 339
Towers of Hanoi 195, 208
trailing zeros 381, 829
transaction file 473
transaction-processing program

454, 461
transfer of control 71, 326, 330
translation 8
translator program 8
Transmission Control Protocol

(TCP) 29
trap 540
trap a SIGINT 541
traversing a binary tree 502
tree 52, 275, 405, 501

trigonometric cosine 161
trigonometric sine 161
trigonometric tangent 161
tripleByReference 588
tripleCallByValue 588
true boolean value 53, 558
truncated 86
truth 133
truth table 133
try block 582, 853, 856, 859, 860

expires 854
try statement 582
turtle graphics 268
Twitter 30
two-dimensional array 246, 250,

302
representation of a deck of cards

304
two’s complement 899, 899
twos position 894
tying an output stream to an input

stream 840
type 48
type checking 166
type mismatch 284
type of the this pointer 663
type parameter 571, 876, 882
type-safe linkage 560, 568
type_info class 806
typedef 411, 815

fstream 817
ifstream 817
iostream 815
istream 815
ofstream 817
ostream 815

type-generic macro 936
typeid 806, 867
typeinfo header 555, 806
typename keyword 571, 876
type-safe I/O 822
typesetting systems 334

U
u or U for an unsigned int 540
UML (Unified Modeling Language)

573, 576, 593
attribute 593
class diagram 593
constructor in a class diagram 606
data types 596
guillemets (« and ») 606
minus sign (–) 602
plus sign (+) 593
public operation 593

String type 596
unary operator 87, 95, 277

overload 689, 694
sizeof 292

unary scope resolution operator (::)
566

unbiased shuffling algorithm 414
unbuffered output 817
unbuffered standard error stream

815
uncaught exceptions 873
unconditional branch 543
#undef preprocessor directive 522,

525
underflow_error exception 868
underscore (_) 45
unformatted I/O 814, 815, 817,

819, 822
Unicode character set 5, 814
Unified Modeling Language (UML)

573, 576
unincremented copy of an object

701
uninitialized local reference causes a

syntax error 563
union 414, 415, 437
unique_ptr class 864

built-in array 867
universal-time format 631
UNIX 9, 126, 532
unnamed bit field 428
unnamed bit field with a zero width

428
<unordered_map> header 555
<unordered_set> header 555
unresolved references 537
unsafe macro 526
unsigned decimal integer 379
unsigned hexadecimal integer 379
unsigned int 168
unsigned integer 416
unsigned long int 344
unsigned long long int 188, 190
unsigned octal integer 379
unsigned short 168
unstructured flowchart 141
untie an input stream from an

output stream 840
unwinding the function call stack

857
uppercase letter 66, 172, 555
uppercase stream manipulator 829,

833, 835
user-defined class name 591
user-defined type 574, 592, 717
using a function template 571

Index 973

using declaration
in headers 608

using directive
in headers 608

using the # flag with 389
usual arithmetic conversion rules

167
<utility> header 556
utility function 173, 636

V
va_arg 535
va_copy macro 937
va_end 535
va_list 535
va_start 535
validate data 143
validation 616
validity checking 616
value 216
value of a variable 48
van Rossum, Guido 12
variable 45
variable arguments header stdarg.h

533
variable initialization 302
variable-length argument list 533,

534
variable-length array (VLA) 253
<vector> header 555
vector class 576
<vector> header 577
verbs in a system specification 574
vertical spacing 116
vertical tab ('\v') 337
vi 16
virtual destructor 782

virtual function 768, 776, 800,
802
call 802
call illustrated 801
table (vtable) 800

virtual memory 862, 863
Visual C# programming language

12
Visual C++ programming language

12
Visual Studio 16
visualizing recursion 195, 209
void * (pointer to void) 297, 359,

479
void keyword 592, 600
volatile information 4
volume of a cube 557
vtable 800, 802, 803
vtable pointer 803

W
w file open mode 448
w+ file open mode 448
W3C (World Wide Web

Consortium) 30
“walk off” either end of an array 703
warning message 618
wb file open mode 448
wb+ file open mode 448
wchar_t character type 815
wchar.h 926
wctype.h 926
web services 30
what member function of an

exception object 582
what virtual function of class

exception 851, 856, 862

while iteration statement 78, 79,

83, 90

flowchart 79

whitespace character 41, 73, 819,

820, 823

string literals separated 227

width implicitly set to 0 826

width member function of class

ios_base 826

width of a bit field 425, 428

width setting 826

Windows 27, 532, 540

Windows operating system 27

World Population Growth 156

World Wide Web 29, 30

worst-case runtime for an algorithm

905

Wozniak, Steve 28

wraparound 700

write function of ostream 817, 822

writing to a file 446

X
Xerox PARC (Palo Alto Research

Center) 28

Z
0 (zero) flag 389

zeroth element 215

This page intentionally left blank

C Reviewer Comments Begin on the Back Cover

C++ Reviewer Comments (Content Selected from the Deitels’ C++ How to Program, 9/e Textbook)

❝Gets you into C++ programming quickly with relevant and important tips, excellent exercises, gradual progression towards advanced concepts and
comprehensive coverage of C++11 features.~—Dean Michael Berris, Google, Member ISO C++ Committee

❝The examples are accessible to CS, IT, software engineering and business students.~—Thomas J. Borrelli, Rochester Institute of Tech.

❝An excellent ‘objects first’ coverage of C++ accessible to beginners.~—Gavin Osborne, Saskatchewan Inst. of App. Sci. and Tech.

❝As an instructor, I appreciate the thorough discussion of the C++ language, especially the use of code examples and demonstration of best coding
practices. For my consulting work I use the Deitel books as my primary reference.~—Dean Mathias, Utah State University

❝Extensive coverage of the new C++11 features: list-initialization of scalar types and containers, nullptr, range for-loops, scoped enumerated types, inheri-
tance control keywords (override and final), auto declarations and more. Code tested meticulously with three leading, industrial-strength compilers.~

—Danny Kalev, C++ expert, Certified System Analyst and former member of C++ Standards Committee

❝Just when you think you are focused on learning one topic, suddenly you discover you’ve learned more than you expected.~
—Chad Willwerth, U. Washington, Tacoma

❝The virtual function figure and corresponding explanation in the Polymorphism chapter is thorough and truly commendable.~
—Gregory Dai, eBay

❝The Object-Oriented Programming: Inheritance chapter is well done. Excellent introduction to polymorphism.~
—David Topham, Ohlone College

❝Thorough and detailed coverage of exceptions from an object-oriented point of view.~—Dean Mathias, Utah State University

❝Good use of diagrams, especially of the activation call stack.~—Amar Raheja, California State Polytechnic University, Pomona

❝Terrific discussion of pointers—the best I have seen.~—Anne B. Horton, Lockheed Martin

❝I especially value the code examples and diagrams. Great coverage of OOP. Nice detail in Intro to Classes—students can learn so much from it; I love
that every line of code is explained and that UML class diagrams are given. Good visuals provided for what’s going on in memory [for pass-
by-value and pass-by-reference]. The Inheritance examples nicely reinforce the concepts. I love the description of [a possible] polymorphic video game.~

—Linda M. Krause, Elmhurst College

❝The Introduction to Classes, Objects and Strings examples are solid.~—Dean Michael Berris, Google, Member ISO C++ Committee

❝The pointers chapter manages to explain something that’s quite difficult to teach: the elusive nature of pointers. The Operator Overloading chapter
explains the topic clearly and builds a convincing, realistic Array class that demonstrates the capabilities of OOD and C++.~

—Danny Kalev, C++ expert, Certified System Analyst and former member of C++ Standards Committee

❝I like the idea of std::array [not built-in arrays] by default. Exception Handling is accurate and to the point.~
—James McNellis, Microsoft Corporation

❝Novices and advanced programmers will find this book an excellent tool for learning C++. Really fun and interesting exercises.~
—José Antonio González Seco, Parliament of Andalusia

❝I really like the Making a Difference exercises. The dice and card games get students excited.~—Virginia Bailey, Jackson State University

❝Provides a complete basis of fundamental instruction in all core aspects of C++.~—Peter DePasquale, The College of New Jersey

❝Great coverage of polymorphism and how the compiler implements polymorphism ‘under the hood.’~—Ed James-Beckham, Borland

❝Will get you up and running quickly with the smart pointers library.~—Ed Brey, Kohler Co.

❝Replete with real-world case studies. Code examples are extraordinary!~—Terrell Hull, Logicalis Integration Solutions

Additional Comments from Recent Editions Reviewers

❝An excellent introduction to the C programming language, with many clear examples. Pitfalls of the language are clearly identified and concise
programming methods are defined to avoid them.~—John Benito, Blue Pilot Consulting, Inc., and Convener of ISO WG14—the working
group responsible for the C Programming Language Standard

❝An already excellent book now becomes superb. This new edition focuses on secure programming and provides extensive coverage of the newest C11
features, including multi-core programming. All of this, of course, while maintaining the typical characteristics of the Deitels’ How to Program series—aston-
ishing writing quality, great selection of real-world examples and exercises, and programming tips and best practices that prepare students for industry.~

—José Antonio González Seco, Parliament of Andalusia

❝A very nice selection of exercises in Chapter 3 Structured Program Development in C—good job.~—Alan Bunning of Purdue University
❝I like the structured programming summary (in Chapter 4, Program Control) with instruction on how to form structured programs by using the flow chart
building blocks; I also like the range and variety of questions at the end of the chapter and the Secure C Programming section.~

—Susan Mengel, Texas Tech University
❝The descriptions of function calls and the call stack will be particularly helpful to beginning programmers learning the semantics of how functions work—
plenty of function exercises.~—Michael Geiger, University of Massachusetts, Lowell

❝The examples and end-of-chapter programming projects are very valuable. This is the only C book in the market that offers so many detailed C
examples—I am pleased to be able to have such a resource to share with my students. Coverage of the C99 and C11 standards is especially important.
For one of my classes the starting language is C and the course includes an introduction to C++—this book provides both. I feel confident that this book
prepares my students for industry. Overall a great book. I always enjoy lecturing the Arrays chapter; examples are perfect for my CE, EE and CSE stu-
dents—this chapter is one of the most important in my class; I find the examples to be very relatable for my students. Chapters 8 and above are used for
my Data Structures class, which is taught to students majoring in Electrical Engineering and Computer Engineering; Chapter 10 plays a big role for them to
understand bitwise operations—this is the only textbook that covers bitwise operations in such detail.~

—Sebnem Onsay, Special Instructor, Oakland University School of Engineering and Computer Science

❝A great book for the beginning programmer. Covers material that will be useful in later programming classes and the job market.~
—Fred J. Tydeman, Tydeman Consulting, Vice-Chair of J11 (ANSI C)

❝An excellent introductory C programming text. Clearly demonstrates important C programming concepts. Just the right amount of coverage of arrays.
The Pointers chapter is well-written and the exercises are rigorous. Excellent discussion of string functions. Fine chapters on formatted input/output and
files. I was pleased to see a hint at Big O running time in the binary search example. Good information in the preprocessor chapter.~

—Dr. John F. Doyle, Indiana U. Southeast

❝I have been teaching introductory programming courses since 1975, and programming in the C language since 1986. In the beginning there were no
good textbooks on C—in fact, there weren’t any! When Deitel, C How to Program, 1/e, came out, we jumped on it—it was at the time clearly the best
text on C. The new edition continues a tradition—it’s by far the best student-oriented textbook on programming in the C language—the Deitels have set
the standard—again! A thorough, careful treatment of not just the language, but more importantly, the ideas, concepts and techniques of programming!

‘Live code’ is also a big plus, encouraging active participation by the student. A great text!~—Richard Albright, Goldey-Beacom College

❝I like the quality of the writing. The book outlines common beginner mistakes really well. Nice visualization of binary search. The card shuffling example
illustrates an end-to-end solution to the problem with nice pseudocode, great coding and explanation. Card and maze exercises are very involving.~

—Vytautus Leonavicius, Microsoft Corporation

❝Introduces C programming and gets you ready for the job market, with best practices and development tips. Nice multi-platform explanation [running
Visual C++ on Windows, GNU C on Linux and Xcode on Mac OS X].~—Hemanth H.M., Software Engineer at SonicWALL
❝Control statements chapters are excellent; the number of exercises is amazing. Great coverage of functions. The discussions of secure C programming are
valuable. The C Data Structures chapter is well written, and the examples and exercises are great; I especially like the section about building a compiler.
Explanation of the sorting algorithms is excellent.~—José Antonio González Seco, Parliament of Andalusia

❝The live-code approach makes it easy to understand the basics of C programming. I highly recommend this textbook as both a teaching text and a reference.~

—Xiaolong Li, Indiana State University

❝An exceptional textbook and reference for the C programmer.~—Roy Seyfarth, University of Southern Mississippi

❝An invaluable resource for beginning and seasoned programmers. The authors’ approach to explaining the concepts, techniques and practices is compre-
hensive, engaging and easy to understand. A must-have book.~—Bin Wang, Department of CS and Engineering, Wright State Univ.

C++ Reviewer Comments on the Back of This Page

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	1 Introduction to Computers, the Internet and the Web 1
	1.1 Introduction 2
	1.2 Hardware and Software 3
	1.2.1 Moore’s Law 3
	1.2.2 Computer Organization 4

	1.3 Data Hierarchy 5
	1.4 Machine Languages, Assembly Languages and High-Level Languages 8
	 1.5 The C Programming Language 9
	1.6 C Standard Library 10
	1.7 C++ and Other C-Based Languages 11
	1.8 Object Technology 12
	1.8.1 The Automobile as an Object 13
	1.8.2 Methods and Classes 13
	1.8.3 Instantiation 13
	1.8.4 Reuse 13
	1.8.5 Messages and Method Calls 14
	1.8.6 Attributes and Instance Variables 14
	1.8.7 Encapsulation and Information Hiding 14
	1.8.8 Inheritance 14

	1.9 Typical C Program-Development Environment 15
	1.9.1 Phase 1: Creating a Program 16
	1.9.2 Phases 2 and 3: Preprocessing and Compiling a C Program 16
	1.9.3 Phase 4: Linking 16
	1.9.4 Phase 5: Loading 17
	1.9.5 Phase 6: Execution 17
	1.9.6 Problems That May Occur at Execution Time 17
	1.9.7 Standard Input, Standard Output and Standard Error Streams 17

	1.10 Test-Driving a C Application in Windows, Linux and Mac OS X 17
	1.10.1 Running a C Application from the Windows Command Prompt 18
	1.10.2 Running a C Application Using GNU C with Linux 21
	1.10.3 Running a C Application Using the Teminal on Mac OS X 24

	1.11 Operating Systems 27
	1.11.1Windows—A Proprietary Operating System 27
	1.11.2 Linux—An Open-Source Operating System 27
	1.11.3 Apple’s Mac OS X; Apple’s iOS for iPhone®, iPad® and iPod Touch® Devices 28
	1.11.4 Google’s Android 28

	1.12 The Internet and World Wide Web 29
	1.12.1 The Internet: A Network of Networks 29
	1.12.2 The World Wide Web: Making the Internet User-Friendly 29
	1.12.3 Web Services 30
	1.12.4 Ajax 32
	1.12.5 The Internet of Things 32

	1.13 Some Key Software Terminology 32
	1.14 Keeping Up-to-Date with Information Technologies 34

	2 Introduction to C Programming 39
	2.1 Introduction 40
	2.2 A Simple C Program: Printing a Line of Text 40
	2.3 Another Simple C Program: Adding Two Integers 44
	2.4 Memory Concepts 48
	2.5 Arithmetic in C 49
	2.6 Decision Making: Equality and Relational Operators 53
	2.7 Secure C Programming 57

	3 Structured Program Development in C 69
	3.1 Introduction 70
	3.2 Algorithms 70
	3.3 Pseudocode 70
	3.4 Control Structures 71
	3.5 The if Selection Statement 73
	3.6 The if…else Selection Statement 74
	3.7 The while Iteration Statement 78
	3.8 Formulating Algorithms Case Study 1: Counter-Controlled Iteration 79
	3.9 Formulating Algorithms with Top-Down, Stepwise Refinement Case Study 2: Sentinel-Controlled Iteration 82
	3.10 Formulating Algorithms with Top-Down, Stepwise Refinement Case Study 3: Nested Control Statements 88
	3.11 Assignment Operators 92
	3.12 Increment and Decrement Operators 93
	3.13 Secure C Programming 95

	4 C Program Control 113
	4.1 Introduction 114
	4.2 Iteration Essentials 114
	4.3 Counter-Controlled Iteration 115
	4.4 for Iteration Statement 116
	4.5 for Statement: Notes and Observations 119
	4.6 Examples Using the for Statement 120
	4.7 switch Multiple-Selection Statement 123
	4.8 do…while Iteration Statement 129
	4.9 break and continue Statements 130
	4.10 Logical Operators 132
	4.11 Confusing Equality (==) and Assignment (=)Operators 135
	4.12 Structured Programming Summary 137
	4.13 Secure C Programming 142

	5 C Functions 157
	5.1 Introduction 158
	5.2 Modularizing Programs in C 158
	5.3 Math Library Functions 159
	5.4 Functions 161
	5.5 Function Definitions 161
	5.5.1 square Function 162
	5.5.2 maximum Function 165

	5.6 Function Prototypes: A Deeper Look 166
	5.7 Function Call Stack and Stack Frames 168
	5.8 Headers 172
	5.9 Passing Arguments By Value and By Reference 173
	5.10 Random Number Generation 174
	5.11 Example: A Game of Chance; Introducing enum 178
	5.12 Storage Classes 182
	5.13 Scope Rules 184
	5.14 Recursion 187
	5.15 Example Using Recursion: Fibonacci Series 190
	5.16 Recursion vs. Iteration 194
	5.17 Secure C Programming 195

	6 C Arrays 214
	6.1 Introduction 215
	6.2 Arrays 215
	6.3 Defining Arrays 217
	6.4 Array Examples 217
	6.4.1 Defining an Array and Using a Loop to Set the Array’s Element Values 217
	6.4.2 Initializing an Array in a Definition with an Initializer List 218
	6.4.3 Specifying an Array’s Size with a Symbolic Constant and Initializing Array Elements with Calculations 220
	6.4.4 Summing the Elements of an Array 221
	6.4.5 Using Arrays to Summarize Survey Results 222
	6.4.6 Graphing Array Element Values with Histograms 224
	6.4.7 Rolling a Die 60,000,000 Times and Summarizing the Results in an Array 225

	6.5 Using Character Arrays to Store and Manipulate Strings 225
	6.5.1 Initializing a Character Array with a String 226
	6.5.2 Initializing a Character Array with an Intializer List of Characters 226
	6.5.3 Accessing the Characters in a String 226
	6.5.4 Inputting into a Character Array 226
	6.5.5 Outputting a Character Array That Represents a String 227
	6.5.6 Demonstrating Character Arrays 227

	6.6 Static Local Arrays and Automatic Local Arrays 228
	6.7 Passing Arrays to Functions 230
	6.8 Sorting Arrays 234
	6.9 Case Study: Computing Mean, Median and Mode Using Arrays 236
	6.10 Searching Arrays 241
	6.10.1 Searching an Array with Linear Search 241
	6.10.2 Searching an Array with Binary Search 242

	6.11 Multidimensional Arrays 246
	6.11.1 Illustrating a Double-Subcripted Array 246
	6.11.2 Initializing a Double-Subcripted Array 247
	6.11.3 Setting the Elements in One Row 249
	6.11.4 Totaling the Elements in a Two-Dimensional Array 249
	6.11.5 Two-Dimensonal Array Manipulations 250

	6.12 Variable-Length Arrays2 253
	6.13 Secure C Programming 256

	7 C Pointers 274
	7.1 Introduction 275
	7.2 Pointer Variable Definitions and Initialization 276
	7.3 Pointer Operators 277
	7.4 Passing Arguments to Functions by Reference 279
	7.5 Using the const Qualifier with Pointers 283
	7.5.1 Converting a String to Uppercase Using a Non-Constant Pointer to Non-Constant Data 284
	7.5.2 Printing a String One Character at a Time Using a Non-Constant Pointer to Constant Data 285
	7.5.3 Attempting to Modify a Constant Pointer to Non-Constant Data 287
	7.5.4 Attempting to Modify a Constant Pointer to Constant Data 288

	7.6 Bubble Sort3 Using Pass-by-Reference 289
	7.7 sizeof Operator 292
	7.8 Pointer Expressions and Pointer Arithmetic 295
	7.8.1 Allowed Operators for Pointer Arithmetic 295
	7.8.2 Aiming a Pointer at an Array 295
	7.8.3 Adding an Integer to a Pointer 296
	7.8.4 Subtracting an Integer from a Pointer 296
	7.8.5 Incrementing and Decrementing a Pointer 296
	7.8.6 Subtracting One Pointer from Another 297
	7.8.7 Assigning Pointers to One Another 297
	7.8.8 Pointer to void 297
	7.8.9 Comparing Pointers 297

	7.9 Relationship between Pointers and Arrays 298
	7.9.1 Pointer/Offset Notation 298
	7.9.2 Pointer/Index Notation 299
	7.9.3 Cannot Modify an Array Name with Pointer Arithmetic 299
	7.9.4 Demonstrating Pointer Indexing and Offsets 299
	7.9.5 String Copying with Arrays and Pointers 300

	7.10 Arrays of Pointers 302
	7.11 Case Study: Card Shuffling and Dealing Simulation 303
	7.12 Pointers to Functions 308
	7.12.1 Sorting in Ascending or Descending Order 308
	7.12.2 Using Function Pointers to Create a Menu-Driven System 311

	7.13 Secure C Programming 313

	8 C Characters and Strings 333
	8.1 Introduction 334
	8.2 Fundamentals of Strings and Characters 334
	8.3 Character-Handling Library 336
	8.3.1 Functions isdigit, isalpha, isalnum and isxdigit 336
	8.3.2 Functions islower, isupper, tolower and toupper 339
	8.3.3 Functions isspace, iscntrl, ispunct, isprint and isgraph 340
	8.4 String-Conversion Functions 342
	8.4.1 Function strtod 342
	8.4.2 Function strtol 343
	8.4.3 Function strtoul 344
	8.5 Standard Input/Output Library Functions 344
	8.5.1 Functions fgets and putchar 345
	8.5.2 Function getchar 346
	8.5.3 Function sprintf 347
	8.5.4 Function sscanf 348

	8.6 String-Manipulation Functions of the String-Handling Library 349
	8.6.1 Functions strcpy and strncpy 350
	8.6.2 Functions strcat and strncat 350

	8.7 Comparison Functions of the String-Handling Library 351
	8.8 Search Functions of the String-Handling Library 353
	8.8.1 Function strchr 354
	8.8.2 Function strcspn 355
	8.8.3 Function strpbrk 355
	8.8.4 Function strrchr 356
	8.8.5 Function strspn 357
	8.8.6 Function strstr 357
	8.8.7 Function strtok 358

	8.9 Memory Functions of the String-Handling Library 359
	8.9.1 Function memcpy 360
	8.9.2 Function memmove 361
	8.9.3 Function memcmp 362
	8.9.4 Function memchr 362
	8.9.5 Function memset 363

	8.10 Other Functions of the String-Handling Library 363
	8.10.1 Function strerror 364
	8.10.2 Function strlen 364

	8.11 Secure C Programming 365

	9 C Formatted Input/Output 377
	9.1 Introduction 378
	9.2 Streams 378
	9.3 Formatting Output with printf 378
	9.4 Printing Integers 379
	9.5 Printing Floating-Point Numbers 380
	9.5.1 Conversion Specifiers e, E and f 381
	9.5.2 Conversion Specifiers g and G 381
	9.5.3 Demonstrating Floating-Point Conversion Specifiers 382

	9.6 Printing Strings and Characters 382
	9.7 Other Conversion Specifiers 383
	9.8 Printing with Field Widths and Precision 384
	9.8.1 Specifying Field Widths for Printing Integers 384
	9.8.2 Specifying Precisions for Integers, Floating-Point Numbers and Strings 385
	9.8.3 Combining Field Widths and Precisions 386

	9.9 Using Flags in the printf Format Control String 387
	9.9.1 Right and Left Justification 387
	9.9.2 Printing Positive and Negative Numbers with and without the +Flag 388
	9.9.3 Using the Space Flag 388
	9.9.4 Using the # Flag 389
	9.9.5 Using the 0 Flag 389

	9.10 Printing Literals and Escape Sequences 390
	9.11 Reading Formatted Input with scanf 390
	9.11.1 scanf Syntax 391
	9.11.2 scanf Conversion Specifiers 391
	9.11.3 Reading Integers with scanf 392
	9.11.4 Reading Floating-Point Numbers with scanf 393
	9.11.5 Reading Characters and Strings with scanf 393
	9.11.6 Using Scan Sets with scanf 394
	9.11.7 Using Field Widths with scanf 395
	9.11.8 Skipping Characters in an Input Stream 396

	9.12 Secure C Programming 397

	10 C Structures, Unions, Bit Manipulation and Enumerations 404
	10.1 Introduction 405
	10.2 Structure Definitions 405
	10.2.1 Self-Referential Structures 406
	10.2.2 Defining Variables of Structure Types 407
	10.2.3 Structure Tag Names 407
	10.2.4 Operations That Can Be Performed on Structures 407

	10.3 Initializing Structures 408
	10.4 Accessing Structure Members with . and -> 408
	10.5 Using Structures with Functions 410
	10.6 typedef 411
	10.7 Example: High-Performance Card Shuffling and Dealing Simulation 411
	10.8 Unions 414
	10.8.1 Union Declarations 414
	10.8.2 Operations That Can Be Performed on Unions 415
	10.8.3 Initializing Unions in Declarations 415
	10.8.4 Demonstrating Unions 415

	10.9 Bitwise Operators 416
	10.9.1 Displaying an Unsigned Integer in Bits 417
	10.9.2 Making Function displayBits More Generic and Portable 419
	10.9.3 Using the Bitwise AND, Inclusive OR, Exclusive OR and Complement Operators 420
	10.9.4 Using the Bitwise Left- and Right-Shift Operators 423
	10.9.5 Bitwise Assignment Operators 424

	10.10 Bit Fields 425
	10.10.1 Defining Bit Fields 425
	10.10.2 Using Bit Fields to Represent a Card’s Face, Suit and Color 426
	10.10.3 Unnamed Bit Fields 428

	10.11 Enumeration Constants 428
	10.12 Anonymous Structures and Unions 430
	10.13 Secure C Programming 430

	11 C File Processing 441
	11.1 Introduction 442
	11.2 Files and Streams 442
	11.3 Creating a Sequential-Access File 443
	11.3.1 Pointer to a FILE 445
	11.3.2 Using fopen to Open the File 445
	11.3.3 Using feof to Check for the End-of-File Indicator 445
	11.3.4 Using fprintf to Write to the File 446
	11.3.5 Using fclose to Close the File 446
	11.3.6 File Open Modes 447

	11.4 Reading Data from a Sequential-Access File 449
	11.4.1 Resetting the File Position Pointer 450
	11.4.2 Credit Inquiry Program 450

	11.5 Random-Access Files 454
	11.6 Creating a Random-Access File 454
	11.7 Writing Data Randomly to a Random-Access File 456
	11.7.1 Positioning the File Position Pointer with fseek 458
	 11.7.2 Error Checking 459

	11.8 Reading Data from a Random-Access File 459
	11.9 Case Study: Transaction-Processing Program 461
	11.10 Secure C Programming 466

	12 C Data Structures 477
	12.1 Introduction 478
	12.2 Self-Referential Structures 479
	12.3 Dynamic Memory Allocation 479
	12.4 Linked Lists 480
	12.4.1 Function insert 486
	12.4.2 Function delete 487
	12.4.3 Function printList 489

	12.5 Stacks 489
	12.5.1 Function push 493
	12.5.2 Function pop 494
	12.5.3 Applications of Stacks 494

	12.6 Queues 495
	12.6.1 Function enqueue 499
	12.6.2 Function dequeue 500

	12.7 Trees 501
	12.7.1 Function insertNode 504
	12.7.2 Traversals: Functions inOrder, preOrder and postOrder 505
	12.7.3 Duplicate Elimination 506
	12.7.4 Binary Tree Search 506
	12.7.5 Other Binary Tree Operations 506

	12.8 Secure C Programming 506

	13 C Preprocessor 518
	13.1 Introduction 519
	13.2 #include Preprocessor Directive 519
	13.3 #define Preprocessor Directive: Symbolic Constants 520
	13.4 #define Preprocessor Directive: Macros 521
	13.4.1 Macro with One Argument 521
	13.4.2 Macro with Two Arguments 522
	13.4.3 Macro Continuation Character 522
	13.4.4 #undef Preprocessor Directive 522
	13.4.5 Standard Library Functions and Macros 522
	13.4.6 Do Not Place Expressions with Side Effects in Macros 523

	13.5 Conditional Compilation 523
	13.5.1 #if…#endif Preprocessor Directive 523
	13.5.2 Commenting Out Blocks of Code with #if…#endif 523
	13.5.3 Conditionally Compiling Debugging Code 524

	13.6 #error and #pragma Preprocessor Directives 524
	13.7 # and ## Operators 524
	13.8 Line Numbers 525
	13.9 Predefined Symbolic Constants 525
	13.10 Assertions 526
	13.11 Secure C Programming 526

	14 Other C Topics 531
	14.1 Introduction 532
	14.2 Redirecting I/O 532
	14.2.1 Redirecting Input with < 532
	14.2.2 Redirecting Input with | 533
	14.2.3 Redirecting Output 533

	14.3 Variable-Length Argument Lists 533
	14.4 Using Command-Line Arguments 535
	14.5 Compiling Multiple-Source-File Programs 537
	14.5.1 extern Declarations for Global Variables in Other Files 537
	14.5.2 Function Prototypes 537
	14.5.3 Restricting Scope with static 538
	14.5.4 Makefiles 538

	14.6 Program Termination with exit and atexit 538
	14.7 Suffixes for Integer and Floating-Point Literals 540
	14.8 Signal Handling 540
	14.9 Dynamic Memory Allocation: Functions calloc and realloc 543
	14.10 Unconditional Branching with goto 543

	15 C++ as a Better C; Introducing Object Technology 549
	15.1 Introduction 550
	15.2 C++ 550
	15.3 A Simple Program: Adding Two Integers 551
	15.3.1 Addition Program in C++ 551
	15.3.2 <iostream> Header 552
	15.3.3 main Function 552
	15.3.4 Variable Declarations 552
	15.3.5 Standard Output Stream and Standard Input Stream Objects 552
	15.3.6 std::endl Stream Manipulator 553
	15.3.7 std:: Explained 553
	15.3.8 Concatenated Stream Outputs 553
	15.3.9 return Statement Not Required in main 553
	15.3.10 Operator Overloading 553

	15.4 C++ Standard Library 554
	15.5 Header Files 554
	15.6 Inline Functions 556
	15.7 C++ Keywords 558
	15.8 References and Reference Parameters 559
	15.8.1 Reference Parameters 559
	15.8.2 Passing Arguments by Value and by Reference 560
	15.8.3 References as Aliases within a Function 562
	15.8.4 Returning a Reference from a Function 563
	15.8.5 Error Messages for Uninitialized References 564

	15.9 Empty Parameter Lists 564
	15.10 Default Arguments 564
	15.11 Unary Scope Resolution Operator 566
	15.12 Function Overloading 567
	15.13 Function Templates 570
	15.13.1 Defining a Function Template 570
	15.13.2 Using a Function Template 571

	15.14 Introduction to Object Technology and the UML 573
	15.14.1 Basic Object Technology Concepts 573
	15.14.2 Classes, Data Members and Member Functions 574
	15.14.3 Object-Oriented Analysis and Design 575
	15.14.4 The Unified Modeling Language 576

	15.15 Introduction to C++ Standard Library Class Template vector 576
	15.15.1 Problems Associated with C-Style Pointer-Based Arrays 576
	15.15.2 Using Class Template vector 577
	15.15.3 Exception Handling: Processing an Out-of-Range Index 581

	15.16 Wrap-Up 583

	16 Introduction to Classes, 16 Objects and Strings 589
	16.1 Introduction 590
	16.2 Defining a Class with a Member Function 590
	16.3 Defining a Member Function with a Parameter 593
	16.4 Data Members, set Member Functions and get Member Functions 597
	16.5 Initializing Objects with Constructors 602
	16.6 Placing a Class in a Separate File for Reusability 606
	16.7 Separating Interface from Implementation 610
	16.8 Validating Data with set Functions 615
	16.9 Wrap-Up 620

	17 Classes: A Deeper Look; Throwing Exceptions 627
	17.1 Introduction 628
	17.2 Time Class Case Study 629
	17.3 Class Scope and Accessing Class Members 635
	17.4 Access Functions and Utility Functions 636
	17.5 Time Class Case Study: Constructors with Default Arguments 637
	17.6 Destructors 643
	17.7 When Constructors and Destructors Are Called 643
	17.8 Time Class Case Study: A Subtle Trap— Returning a Reference or a Pointer to a private Data Member 647
	17.9 Default Memberwise Assignment 650
	17.10 const Objects and const Member Functions 652
	17.11 Composition: Objects as Members of Classes 654
	17.12 friend Functions and friend Classes 660
	17.13 Using the this Pointer 662
	17.14 static Class Members 668
	17.15 Wrap-Up 673

	18 Operator Overloading; Class string 683
	18.1 Introduction 684
	18.2 Using the Overloaded Operators of Standard Library Class string 685
	18.3 Fundamentals of Operator Overloading 688
	18.4 Overloading Binary Operators 689
	18.5 Overloading the Binary Stream Insertion and Stream Extraction Operators 690
	18.6 Overloading Unary Operators 694
	18.7 Overloading the Unary Prefix and Postfix ++ and -- Operators 695
	18.8 Case Study: A Date Class 696
	18.9 Dynamic Memory Management 701
	18.10 Case Study: Array Class 703
	18.10.1 Using the Array Class 704
	18.10.2 Array Class Definition 708

	18.11 Operators as Member vs. Non-Member Functions 716
	18.12 Converting Between Types 716
	18.13 explicit Constructors and Conversion Operators 718
	18.14 Overloading the Function Call Operator () 720
	18.15 Wrap-Up 721

	19 Object-Oriented Programming: Inheritance 732
	19.1 Introduction 733
	19.2 Base Classes and Derived Classes 733
	19.3 Relationship between Base and Derived Classes 736
	19.3.1 Creating and Using a CommissionEmployee Class 736
	19.3.2 Creating a BasePlusCommissionEmployee Class Without Using Inheritance 741
	19.3.3 Creating a CommissionEmployee– BasePlusCommissionEmployee Inheritance Hierarchy 747
	19.3.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using protected Data 751
	19.3.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using private Data 754

	19.4 Constructors and Destructors in Derived Classes 759
	19.5 public, protected and private Inheritance 761
	19.6 Software Engineering with Inheritance 762
	19.7 Wrap-Up 762

	20 Object-Oriented Programming: Polymorphism 767
	20.1 Introduction 768
	20.2 Introduction to Polymorphism: Polymorphic VideoGame 769
	20.3 Relationships Among Objects in an Inheritance Hierarchy 769
	20.3.1 Invoking Base-Class Functions from Derived-Class Objects 770
	20.3.2 Aiming Derived-Class Pointers at Base-Class Objects 773
	20.3.3 Derived-Class Member-Function Calls via Base-Class Pointers 774
	20.3.4 Virtual Functions and Virtual Destructors 776

	20.4 Type Fields and switch Statements 783
	20.5 Abstract Classes and Pure virtual Functions 783
	20.6 Case Study: Payroll System Using Polymorphism 785
	20.6.1 Creating Abstract Base Class Employee 786
	20.6.2 Creating Concrete Derived Class SalariedEmployee 790
	20.6.3 Creating Concrete Derived Class CommissionEmployee 792
	20.6.4 Creating Indirect Concrete Derived Class BasePlusCommissionEmployee 794
	20.6.5 Demonstrating Polymorphic Processing 796

	20.7 (Optional) Polymorphism, Virtual Functions and Dynamic Binding “Under the Hood” 800
	20.8 Case Study: Payroll System Using Polymorphism and Runtime Type Information with Downcasting, dynamic_cast, typeid and type_info 803
	20.9 Wrap-Up 807

	21 Stream Input/Output: A Deeper Look 812
	21.1 Introduction 813
	21.2 Streams 814
	21.2.1 Classic Streams vs. Standard Streams 814
	21.2.2 iostream Library Headers 815
	21.2.3 Stream Input/Output Classes and Objects 815

	21.3 Stream Output 817
	21.3.1 Output of char * Variables 818
	21.3.2 Character Output Using Member Function put 818

	21.4 Stream Input 819
	21.4.1 get and getline Member Functions 819
	21.4.2 istream Member Functions peek, putback and ignore 822
	21.4.3 Type-Safe I/O 822

	21.5 Unformatted I/O Using read, write and gcount 822
	21.6 Introduction to Stream Manipulators 823
	21.6.1 Integral Stream Base: dec, oct, hex and setbase 824
	21.6.2 Floating-Point Precision (precision, setprecision) 824
	21.6.3 Field Width (width, setw) 826
	21.6.4 User-Defined Output Stream Manipulators 827

	21.7 Stream Format States and Stream Manipulators 828
	21.7.1 Trailing Zeros and Decimal Points (showpoint) 829
	21.7.2 Justification (left, right and internal) 830
	21.7.3 Padding (fill, setfill) 832
	21.7.4 Integral Stream Base (dec, oct, hex, showbase) 833
	21.7.5 Floating-Point Numbers; Scientific and Fixed Notation (scientific, fixed) 834
	21.7.6 Uppercase/Lowercase Control (uppercase) 835
	21.7.7 Specifying Boolean Format (boolalpha) 835
	21.7.8 Setting and Resetting the Format State via Member Function flags 836

	21.8 Stream Error States 837
	21.9 Tying an Output Stream to an Input Stream 840
	21.10 Wrap-Up 840

	22 Exception Handling: A Deeper Look 849
	22.1 Introduction 850
	22.2 Example: Handling an Attempt to Divide by Zero 850
	22.3 Rethrowing an Exception 856
	22.4 Stack Unwinding 857
	22.5 When to Use Exception Handling 859
	22.6 Constructors, Destructors and Exception Handling 860
	22.7 Exceptions and Inheritance 861
	22.8 Processing new Failures 861
	22.9 Class unique_ptr and Dynamic Memory Allocation 864
	22.10 Standard Library Exception Hierarchy 867
	22.11 Wrap-Up 868

	23 Introduction to Custom Templates 874
	23.1 Introduction 875
	23.2 Class Templates 875
	23.3 Function Template to Manipulate a Class-Template Specialization Object 880
	23.4 Nontype Parameters 882
	23.5 Default Arguments for Template Type Parameters 882
	23.6 Overloading Function Templates 883
	23.7 Wrap-Up 883

	A. C and C++ Operator Precedence Charts 886
	B. ASCII Character Set 890
	C. Number Systems 891
	D. Sorting: A Deeper Look 904
	E. Multithreading and Other C11 and C99 Topics 924
	Appendices on the Web 951
	Index 952
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	 C++ Reviewer Comments 975

		2015-05-21T14:42:01+0000
	Preflight Ticket Signature

